人教版 九年级数学 相似形及比例线段讲义 (含解析)
- 格式:docx
- 大小:375.21 KB
- 文档页数:14
初中数学中考复习考点知识与题型专题讲解专题33相似形【知识要点】考点知识一相似图形及比例线段相似图形:在数学上,我们把形状相同的图形称为相似图形.相似多边形:若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
特征:对应角相等,对应边成比例。
比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段。
考点知识二相似三角形相似图形的概念:形状相同的图形叫做相似图形。
相似图形的概念:对应角相等、对应边成比例的两个三角形叫做相似三角形。
相似用符号“∽”,读作“相似于”。
相似比的概念:相似三角形对应边的比叫做相似比相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.判定方法(五):斜边和任意一条直角边成比例的两个直角三角形相似。
相似三角形的性质:1.相似三角形的对应角相等,对应边的比相等;2.相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.3.相似三角形的面积比等于相似比的平方.相似三角形与实际应用:关键:巧妙利用相似三角形性质,构建相似三角形求解。
考点知识三位似位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:1.位似图形是相似图形的一种特殊形式。
2.位似图形的对应顶点的连线所在直线相交与一点,位似图形的对应边互相平行或者共线。
位似中心的位置:形内、形外、形上。
九年级数学相似三角形知识点汇总参考一、比例线段及比例的性质1.比例线段:(1)线段的比:如果选用同一长度单位量得两条线段a,b的长度分别是m,n,那么就说这两条线段的比是a:b=m:n,或写成,其中a叫做比的前项;b叫做比的后项.(2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.(3)比例的项:已知四条线段a,b,c,d,如果,那么a,b,c,d,叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.(4)比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c或,那么线段b叫做线段a和c的比例中项.2.比例的性质(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质:(5)等比性质: 且3.平行线分线段成比例定理(1)三角形一边的平行线性质定理: 平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.(2)三角形一边的平行线性质定理推论:平行于三角形一边并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边的对应成比例.(3)三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.(4)三角形一边的平行线判定定理推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(5)平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.(6)平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.这几个定理主要提出由平行线可得到比例式;反之,有比例可得到平行线.首先要弄清三个基本图形:这三个基本图形的用途是: 1.由平行线产生比例式 基本图形(1): 若l 1//l 2//l 3,则或或或 基本图形(2): 若DE//BC ,则或或或 基本图形(3): 若AC//BD ,则或或或在这里必须注意正确找出对应线段,不要弄错位置. 2.由比例式产生平行线段 基本图形(2):若, , , ,, 之一成立,则DE//BC. 基本图形(3):若,,,,,之一成立,则AC//DB.4.三角形的重心三角形三条中线的交点叫做三角形的重心.二、黄金分割 1.黄金分割是指把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项(AC 2=AB·BC),C 点为黄金分割点. 2.黄金分割的求法 ①代数求法:已知:线段AB ,求作:线段AB 的黄金分割点C.分析:设C 点为所求作的黄金分割点,则AC 2=AB·CB,设AB =,AC =x ,那么 CB =-x , 由AC 2=AB·CB,得:x 2=·(-x)=0, 根据求根公式,得:x =整理后,得:x 2+x -∴(不合题意,舍去),即AC =AB≈0.618AB, 则C 点可作.②黄金分割的几何求法(尺规法):已知:线段AB , 求作:线段AB 的黄金分割点C. 作法:如图:(1)过B 点作BD ⊥AB ,使BD =AB.(2)连结AD ,在AD 上截取DE =DB.(3)在AB 上截取AC =AE. 则点C 就是所求的黄金分割点.证明:∵AC =AE =AD -AB ,而AD =∴AC =.5-1三、相似三角形 1.相似多边形(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.(2)相似多边形的识别:如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似. (3)相似比:我们把相似多边形对应边的比称为相似比. (4)相似多边形的性质①相似多边形的对应角相等,对应边的比相等. ②相似多边形的周长比等于相似比.③相似多边形的面积比等于相似比的平方. 2.相似三角形(1)相似三角形的定义:形状相同的三角形是相似三角形. (2)相似三角形的表示方法:用“∽”表示,读作相似于.如:△ABC 和△DEF 相似,可以写成△ABC ∽△DEF ,也可以写成△DEF ∽△ABC ,读作△ABC 相似于△DEF. (3)相似三角形的性质:①相似三角形的对应角相等,对应边的比相等. ②相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比. ③相似三角形的周长的比等于相似比,面积的比等于相似比的平方. (4)相似三角形的判定:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; ②如果两个三角形的三组对应边的比相等,那么这两个三角形相似;③如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; ④如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.⑤如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个直角三角形相似.(5)相似三角形应用举例相似三角形的知识在实际生产和生活中有着广泛的应用,可以解决一些不能直接测量的物体的长度问题,加深学生对相似三角形的理解和认识.四、实数与向量相乘 1.实数与向量相乘的意义一般的,设为正整数,为向量,我们用表示个相加;用表示个相加.又当为正整数时,表示与同向且长度为的向量. 诠释:设P 为一个正数,P 就是将的长度进行放缩,而方向保持不变;—P 也就是将的长度进行放缩,但方向相反.2.向量数乘的定义一般地,实数与向量的相乘所得的积是一个向量,记作,它的长度与方向规定如下:(1)如果时,则:①的长度:;②的方向:当时,与同方向;当时,与反方向;(2)如果时,则:,的方向任意.实数与向量相乘,叫做向量的数乘.n a a nn a a n -n -m a m n a mnk a ka k 0,a 0且≠≠ka ||||||ka k a =ka 0k >ka a 0k <ka a k 0,a=0=或0ka =ka k a(1)向量数乘结果是一个与已知向量平行(或共线)的向量; (2)实数与向量不能进行加减运算;(3)表示向量的数乘运算,书写时应把实数写在向量前面且省略乘号,注意不要将表示向量的箭头写在数字上面;(4)向量的数乘体现几何图形中的位置关系和数量关系. 3.