当前位置:文档之家› 【书】硅晶圆半导体材料技术

【书】硅晶圆半导体材料技术

【书】硅晶圆半导体材料技术
【书】硅晶圆半导体材料技术

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

晶圆级封装产业

晶圆级封装产业(WLP) 晶圆级封装产业(WLP),晶圆级封装产业(WLP)是什么意思 一、晶圆级封装(Wafer Level Packaging)简介晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。WLP 一、晶圆级封装(Wafer Level Packaging)简介 晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。WLP封装具有较小封装尺寸(CSP)与较佳电性表现的优势,目前多用于低脚数消费性IC的封装应用(轻薄短小)。 晶圆级封装(WLP)简介 常见的WLP封装绕线方式如下:1. Redistribution (Thin film), 2. Encapsulated Glass substrate, 3. Gold stud/Copper post, 4. Flex Tape等。此外,传统的WLP封装多采用Fan-in 型态,但是伴随IC信号输出pin 数目增加,对ball pitch的要求趋于严格,加上部分组件对于封装后尺寸以及信号输出脚位位置的调整需求,因此变化衍生出Fan-out 与Fan-in + Fan-out 等各式新型WLP封装型态,其制程概念甚至跳脱传统WLP 封装,目前德商英飞凌与台商育霈均已经发展相关技术。 二、WLP的主要应用领域 整体而言,WLP的主要应用范围为Analog IC(累比IC)、PA/RF(手机放大器与前端模块)与CIS(CMOS Ima ge Sensor)等各式半导体产品,其需求主要来自于可携式产品(iPod, iPhone)对轻薄短小的特性需求,而部分NOR Flash/SRAM也采用WLP封装。此外,基于电气性能考虑,DDR III考虑采用WLP或FC封装,惟目前JEDEC仍未制定最终规格(注:至目前为止,Hynix, Samsung与Elpida已发表DDR III产品仍采F BGA封装),至于SiP应用则属于长期发展目标。此外,采用塑料封装型态(如PBGA)因其molding compo und 会对MEMS组件的可动部份与光学传感器(optical sensors)造成损害,因此MEMS组件也多采用WLP

常用的半导体材料有哪些

常用的半导体材料有哪些? 晶圆 初入半导体行业为了尽快入门,我们必须对这个行业的主要物料做一个详细的了解,因为制造业的结构框架是人机料法环测。物料是非常关键的一部分,特别是对于半导体这类被人家卡脖子的行业更要牢记于心,尽快摆脱西方的围堵,但是基础材料这块需要长时间的积累,短期我们很难扭转当下这种憋屈的局面。 在半导体产业中,材料和设备是基石,是推动集成电路技术创新的引擎。半导体材料在产业链中处于上游环节,和半导体设备一样,也是芯片制造的支撑性行业,所有的制造和封测工艺都会用到不同的半导体材料。 半导体材料一般均具有技术门槛高、客户认证周期长、供应链上下游联系紧密、行业集中度高、技术门槛高和产品更新换代快的特点,目前高端产品市场份额多为海外企业垄断,国产化率较低,寡头垄断格局一定程度制约

了国内企业快速发展。华为事件的发生发展告诉我们半导体材料国产替代已经非常紧迫了。 半导体材料细分行业多,芯片制造工序中各单项工艺均配套相应材料。按应用环节划分,半导体材料主要可分为制造材料和封装材料。在晶圆制造材料中,硅片及硅基材料占比最高,约占31%,其次依次为光掩模板14%,电子气体14%,光刻胶及其配套试剂12%,CMP抛光材料7%,靶材3%,以及其他材料占13%。 在半导体封装材料中,封装基板占比最高,占40%。其次依次为引线框架15%、键合丝15%、包封材料13%、陶瓷基板11%、芯片粘合材料4%、以及其他封装材料2%。封装材料中的基板的作用是保护芯片、物理支撑、连接芯片与电路板、散热。陶瓷封装体用于绝缘打包。包封树脂粘接封装载体、同时起到绝缘、保护作用。芯片粘贴材料用于粘结芯片与电路板。封装方面相对难度要低一点,所以我们国家的半导体企业主要集中在封测这一后工艺领域。 半导体材料中前端材料市场增速远高于后端材料,前端材料的增长归功于各种前端技术的积极使用,如极紫外(EUV)曝光,原子层沉积(ALD)和等离子体化学气相沉积(PECVD)等。