实数与向量相乘的运算律 设为实数,则:(1)(结合律);(2)(向量的数乘对于实数加法的分配律);(3) (向量的数乘对于向量加法的分配律) 4.平行向量定理(1)单位向量:长度为1的向量叫做单位向量. 诠释:任意非零向量与它同方向的单位向量的关系:,.(2)平行向量定理:如果向量与非零向量平行,那么存在唯一的实数,使.诠释:(1)定理中,,的符号由与同向还是反向来确定.(2)定理中的“”不能去掉,因为若,必有,此时可以取任意实数,使得成立. (3)向量平行的判定定理:是一个非零向量,若存在一个实数,使,则向量与非零向量平行. (4)向量平行的性质定理:若向量与非零向量平行,则存在一个实数,使. (5)A 、B 、C 三点的共线若存在实数λ,使 .要点五、向量的线性运算 1.向量的线性运算定义向量的加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算. 诠释:(1)如果没有括号,那么运算的顺序是先将实数与向量相乘,再进行向量的加减. (2)如果有括号,则先做括号内的运算,按小括号、中括号、大括号依次进行. 2.向量的分解平面向量基本定理:如果是同一平面内两个不共线(或不平行)的向量,那么对于这一平面内的任一向量,有且只有一对实数,使得.ka m n 、()()m na mn a =()m n a ma na +=+m (+b)=m a a mb +a 0a 0a a a =01a a a=b a m b ma =b m a=m b a a 0≠a 0=b 0=m b ma =a m b ma =b a b a m b ma =⇔AB //BC ⇔AB BC λ=12,e e a 12,λλ1122a e e λλ=+(1)同一平面内两个不共线(或不平行)向量叫做这一平面内所有向量的一组基底.一组基底中,必不含有零向量.(2) 一个平面向量用一组基底表示为形式,叫做向量的分解,当相互垂直时,就称为向量的正分解.(3) 以平面内任意两个不共线的向量为一组基底,该平面内的任意一个向量都可表示成这组基底的线性组合,基底不同,表示也不同.3.用向量方法解决平面几何问题 (1)利用已知向量表示未知向量用已知向量来表示另外一些向量,除利用向量的加、减、数乘运算外,还应充分利用平面几何的一些定理,因此在求向量时要尽可能转化到平行四边形或三角形中,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解. (2)用向量方法研究平面几何的问题的“三步曲”:①建立平面几何与向量的联系,将平面几何问题转化为向量问题. ②通过向量运算,研究几何元素的关系. ③把运算结果“翻译”成几何关系.12,e e 12,e e 1122a e e λλ=+12,e e。
相似形及比例线段(基础)知识讲解【学习目标】1、能通过生活中的实例认识图形的相似,能通过观察直观地判断两个图形是否相似;2、了解比例线段的概念及有关性质;3、探索相似图形的性质,知道两相似多边形的主要特征,并根据相似多边形的特征识别两个多边形是否相似,并会运用性质进行相关的计算,提高推理能力.【要点梳理】要点一、相似图形在数学上,我们把形状相同的图形称为相似图形或相似形.要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等;要点二、相似多边形相似多边形的概念:如果两个多边形的对应角相等,对应边的长度成比例,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.要点三、比例线段1.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.2.比例的性质:(1)基本性质:若a:b=c:d,则ad=bc;(2)合比性质:如果++ ==.a c abc db d b d,那么如果--==.a c abc db d b d,那么(3)等比性质:如果+c c=====k.+da c a ab d b d bk,那么(4)比例中项:若a:b=b:c,则2b =ac,b称为a、c的比例中项.要点诠释:通常四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b的单位一致,c,d的单位一致也可以。
要点四、黄金分割如果点P把线段AB分割成AP和PB,(AP>PB)两段,其中AP是AB和PB的比例中项,那么就称这种分割为黄金分割,点P是线段AB的黄金分割点.12AP AB=≈).要点诠释:线段的黄金分割点有两个.【典型例题】类型一、相似图形1. 下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个B.2个C.3个D.4个【答案】C.【解析】解:(1)所有菱形的对应角不一定相等,故菱形不一定都相似;(2)等腰直角三角形都相似,正确;(3)正方形都相似,正确;(4)矩形对应边比值不一定相等,不矩形不一定都相似;(5)正六边形都相似,正确,故符合题意的有3个.故选:C.【总结升华】此题主要考查了相似图形,应注意:①相似图形的形状必须完全相同;②相似图形的大小不一定相同;③两个物体形状相同、大小相同时它们是全等的,全等是相似的一种特殊情况.举一反三:【变式】如图,左边是一个横放的长方形,右边的图形是把左边的长方形各边放大两倍,并竖立起来以后得到的,这两个图形是相似的吗?【答案】这两个图形是相似的,这两个图形形状是一样,对应线段的比都是1:2,虽然它们的摆放方法、位置不一样,但这并不会影响到它们的相似性.类型二、相似多边形2. 如图,已知四边形相似于四边形,求四边形的周长.【答案与解析】∵四边形相似于四边形∴,即∴∴四边形的周长.【总结升华】先根据相似多边形的对应边的比相等,求出四边形的未知边的长,然后即可求出该四边形的周长举一反三:【变式】如图所示的相似四边形中,求未知边x、y的长度和角的大小.【答案】根据题意,两个四边形是相似形,得,解得.3. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF 为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?【答案与解析】解:∵矩形MFGN与矩形ABCD相似,当时,S有最大值,为.【总结升华】借助相似,把最值问题转移到函数问题上,是解决这类题型最好方法之一. 类型三、比例线段4. 下列四组线段中,成比例线段的有( )A.3cm、4cm、5cm、6cm B.4cm、8cm、3cm、5cmC.5cm、15cm、2cm、6cm D.8cm、4cm、1cm、3cm【答案】C.【解析】四个选项中只有,故选C.【总结升华】根据成比例线段的定义.举一反三:【变式】判断下列线段a、b、c、d是否是成比例线段:(1)a=4,b=6,c=5,d=10;(2)a=2,b=,c=,d=.【答案】(1) ∵,,∴,∴线段a、b、c、d不是成比例线段.(2) ∵,,∴,∴线段a、b、c、d是成比例线段.5.主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20米,一个主持人现站在舞台AB的黄金分割点点C处,则下列结论一定正确的是()①AB:AC=AC:BC;②AC≈6.18米;AC米;③1)④=10(31)BC-米或米.A.①②③④B.①②③C.①③D.④【答案】D.【解析】解:AB的黄金分割点为点C处,若AC>BC,则AB:AC=AC:BC,所以①不一定正确;AC≈0.618AB≈12.36或AC≈20﹣12.36=7.64,所以②错误;若AC为较长线段时,AC=AB=10(﹣1),BC=10(3﹣);若BC为较长线段时,BC=AB=10(﹣1),AC=10(3﹣),所以③不一定正确,④正确.故选D.【总结升华】黄金分割知识的理解和运用要结合生活实践.。
是 .【分析】分PM >PN 和PM <PN 两种情况,根据黄金比值计算. 【解答】解:当PM >PN 时,PM =√5−12MN =√5−12,当PM <PN 时,PM =MN −√5−12MN =3−√52, 故答案为:√5−12或3−√52.【点评】本题考查的是黄金分割,掌握黄金比值是√5−12是解题的关键. 【变式2-1】(2020秋•静安区期中)如果点C 是线段AB 的黄金分割点,那么下列线段比的值不可能是√5−12的为( ) A .ACBCB .BCACC .BCABD .ABBC【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(√5−12)叫做黄金比作出判断. 【解答】解:∵点C 是线段AB 的黄金分割点,∴AC 2=AB •BC (AC >BC ),则AC AB=BC AC=√5−12; 或BC 2=AB •AC (AC <BC ),则ACBC=BC AB=√5−12.故只有AB BC 的值不可能是√5−12.故选:D . 【点评】此题主要考查了黄金分割比的概念,找出黄金分割中成比例的对应线段是解决问题的关键.【变式2-2】(2020春•相城区期末)如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,若S 1表示AE 为边长的正方形面积,S 2表示以BC 为长,BE 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,则S 3:S 2的值为( ) A .√5−12B .√5+12C .3−√52D .3+√52【分析】根据黄金分割的定义:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB ,进行计算即可.【解答】解:如图,设AB =1,∵点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB , ∴AE =GF =√5−12,∴BE =FH =AB ﹣AE =3−√52, ∴S 3:S 2=(GF •FH ):(BC •BE )=(√5−12×3−√52):(1×3−√52) =√5−12.故选:A .【点评】本题考查了黄金分割、矩形的性质、正方形的性质,解决本题的关键是掌握黄金分割定义.【变式2-3】(2020•泸州)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GNMG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( ) A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【分析】作AH ⊥BC 于H ,如图,根据等腰三角形的性质得到BH =CH =12BC =2,则根据勾股定理可计算出AH =√5,接着根据线段的“黄金分割”点的定义得到BE =√5−12BC =2√5−2,则计算出HE =2√5−4,然后根据三角形面积公式计算.【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2, 在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点, ∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5.故选:A .【点评】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB ≈0.618AB ,并且线段AB 的黄金分割点有两个.也考查了等腰三角形的性质.三、成比例线段、比例的基本性质(1)①a :b=c :d ad=bc ②a :b=b :c .(a,b,c,d,都不为0);(2)合比性质:d dc b b ad c b a ±=±⇔=; (3)等比性质:ban d b m c a n d b n m d c b a =++++++⇔≠+++=== )0(例3.已知非零实数a,b,c,满足,34,13125=+==b a cb a 且求c 的值。
相似形与比例线段内容分析放缩与相似形是九年级上学期第一章第一节的内容,主要对相似多边形的概念和性质进行讲解,重点是理解相似形的相关概念和相似多边形性质的运用.通过对相似多边形的学习,为后面学习相似三角形的知识奠定基础.比例线段是九年级上学期第一章第二节的内容,主要讲解比例线段的有关概念和性质,以及三角形一边的平行线的相关性质和判定.比例线段的知识点,重点在于理解不同概念和性质之间的联系和区别,熟练比例线段之间的转换,并能结合具体图形,运用比例线段的性质进行解题.对比例线段的学习之后,我们进一步学习三角形一边的平行线分线段成比例的相关性质和判定.三角形一边的平行线是九年级数学上学期第一章第二节的内容,本讲主要讲解三角形一边平行线性质定理及推论和三角形一边平行线判定定理及推论,以及平行线分线段成比例定理.重点是掌握这两个定理及其推论,分清两个定理及其推论之间的区别和联系,难点是理解该定理和推论的推导过程中所蕴含的分类讨论思想和转化思想,并认识“A ”字型和“X ”字形这两个基本图形,最后灵活运用本节的三个定理及两个推论,理解和掌握“作平行线”这一主要的作辅助线的方法,为学习相似三角形的性质和判定做好准备.知识结构模块一:放缩与相似形知识精讲1、相似形的概念相似形:我们把形状相同的两个图形称为相似的图形,简称相似形.2、相似多边形的性质如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例.当两个相似的多边形是全等形时,它们对应边的长度的比值为 1.例题解析【例1】下列说法中错误的是()A.同一底片先后两次冲印出的照片是相似形B.同一颗树在太阳光下先后两次形成的影子是相似形C.放在投影仪上的图片及其在屏幕上显示的图片是相似形D.放在复印件上的图片及其复印后得到的图片是相似形【难度】★【答案】B【解析】不同的时刻下,阳光与树射入的夹角不同,形成的影子大小不同,即不是相似形.【总结】考查相似形的定义,抓住相似形的基本定义即形状完全相同才是相似形.【例2】有以下命题:1 邻边之比为2 : 3 的两个平行四边形相似;2 有一个角是40°的两个菱形相似;3 两个矩形相似;4 两个正方形相似,其中正确的是()A.1和2 B.2和4 C.3 和4 D.1 和3【难度】★★【答案】B【解析】邻边之比固定,但邻边的夹角不确定,形状不一定相同,①错误;矩形每个角都是90 度,但长宽之比不确定,即对应边不一定成比例,③错误;故选B.【总结】考查相似形的定义,根据相似形的性质可知对应角相等,对应边成比例才是相似形.b 甲乙ba 甲b 乙【例3】如果两个矩形相似,已知一个矩形的两边长分别为5 cm 和4 cm,另一边矩形的边长为6 cm,则另一边长为.【难度】★★【答案】4.8cm 或7.5cm .【解析】设矩形另一边长为xcm ,根据相似形的定义,对应边成比例,可知5=4或5=4,6 x x 6解得:x = 4.8 或x = 7.5 .【总结】考查相似图形的性质,对应边成比例,但要注意好对应关系,题目未指明的要进行分类讨论.【例4】在平面内,两个形状相同、大小不一定相同的图形称作相似形.我们可以把这一概念推广到空间:如果两个几何体的形状完全相同,大小不一定相同,我们称它们为相似体.如图,甲乙两个不同的正方体,它们是相似体.若两个正方体的棱长分别为a 和b,则称这两个相似体的相似比为a : b.我们不难发现它们的一些基本性质:设S甲、S乙分别表示这两个正方体的表面积,则S甲=S乙6a26b2⎛a ⎫2= ⎪;⎝⎭设V甲、V乙分别表示这两个正方体的体积,则V=a3=V b3⎛a ⎫3⎪.⎝⎭(1)下列几何体中,一定属于相似体的是()A.两个圆柱体B.两个圆锥体C.两个球体D.两个长方体(2)请归纳出相似体的三条主要性质:①两个相似体的对应线段或对应弧长的比等于;②两个相似体表面积的比等于;③两个相似体体积的比等于.(3)某海岛周围海域出产一种鱼,在体长10 厘米之后的生长过程中,体型可以近似地看作相似体.若体长20 厘米的鱼质量为0.2 千克,则体长为60 厘米的鱼质量为多少?当地市场上出售这种鱼价格与体长成正比,购买哪种鱼更划算?60【难度】★★★【答案】(1)C ;(2)相似比,相似比的平方,相似比的立方;(3) 5.4kg , 60cm 划算 【解析】(1)和圆一样,球只有一个基本量,即半径,所有球体都是相似体,类似所有圆都是相似形,其它的几何体都是至少两个基本量,不能确定相似;(2)表面积是进行平方运算,体积是进行立方运算,由正方体相似进行归纳总结,由此可得相似体对应线段比是相似比,表面积比是相似比的平方,体积比是相似比的立方; (3)鱼的体型可看作相似体,可知其体积比即为相应相似比的立方,即鱼体长比的立方,设60cm 长鱼体重mkg ,则有0.2 m ⎛ 20 ⎫3= ⎪ ,解得m = 5.4 ,这种鱼的价格与体长成正比,⎝ ⎭可知体型越大,这种鱼的单价越低,由此可知60cm 体长的鱼划算.【总结】阅读题,主要考查归纳总结的能力,要用题目中的条件分析清楚,进行类比,即可解决问题.知识精讲1、比和比例一般来说,两个数或两个同类的量a 与b 相除,叫做a 与b 的比,记作a : b (或表示为a);b如果a : b = c : d (或 a = c),那么就说a 、b 、c 、 d 成比例.b d 2、比例的性质(1)基本性质:如果 a = c,那么ad = bc ;b d 如果 a =c ,那么 b =d , a = b , c = d.b d (2)合比性质: ac cd a b 如果 a = c ,那么 a + b = c + d;b d b d 如果 a =c ,那么 a - b = c - d.b d b d(3)等比性质: 如果 a = c = k ,那么 a + c = a = c= k (如果是实数运算,要注意强调b + d ≠ 0 ).b d 3、比例线段的概念b + d b d对于四条线段a 、b 、c 、d ,如果 a : b = c : d (或表示为 a = c ),那么a 、b 、c 、db d叫做成比例线段,简称比例线段. 4、黄金分割如果点 P 把线段 AB 分割成 AP 和 PB ( AP > PB )两段(如下图),其中 AP 是 AB 和 PB 的比例中项,那么称这种分割为黄金分割,点 P 称为线段 AB 的黄金分割点.其中, AP = AB5 - 1 ≈ 0.618 ,称为黄金分割数,简称黄金数. 2 模块二:比例线段APB2 ⎩ ⎩【例 5】把ab = 1cd 写成比例式,不正确的写法是()2A . a = dB . a = dC . 2a = dD . c =2ac 2b 2c b c b b d【难度】★ 【答案】B【解析】应用比例的基本性质,可知 B 选项即为ab = 2cd ,与原条件不符,故选 B . 【总结】考查比例式的变形,应用比例的基本性质转化为等积式,看能不能得到原本题目条件乘积式即可.【例 6】已知线段 x 、y 满足(x + y ): (x - y ) = 3 :1 ,那么 x : y 等于()A .3 : 1B .2 : 3C .2 : 1D .3 : 2【难度】★ 【答案】C⎧x + y = 3k 【解析】令⎨x - y = k ⎧x = 2k ,可解得⎨ y = k ,即得 x : y = 2k : k = 2 :1 .【总结】比例运算中,可应用设“ k ”法计算相应字母比例关系.【例 7】等腰直角三角形中,一直角边与斜边的比是 .【难度】★【答案】 2 : 2 .【解析】设三角形直角边长为 a ,根据勾股定理可知斜边长为 2a ,直角边与斜边比为a : 2a = 1: = 2 : 2 .【总结】考查应用勾股定理解决等腰直角三角形三边比,注意结果要进行化简.例题解析5【例 8】已知 a = c,则下列式子中正确的是()b d A . a : b =c 2 :d 2C .a :b = (a +c ): (b +d ) B . a : d = c : bD .a :b = (a - d ): (b - d )【难度】★★ 【答案】C【解析】根据比例的合比性,可知 C 正确.【总结】考查比例的性质的变形应用,本题根据合比性即可很快得出答案.【例 9】若 a = 8 cm ,b = 6 cm ,c = 4cm ,则 a 、b 、c 的第四比例项 d =cm ;a 、c 的比例中项 x = cm .【难度】★★【答案】3, 4 2 .【解析】根据第四比例项和比例中项的基本定义,可得 a = c , a = x,代入即可分别求得d = 3cm , x = 4 2cm .【总结】考查比例定义中的相关基本概念.【例10】已知点C 是线段AB 的黄金分割点,AC = 5 b d x c - 5 ,且AC > BC ,则线段AB = ,BC = .【难度】★★【答案】10,15 - 5 5 .【解析】根据黄金分割点的概念,且 AC > BC ,可知 AC=AB5 - 1, AC = 5 2- 5 代入可得AB = 10 ,则 BC = AB - AC = 15 - 5 .【总结】考查黄金分割点的概念,以及相关的黄金比.5 53【例 11】已知三个数 2、 3 、5,填一个数,使这四个数能组成比例,这个数可能是.【难度】★★★【答案】 5 3 或10 3 或 2 3 .2 3 5【解析】设这个数是 x ,根据比例的基本性质,转化后,可以得到三种情况,即2x = 5 ,3x = 5 ⨯ 2 , 5x = 2 ,分别解得 x =5 3, x = 10 3 , x = 2 3. 2 3 5【总结】考查对比例基本性质的应用,一定要注意题目条件的说明是否需要进行分类讨论的情况,通过转换为乘积的形式,可以做到不重不漏.【例 12】已知实数 a 、b 、c 满足 b + c = c + a = a + b ,求 b + c的值.a b c a 【难度】★★★ 【答案】2 或-1【解析】当 a + b + c ≠ 0 时,根据比例的等比性质,可得b +c = b + c + c + a + a + b= 2 ; a a + b + c当 a + b + c = 0 时,则有b + c = -a ,由此 b + c = -a= -1 .a a故 b + c 的值为 2 或-1 .a【总结】考查比例的等比性质,注意等比性质在实数运算中运用的条件,要根据分母是否为 0 进行分类讨论.3AlDEBCAD E BC1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.如图,已知∆ABC ,直线 l // BC ,且与 AB 、AC 所在直线交于点 D 和点 E ,那么 AD = AE.DB EC2、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.如图,点 D 、 E 分别在∆ABC 的边 AB 、 AC 上,DE // BC ,那么 DE = AD = AE.BC AB AC3、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍. 4、三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.5、三角形一边的平行线判定定理推论如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,在∆ABC 中,直线l 与 AB 、 AC 所在直线交于点 D 和点 E ,如果 AD = AE ,那DB EC 么l // BC .模块三:三角形一边的平行线知识精讲AlEDBCAl DEB C6、平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例.如图,直线l // l // l ,直线m 与直线 n 被直线l 、l 、l 所截,那么 DF= EG.1 2 3 1 2 3FB GC7、平行线等分线段定理两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上截得的线段也相等.【例 13】如图,DE // BC ,AD = 5,BD = 2,AE = 3,BC = 8,求线段 AC 、DE 的长. 【难度】★ 【答案】 AC =21 , DE = 40 . 5 7【解析】AD = 5,BD = 2,可得 AB = AD + BD = 7 ,由 DE // BC ,根据三角形一边平行线性质定理的推论,可得 AE = DE = AD,AC BC AB即 3 = DE = 5 ,可求得: AC = 21 , DE = 40 . AC 8 7 5 7【总结】考查三角形一边平行线性质定理推论的应用,注意解题中适当应用边的关系和相关比例的性质.D EFGBC例题解析AEDBC ADEB CADEB CC EADB3 【例 14】如图, ∆ABC 中,DE // BC ,AD = EC ,BD =4 cm ,AE = 3 cm ,则 AB = .【难度】★★【答案】(4 + 2 3)cm .【解析】设 AD = xcm ,由 DE // BC ,可得 AD = AE ,又 A D E C = ,AB ACADE 则该式即为 x = 3,整理得 x 2 = 12 ,由此得 x = 2 ,x + 4 3 + x BCAB = AD + BD = (4 + 2 3)cm .【总结】考查三角形一边平行线性质定理的应用,注意好题目中对相关条件的应用,改写成比例式解决问题.【例 15】∆ABC 中,∠A = 90︒ ,点 D 在 AB 上,点 E 在 BC 上,若 DE = BD,那么 DEAC BA平行于 AC .(填“一定”、“不一定”或者“一定不”) 【难度】★★ 【答案】不一定.【解析】根据三角形一边平行线的判定定理,可知一条直线截三角形两边所得的线段对应成比例,可判定平行,本题中对应成比例的并不是截三角形两边所得线段对应成比例,即 不可判定平行,在 AB 上固定一点 D ,作 E D ⊥A B 交 BC 于点 E ,以点 D 为圆心,ED 长 为半径画圆,与边 AB 还会有另外一个交点,即不一定能判定平行.【总结】考查三角形一边平行线判定定理的条件,只能根据所截得的两边线段对应成比例判定平行,而不能根据这条直线对应成比例关系判定平行.【例 16】如图,两条相交于点 O 的直线被另外三条直线所截,交点分别为 A 、B 、C 和 D 、 E 、F ,则下列说法中正确的有( )(1)若 AD // BE // FC ,则 AB = BC;DE EF OF AC(2)若 AD // BE // FC ,则 =; OC DF(3)若 AB = DE,则 AD // FC ;BC EF (4)若 BC = BO,则 BE // FC ;EF EO (5)若 BE = BO,则 BE // FC .FC OCA .1 个B .2 个C .3 个D .4 个【难度】★★ 【答案】B【解析】根据平行线分线段成比例定理,知(1)正确;同时 OF = OD = OF + OD = DF,OC OA OC + OA AC知(2)错误;根据平行线分线段成比例定理,由于题目中没有给出有直线与 BE 平行的条件,则不能证明平行,(3)错误;根据三角形一边平行线的判定定理,BC = BO,EF EO根据比例的基本性质变形可得 BO = OE,即可证平行,可知(4)正确,(5)错误.OC OF 【总结】考查平行线分线段成比例相关的性质定理和判定,注意前提条件再进行判断.【例 17】如图, ∆ABC ,DE // BC ,若 AD = 2,则 S : S =()DB 3∆CDE ∆BDCA .2 : 3B .2 : 5C .4 : 15D .6:15【难度】★★ 【答案】B【解析】根据 DE // BC ,可得 AE = AD = 2,三角形为同EC DB 3高三角形,则有 S ∆ADE = AE = 2,可设 S = 2a ,则S ∆CDE EC 3∆ADE有 S = 3a , S= 5a ,同理 S ∆ACD = AD = 2 , ∆CDE ∆ACDS ∆BCD BD 3可得 S ∆BCD = 15 a ,则有 S 2∆CDE : S ∆BDC = 3a : 15 a = 2 : 5 . 2【总结】结合三角形一边平行线性质定理,考查三角形中的同高三角形,面积比即为其底边长度之比.ADB E O FCA DEB C【例 18】如图,DF // AC ,DE // BC ,下列各式正确的是( )A . AD = BE BC CF 【难度】★★ 【答案】DB . AE = CE DE BC C . AE = BD CE AD D . AD =AB DE BC 【解析】由 DE // BC ,根据三角形一边平行线的性质定理的推论,可得 AD =DE ,变形即为 AB BC AD = AB,D 正确. DE BC 【总结】考查三角形一边平行线性质定理的应用,利用比例变形可以将对应边成比例转化为一个三角形中对应边的比例关系,利用相关性质等积转化即可进行判断.【例 19】如图,阳光通过窗口照到室内,在地上留下 2.7 米宽的亮区 DE ,如果亮区一边到窗下墙脚的距离 CE = 8.7,窗口高 AB = 1.8 米,那么窗口底边离地面的高度 BC = .【难度】★★ 【答案】4m .【解析】射入的光线平行,则有 AB = DE ,代入可求得AC CEA C = 5 . 8m , BC = AC - AB = 4m .【总结】考查三角形一边平行线性质定理的应用,在路灯、太阳光线中经常用到.【例 20】如图,AD // EG // BC ,AF = 12,FC =3,BC = 10,AD = 5,那么 EG 的长是 .【难度】★★ 【答案】9【解析】由 AD // EG // BC ,根据三角形一边平行线的性质定理的推论,可得 AF = EF ,AC BC CF = FG ,代入即为AC ADEF = 12 , FG = 3 ,求得 EF = 8 , FG = 1, 10 15 5 15 即得: EG = EF + FG = 9 .【总结】考查三角形一边平行线性质定理推论的综合应用,通过比例转化解决问题.AD EBFCA BE DCC G FD B EAD C EOFA B【例 21】如图,已知 ABCD 是梯形,其中 AB // CD ,对角线 AC 与 BD 交于 O ,过 O 作 AB的平行线交 AD 于点 E ,交 BC 于点 F ,若 AO : OC = 2 : 1,且 CD = 1.8,CF = 0.8,那么 AB = ,BC = .【难度】★★ 【答案】3.6 , 2.4 .【解析】由 AB / /CD / /EF ,根据三角形一边平行线的性质定理及推论,可得 AB = AO = OB = BF= 2 ,由此可CD OC OD CF求得:AB = 3.6 ,BF = 1.6 ,故 BC =BF +C F = 2.4 .【总结】考查三角形一边平行线性质定理推论的综合应用,通过比例转化解决问题.【例 22】如图,已知梯形 ABCD 中,AD // BC ,MN // BC ,且交对角线 BD 于 O ,AD = DO =p ,BC = BO = q ,则 MN 为( )A . pq p + q C .p + q pqB .2 pq p + q D .p + q 2 pq【难度】★★ 【答案】B【解析】由 AD // MN // BC ,根据三角形一边平行线的性质定理的推论,可得 MO = BO,AD BDON = DO ,由 AD = DO = p ,BC = BO = q ,代入即为 MO = q , ON = p , BC BDp p + q q p + q 求得: MO =pq p + q , ON = pqp + q,即得: MN = MO + ON =2 pq . p + q 【总结】考查三角形一边平行线性质定理推论的综合应用,通过比例转化解决问题.A D MONB CAC 2 + BC 2 【例 23】如图,直角∆ABC 中两条直角边 CA = 4,CB = 3,点 E 为斜边 AB 上的一个动点,ED ⊥ BC 于 D ,设 AE = x ,BD = y ,则 y 关于 x 的函数解析式为 .【难度】★★ 【答案】 y = 3 - 3x .5【解析】由勾股定理,可得 AB = = 5 ,AE = x ,则 BE = 5 - x ,由 ED ⊥ BC , ∠C = 90︒ ,可得 DE / / AC ,根据三角形一边平行线性质定理,则有 BD = BE,BC AB即 y = 5 - x ,即可得 y = 3 - 3 x . 3 5 5【总结】考查三角形一边平行线性质定理推论的综合应用,通过比例转化解决问题.【例 24】如图,在平行四边形 ABCD 中,E 是 AB 延长线上的一点,求证:(1) AE = AB ;(2) GD 2 = GF GE .AD CF 【难度】★★ 【答案】略【解析】证明:(1) 四边形 ABCD 是平行四边形,∴ AB / /CD , AD / /BC , AB = CD∴ DC = GC =CF AE AG AD ∴AB = CF AE AD即 得 AE =AB AD CF(2)同样地,由 AD / /CF , DC / / AE ,可得: GD = AG = GE .GF GC GD∴ GD 2 = GF GE .【总结】考查三角形一边平行线性质定理的基本应用,考查在有平行线的图形中的基本图形, “A ”字型和“8”字型,“A ”字型和“8”字型有叠合的时候可进行等比例转化.D CGFAB EA EB DC【例 25】如图,在∆ABC 中,AB > AC ,AD ⊥ BC 于 D ,点 F 是 BC 中点,过点 F 作 BC 垂线交 AB 于点 E ,BD : DC = 3 : 2,则 BE : EA = .【难度】★★★ 【答案】5 :1.【解析】由 BD : DC = 3 : 2,F 为 BC 中点,即可得B F + B F - F D = 3 ,则 B F F D 2= 5F D ,由 EF ⊥BC ,AD ⊥ BC ,可得: EF / / AD ,根据三角形一边平行线性质定理, 即可得: BE : EA = BF : FD = 5 :1 .【总结】考查三角形一边平行线性质定理的综合应用,过程中注意比例转化.【例 26】如图,在∆ABC 中,E 、F 分别是 BC 、AC 的中点,AE 、BF 交于点 G ,过 G 作GD // AC 交 BC 于点 D ,若 ED = 5,则 BC 的长为 .【难度】★★★ 【答案】30.【解析】∵E 、F 分别是 BC 、AC 的中点,∴G 是∆ABC 的重心.GE 1 ∴ = . AE 3 ∵GD // AC ,∴可得 ED = GE = 1,EC AE 3由此 EC = 3ED = 15 , BC = 2EC = 30 .【总结】考查重心性质的证明,构造平行线,结合三角形一边平行线性质定理即可解决问题.A EB F D CAFG BE DC1 【例 27】如图,AD // OM // BC ,AC 、BD 相交于点 O .求 证 : 1 + 1 = 1.AD BC OM 【难度】★★★ 【答案】略【解析】证明: AD / /OM / /BC ,O M B M OM AM ∴ = , A D A B = . BC AB ∴ O M + O M = B M + A M =. A D B C A B A B即 得 : 1 + 1 = 1.AD BC OM【总结】考查三角形一边平行线性质定理的应用,尤其图形中“A ”字型等基本图形有部分叠加图形的情况下可进行等比例转化.【例 28】如图,已知:在∆ABC 中, BD = 1 , AF = 2 ,求 AE的值.CD 3 DF AC 【难度】★★★1【答案】 .3【解析】过点 D 作 DG / / BE 交 AC 于点G ,根据三角形一边平行线的性质定理, 可 得 EG = BD = 1 , AE = AF = 2 ,GC CD 3 EG DF 则有 AE = 2 ,则有 AE= 2 = 1 ,GC 3 EC 1 + 3 2根据比例的合比性,则有 AE = 1.AC 3【总结】考查三角形一边平行线性质定理的应用,构造平行线,构造出“A ”字型等相关基本图形进行等比例转化解决问题.CDOAM BAEFG BDC【例 29】如图,已知 AM 是 ∆ABC 的中线,P 是 BC 边上的一个动点,过点 P 作 AM 的平行线分别交 AB 、AC 所在直线与点 Q 、R ,求证:PQ + PR 为定值. 【难度】★★★ 【答案】略.【解析】证明: PR / / AM ,∴ PQ = BP , PR = PC . AM BM BM = CM ,AM MC∴ PQ + PR = BP + PC = BC AM BM BM= 2 .即得: PQ + PR = 2AM ,即证 PQ + PR 为定值.【总结】考查三角形一边平行线性质定理推论的应用,注意观察图形中的基本图形,本题中即用到两个“A ”字型.【例 30】如图,在四边形 ABCD 中,AC 与 BD 相交于点 O ,直线 l 平行于 BD ,且与 AB 、DC 、BC 、AD 及 AC 的延长线分别相交于点 M 、N 、R 、S 和 P . 求证: PM 【难度】★★★ 【答案】略【解析】证明: .BD / /MS∴ BO = AO , DO = AO MP AP ∴ BO = DO PM PS PS AP∴ PS = DO PM BO同时由OB / /PR , OD / /PN , ∴ OB = OC , OD = OC PR CP ∴ OB = OD PR PN ∴PN = DO =PN CP PSPR BO PM即证 PM 【总结】考查三角形一边平行线性质定理的应用,找准图形中的“A ”字型和“8”字型等基本图形进行等比例转化即可.AB O DMC N PR SPN = PR PS PN = PR PSR AQBP MCDEM N PFQ【例 31】(1)如图 1,在∆ABC 中,点 D 、E 分别在 AB 、AC 上满足 DE // BC ,点 P 为 BC上的任意一点,AP 交 DE 于点 Q ,求证: DQ = BP.QE PC (2)试参考(1)的方法解决下列问题:如图 2,M 、N 为边 BC 上的两点,且满足 BM = MN= NC ,一条平行于 AC 的直线分别交 AB 、AM 和 AN 的延长线于点 D 、E 和 F . 求 EF : DE 的值.ABC【难度】★★★【答案】(1)略;(2) 3 :1 . 【解析】(1)证明: DE / /BC ,∴ DQ = AQ , QE = AQ . BP AP ∴ DQ = QE .BP PC ∴ DQ = BP . QE PCPC AP(2)过点 B 作 BQ / /DF 交 AF 延长线于点Q ,交 AM 延长线于点 P ,则有 BQ / /DF / / AC ,BM = MN = NC ,∴ BP = BM = 1 , BQ = BN = 2 . AC MC 2 AC NC ∴ BP = 1 ,即得: BP = 1 . BQ 4 PQ 3由(1)的结论即可得 EF : DE = PQ : BP = 3:1.【总结】考查三角形一边平行线的应用,“8”字型的叠合,可以进行相应等量转化确定相关线段之间的比例关系解决问题.图 1图 2AD QE BP C⎩⎩【习题 1】如果图形 A 与图形 B 相似,图形 B 与图形 C 相似,那么图形 A 与图形 C相似.(填“一定”、“不一定”或“一定不”) 【难度】★ 【答案】一定.【解析】根据相似形定义,可知图形 A 与图形 B 形状相同,图形 B 与图形 C 形状相同,则必有图形 A 与图形 C 形状相同,即两图形相似. 【总结】考查相似形具有传递性.【习题 2】若(x + y ): y = 8 : 3 ,则 x : y =.【难度】★ 【答案】5 : 3 .⎧x + y = 8k【解析】令⎨ y = 3k⎧x = 5k ,可解得: ⎨ y = 3k ,即得 x : y = 5k : 3k = 5 : 3 .【总结】比例运算中,可应用设“ k ”法计算相应字母比例关系,也可直接利用比例的合比性质进行求解.【习题 3】如图,DE // BC ,下列比例式成立的是( )A . AD = AC AB AE 【难度】★ 【答案】CB . DE = DA BC AB C . EA =DA AB AC D . DA =AE AB AC【解析】根据三角形一边平行线性质定理的推论,由 DE // BC ,可得: DA = EA,可知 C 正确.AC AB 【总结】考查三角形一边平行线的性质定理.随堂检测DEAB C5 5 【习题 4】有以下命题,其中正确的判断有( )个(1)如果线段 d 是线段 a 、b 、c 的第四比例项,则有 a = c ;b d (2)如果点 C 是线段 AB 的中点,那么 AC 是 AB 、BC 的比例中项;(3)如果点 C 是线段 AB 的黄金分割点,且 AC > BC ,那么 AC 是 AB 与 BC 的比例中项;(4)如果点 C 是线段 AB 的黄金分割点,AC > BC ,且 AB = 2,则 AC = -1 .A .1B .2C .3D .4【难度】★★ 【答案】C【解析】根据比例相关定义,可知(1)正确; C 是 AB 中点时,则有 AC = BC = 1AB ,此2时 AB ≠ AC ,(2)错误;根据黄金分割点的基本定义,可知(3)正确,同时黄金比 AC BC 为 5 - 1 ,即 AC = 5 - 1 ,可得 AC = -1,(4)正确;(1)(3)(4)正确. 2 AB 2综上所述,故选 C .【总结】考查比例中的相关概念,以及黄金分割等基本知识.【习题 5】如图,已知菱形 BEDF 内接于∆ABC ,点 E 、D 、F 分别在 AB 、AC 和 BC 上,若AB = 15 cm ,BC = 12 cm ,则菱形边长为 .【难度】★★【答案】 20cm .3【解析】根据三角形一边平行线的性质定理,则有 DE = AE,BC AB则有 BE + AE = BE + DE= 1 ,由 AB = 15 cm ,BC = 12 cm ,AB AB AB BCDE = BE ,即为 DE + DE = 1 ,解得: DE = 20,即菱形边长.15 12 3 【总结】考查三角形一边平行线性质定理的应用.AEDB FC【习题 6】如图,在∆ABC 中,DE // BC ,EF // CD ,AF = 3,FD = 2,求 AB 的长. 【难度】★★【答案】 25.3【解析】AF = 3,FD = 2,可得 AD = AF + FD = 5 ,由 DE // BC ,EF // CD ,可得 AF = AE = AD ,即得 3 = 5 ,求得 AB = 25.AD AC AB 5 AB 3 【总结】考查三角形一边平行线性质定理的应用,注意利用基本“A ”字型,尤其有叠合的图形进行等比例转化.【习题 7】如图,在平行四边形 ABCD 中,AB = 24,X 、Y 是对角线 AC 上的三等分点,联结 DX 并延长,交 AB 于 P ,再联结 PY 并延长,交 DC 于 Q ,则 CQ 的长为【难度】★★ 【答案】6.【解析】由四边形 A B C D 是平行四边形, 可知AB / /CD ,根据三角形一边平行线的性质定理,可得 DC = XC = 2 , CQ = CY = 1 ,由此可得 AP AX AP AY 2 CQ = 1 ,即得CQ = 1 CD = 1AB = 6 . CD 4 4 4【总结】考查三角形一边平行线性质定理的应用,注意找到图形中的“X ”字型.AF DE BCDQC YXAP B矩形DEFC 【习题 8】如图,在矩形 ABCD 中,截去一个矩形 ABFE (图中阴影部分),余下的矩形 DEFC与原矩形 ABCD 相似.(1)设 AB = 6 cm ,BC = 8 cm ,求矩形 DEFC 的面积;(2)若截去的矩形 ABFE 是正方形,求 AB的值.BC 【难度】★★【答案】(1) 27cm 2 ;(2)5 - 1 .2【解析】(1)余下矩形与原矩形相似,根据相似形的性质,则有 DE = EF ,代入即为 DE = 6 ,求得 DE = 4.5cm , AB BC 6 8则有 S = DE ⋅ EF = 27cm 2;(2)同(1)有 D E =E F ,设原矩形宽为 a ,则有 AE = EF = BF = a ,代入即为 BC - a = a,A B B C⎛ a ⎫2a a BC整理得: a 2 + aBC - BC 2 = 0 ,两边同除以 BC 2,即得 ⎪ ⎝ BC ⎭ +- 1 = 0 ,解方程得 BCa = 5 - 1 ,即 AB = 5 - 1 ,此时为黄金比. BC 2 BC 2 【总结】考查相似形的基本性质的应用.【习题 9】如图,平行四边形 ABCD 中,对角线交点为 O ,E 为 AD 延长线上一点,OE 交CD 于 F ,交 AB 于 G ,交 CB 的延长线与 H ,试求 AB - AD的值.DF DE【难度】★★★ 【答案】2.【解析】由平行四边形的性质,则有 DO = OB ,由此可得DF = GB ,又 DC / / AB ,则有 AG = AE,则有DF DEEDF COA B A D A +G G B -A E ⎛D E⎫A G ⎛ ⎫ A E AGBD F - = - = + 1⎪ - - 1⎪ = . DE DF D E ⎝ D ⎭F ⎝ D ⎭ EH【总结】考查三角形一边平行线性质定理的应用,注意找准图形中的“A ”字型和“8”字 型等基本图形进行比例转化,同时应用好平行四边形的相关性质.AE DF C33 5 - 2 3【习题 10】如图,已知在∆ABC 中, ∠C = 90︒ ,以 BC 为边向外作正方形 BCDE ,联结 AE 交 BC 于 F ,作 FG // AC ,交 AB 于 G . (1)试判断∆FCG 的形状,并加以证明;(2)若正方形 BCDE 边长为 1, ∠AEB = 30︒ ,求 AB 的长. 【难度】★★★【答案】(1)等腰直角三角形;(2) 5 - 2 3 .【解析】(1) ∆FCG 是等腰直角三角形. 证明 四边形 BCDE 是正方形,∴ BC / /DE , BE / /CD / /FG .∴ CF = AF , DE AE ∴ CF = FG . DE BE ∴CF = FG . FG / / AC ,FG = AF . BE AE ∴∠CFG = ∠ACB = 90︒ . 即证∆FCG 是等腰直角三角形. (2) BE = BC = 1 , ∠AEB = 30︒ ,∴ BF =BE =3 .3∴ FG = CF = 1 - 3.3由 FG / / AC ,可得 FG = BF = AC BC根据勾股定理,即可得 AB = 3,则 AC = 3=3FG = -1,= .【总结】考查三角形一边平行线性质定理的应用,结合归纳猜想进行解题.AC 2+ BC 2( 3 - 1)2+ 12 DECFAGB【作业 1】下列说法正确的是()A .边数相同的多边形相似B .对应边成比例的多边形相似C .对应角相等的多边形相似D .全等的多边形相似 【难度】★ 【答案】D【解析】根据相似形的概念和性质,形状大小完全相同,即对应角相等,对应边对应成比例同时满足,可知 ABC 错误,全等的图形是特殊的相似形,可知 D 正确. 【总结】考查相似形的基本概念和性质.【作业 2】已知 x - y = y,则 x + y 的值为.13 7y【难度】★【答案】 27.7【解析】由 x - y = y ,则有 x - y = 13 ,根据比例的合比性, x + y = 13 + 7 + 7 = 27.13 7 y 7 x 7 7【总结】考查相关比例的转化,可利用比例的性质进行求解.【作业 3】如图,已知 AD // BE // CF ,下列比例式成立的有( )(1) AB = AC ;(2) AB = DE ;(3) AC = DF ;(4) BC = EF .DE DF EF BC EF BC AC DFA .1 个B .2 个C .3 个D .4 个【难度】★ 【答案】B【解析】根据平行线分线段成比例定理,可得 AB = DE,BC EF结合比例的合比性,即得 AB = DE , BC = EF,AC DF AC DF(1)正确,(2)错误,(3)错误,(4)正确,综上所述,故选 B . 【总结】考查平行线分线段成比例定理,结合比例基本性质进行等比例转化.课后作业ADB EO FC。
第16讲相似形及比例线段知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先主要对相似多边形的概念和性质进行讲解,重点是理解相似形的相关概念和相似多边形性质的运用,通过对相似多边形的学习,为后面学习相似三角形的知识奠定基础。
其次主要讲解比例线段的有关概念和性质,重点在于理解不同概念和性质之间的联系和区别,熟练比例线段之间的转换,并能结合具体图形,运用比例线段的性质进行解题。
最后学习平行线分线段成比例定理,为下面相似三角形的学习奠定基础。
知识梳理讲解用时:30分钟相似形的概念及性质1、相似形的概念把形状相同的两个图形称为相似的图形,简称相似形。
2、相似多边形的性质如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例;当两个相似的多边形是全等形时,它们对应边的长度的比值为1。
比例线段相关概念及性质1、比和比例 一般来说,两个数或两个同类的量a 与b 相除,叫做a 与b 的比,记作:a b (或表示为ab);如果::a b c d =(或a c bd=),那么就说a 、b 、c 、d 成比例。
2、比例的性质 (1)基本性质: 如果a cbd=,那么ad bc =;如果a c b d =,那么b d a c =,a b c d =,c da b=. (2)合比性质:如果a c bd =,那么a b c d b d++=; 如果a c b d =,那么a b c d b d--=. (3)等比性质: 如果a c k b d ==,那么a c a ck b d b d +===+(如果是实数运算,要注意强调0b d +≠)。
3、比例线段的概念 对于四条线段a 、b 、c 、d ,如果::a b c d =(或表示为ac bd=),那么a 、b 、c 、d 叫做成比例线段,简称比例线段。
4、黄金分割如果点P 把线段AB 分割成AP 和PB (AP PB >)两段(如下图),其中AP 是AB 和PB 的比例中项,那么称这种分割为黄金分割,点P 称为线段AB 的黄金分割点.其中,510.6182AP AB -=≈,称为黄金分割数,简称黄金数。
APB平行线分线段成比例定理1、平行线分线段成比例定理 两条直线被三条平行的直线所截,截得的对应线段成比例。
如图,直线1l //2l //3l ,直线m 与直线n 被直线1l 、2l 、3l 所截,那么DF EGFB GC2、平行线等分线段定理 两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上截得的线段也相等。
BCD E FG课堂精讲精练【例题1】下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似【答案】C【解析】本题考查了相似图形的定义,A.矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;B.各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C.等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D.各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.讲解用时:3分钟解题思路:根据相似图形的定义,对应边成比例,对应角相等对各选项分析判断后利用排除法求解。
教学建议:注意从边与角两个方面考虑解答。
难度:3 适应场景:当堂例题例题来源:合肥模拟年份:2018【练习1】“相似的图形”是()A.形状相同的图形B.大小不相同的图形C.能够重合的图形D.大小相同的图形【答案】A【解析】本题考查了相似图形的定义,相似图形是形状相同的图形,大小可以相同,也可以不同,故选:A.讲解用时:2分钟解题思路:根据相似形的定义直接进行判断即可。
教学建议:根据相似形的定义直接进行判断。
难度:2 适应场景:当堂练习例题来源:普陀区一模年份:2017【例题2】观察下列每组图形,相似图形是()。
A.B.C.D.【答案】【解析】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键。
A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.讲解用时:3分钟解题思路:根据相似图形的定义,形状相同,可得出答案。
教学建议:逐项比较排除。
难度:3 适应场景:当堂例题例题来源:临洮县期中年份:2018春【练习2】在下面的图形中,相似的一组是()A.B.C.D.【答案】C【解析】本题考查了相似图形的判定,A、六边形与五边形不可能是相似图形,故本选项错误;B、两图形不是相似图形,故本选项错误;C、∵90°﹣40°=50°,∵两三角形相似,故本选项正确;D、直角梯形与等腰梯形不是相似图形,故本选项错误.故选:C.讲解用时:3分钟解题思路:根据相似图形的定义对各选项分析判断后利用排除法求解。
教学建议:逐项比较排除。
难度:3 适应场景:当堂练习例题来源:大连期末年份:2016秋【例题3】若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的()。
A.16倍B.8倍C.4倍D.2倍【答案】A【解析】本题考查相似图形问题,根据正方形面积的计算方法和积的变化规律,如果一个正方形的边长扩大为原来的4倍,那么正方形的面积是原来正方形面积的4×4=16倍,故选:A.讲解用时:3分钟解题思路:根据正方形的面积公式:s=a2,和积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答。
教学建议:从正方形面积基本计算公式入手分析。
难度:3 适应场景:当堂例题例题来源:河西区期末年份:2016秋【练习3】对一个图形进行放缩时,下列说法中正确的是()A.图形中线段的长度与角的大小都会改变B.图形中线段的长度与角的大小都保持不变C .图形中线段的长度保持不变、角的大小可以改变D .图形中线段的长度可以改变、角的大小保持不变【答案】D【解析】此题主要考查了相似图形的性质,对一个图形进行放缩时,图形中线段的长度可以改变、角的大小保持不变,故选:D . 讲解用时:3分钟解题思路:直接利用相似图形的性质分析得出答案。
教学建议:直接利用相似图形的性质分析得出答案。
难度:3 适应场景:当堂练习 例题来源:浦东新区期中 年份:2017秋【例题4】如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )。
A .a=2bB .a=2bC .a=22bD .a=4b【答案】B【解析】本题考查了相似多边形对应边成比例的性质,由题意可知对折两次后的小长方形的长为b ,宽为41a , ∵小长方形与原长方形相似,∵a bb a 41,∵a=2b ,故选:B . 讲解用时:4分钟解题思路:根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解。
教学建议:准确表示出小长方形的长和宽再进行分析。
难度:3 适应场景:当堂例题 例题来源:抚州期末 年份:2017秋【练习4】已知A4纸的宽度为21cm ,如图对折后所得的两个矩形都和原来的矩形相似,则A4纸的高度约为( )。
A .24.8cmB .26.7cmC .29.7cmD .无法确定 【答案】C【解析】本题考查了相似三角形多边形对应边成比例的性质,设A4纸的高度为xcm ,则对折后的矩形的高度为2x, ∵对折后所得的两个矩形都和原来的矩形相似,∵21221xx =, 解得x=212≈29.7cm ,即A4纸的高度约为29.7cm ,故选:C . 讲解用时:8分钟解题思路:设A4纸的高度为xcm ,对折后的矩形的高度为2x,然后根据相似多边形的对应边成比例列方程求解即可。
教学建议:根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可。
难度: 3 适应场景:当堂练习 例题来源:滨湖区期末 年份:2017秋【例题5】已知43=y x ,那么下列等式中,不成立的是( )。
A .73=+y x x B .41=-y y x C .4343=++y x D .4x=3y 【答案】B【解析】此题主要考查了比例的性质,正确将比例式变形是解题关键。
A 、∵43=y x ,∵73=+y x x ,此选项正确,不合题意; B 、∵43=y x ,∵41-=-y y x ,此选项错误,符合题意; C 、∵43=y x ,∵4343=++y x ,此选项正确,不合题意; D 、∵43=y x ,∵4x=3y ,此选项正确,不合题意; 故选:B . 讲解用时:5分钟解题思路:直接利用比例的性质将原式变形进而得出答案。
教学建议:利用比例性质进行分析或者设特殊值求解。
难度:3 适应场景:当堂例题 例题来源:徐汇区一模 年份:2018【练习5】已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( )。
A .32=b a B .23=b a C .34=+b b a D .35=+b b a 【答案】B【解析】本题考查了比例的性质,主要利用了两内项之积等于两外项之积,A 、由32=b a 得,3a=2b ,故本选项错误; B 、由23=b a 得,2a=3b ,故本选项正确;C 、由34=+b b a 得,3(a+b )=4b ,整理得,3a=b ,故本选项错误; D 、由35=+b b a 得,3(a+b )=5b ,整理得,3a=2b ,故本选项错误. 故选:B . 讲解用时:4分钟解题思路:根据两内项之积等于两外项之积对各选项分析判断即可得解。
教学建议:利用比例性质进行分析或者设特殊值求解。
难度:3 适应场景:当堂练习 例题来源:金山区一模 年份:2018【例题6】如图,已知l 1//l 2//l 3,直线AB 分别交l 1、l 2、l 3于A 、E 、B 点,直线CD 分别交l 1、l 2、l 3于C 、F 、D 三点,且AE=2,BE=4,则FDCF的值为( )。
A .21 B .31 C .32D .2【答案】A【解析】本题考查平行线分线段成比例定理,∵l 1//l 2//l 3,∵FDCFEB AE =, ∵AE=2,BE=4,∵21=FD CF ,故选:A .讲解用时:5分钟解题思路:根据平行线分线段成比例定理即可解决问题。
教学建议:熟练利用平行线分线段成比例定理进行分析。
难度:3 适应场景:当堂例题 例题来源:龙华区期末 年份:2017秋【练习6】如图,直线a 、b 、c 分别与直线m 、n 交于点A 、B 、C 、D 、E 、F ,已知直线a//b//c ,若AB=2,BC=3,则EFDE的值为( )。