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

硅基光电器件研究进展

半导体技术 Semiconductor Technology 1999年 第1期 No.1 1999 硅基光电器件研究进展 郭宝增 摘要 在信息处理和通信技术中,光电子器件起着越来越重要的作用。然而,因为硅是间接带隙半导体,试图把光电子器件集成在硅微电子集成电路上却遇到很大困难。为解决这一困难,人们发展了多种与硅微电子集成电路兼容的光电子器件制造技术。本文介绍最近几年这方面技术的发展情况。 关键词 多孔硅 光电子器件 硅集成电路 Research Development of Silicon-Based Optoelectronic Devices Guo Baozeng (Department of Electronic & Informational Hebei University,Baoding 071002) Abstract Silicon-based optoelectronic devices are increasingly important in information and communication technologies.But attempts to integrate photonics with silicon-based microelectronics are hampered by the fact that silicon has an indirect band gap,which prevents efficient electron-photon energy conversion.In order to solve this problem,many technologies to make optoelectronic devices which can be compatible with conventional silicon technology have been developed.In this article,we review the deve-lopment of these thchnologies. Keywords Porous silicon Optoelectronic devices Silicon integrated circuit 1 引 言 硅是微电子器件制造中应用得最广泛的半导体材料。硅集成电路的应用改变了当代世界的面貌,也改变了人们的生活方式。但是,一般硅集成电路只限于处理电信号,对光信号的处理显得无能为力。然而,光电器件的应用却是非常广泛的,光纤通信、光存储、激光打印机及显示设备都 要用到各种光电器件。从更广的意义上说,我们所处的世界实际上是一个光的世界。据心理学家分析,人们通过眼睛所接收的信息占总接收信息量的83%,即人们接收的信息83%是光信号。因此可以想象,在未来信息化社会里,对光电子器件的需求决不亚于对微电子器件的需求。目前采用的光电子器件,主要是Ⅲ-Ⅴ族材料,这些器件与广泛使用的硅技术不兼容,而且制造成本高,因

2019-2020年高中化学4.1.1单质硅与半导体材料二氧化硅与光导纤维课时作业鲁科版必修

2019-2020年高中化学4.1.1单质硅与半导体材料二氧化硅与光导纤 维课时作业鲁科版必修 A组——知能训练 1.常温下能与硅发生反应的气体是( ) A.O2B.H2 C.F2D.Cl2 解析:常温下与Si反应的物质有F2、氢氟酸和强碱溶液。 答案: C 2.科学家提出硅是“21世纪的能源”,这主要是由于作为半导体材料的硅在太阳能发电过程中具有重要的作用。下列关于硅的说法中正确的是( ) A.自然界中硅元素的含量最丰富 B.自然界中存在大量单质硅 C.高纯度的硅被用于制做计算机芯片 D.光导纤维的主要成分是Si 解析:自然界中含量最丰富的元素是氧元素,A项错误;硅的性质虽然不活泼,但自然界不存在游离态硅,只有化合态硅,B项错误;硅是良好的半导体材料,可用于制造计算机芯片等,C项正确;光导纤维的主要成分是SiO2,不是Si,D项错误。 答案: C 3.关于硅的化学性质的叙述中,不正确的是( ) A.在常温下,不与任何酸反应 B.在常温下,可与强碱溶液反应 C.在加热条件下,能与氧气反应 D.单质硅的还原性比碳的还原性强 解析:A项,在常温下,Si能与氢氟酸反应,不正确,Si在常温下能与强碱溶液反应,加热条件下也能与Cl2、O2等反应。B、C正确,碳和硅最外层电子数相同,化学性质相似,但硅比碳易失电子,还原性比碳强,D正确。 答案: A 4.能证明硅酸的酸性弱于碳酸酸性的实验事实是( ) A.CO2是气体,SiO2是固体 B.高温下SiO2与碳酸盐反应生成CO2 C.CO2溶于水形成碳酸,SiO2难溶于水 D.CO2通入Na2SiO3溶液中析出硅酸沉淀 解析:酸性强弱与这种酸的酸酐的状态、物理性质和化学性质均无关,A、B、C都不

硅基材料应用作业

硅基材料应用作业 彭禹繁 2014031282 一、在半导体材料中把多晶转变成一个大单晶,并给 予正确的定向和适量的N型或P型掺杂,叫做晶体生长。晶体生长有三种不同的生长方法,分别是直拉法、区熔法和液体掩盖直拉法。请简述直拉法的过程。 拉晶过程: 1.熔硅:将坩埚内多晶料全部熔化; 2.引晶:将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤晶”,籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤晶”,以除去表面挥发性杂质同时可减少热冲击。当温度稳定时,可将籽晶与熔体接触,籽晶向上拉,控制温度使熔体在籽晶上结晶。 3.收颈:指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶细的部分。其目的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。颈一般要长于20mm。 4.放肩:缩颈工艺完成后,略降低温度(15-40℃),让晶体逐渐长大到所需的直径为止。这称为“放肩”。

5.等径生长:当晶体直径到达所需尺寸后,提高拉速,使晶体直径不再增大,称为收肩。收肩后保持晶体直径不变,就是等径生长。此时要严格控制温度和拉速。 6.收晶:晶体生长所需长度后,拉速不变,升高熔体温度或熔体温度不变,加快拉速,使晶体脱离熔体液面。 液体掩盖直拉法: 此方法主要用来生长砷化镓晶体,和标准的直拉法一样,只是做了一些改进。由于熔融物里砷的挥发性通常采用一层氧化硼漂浮在熔融物上来抑制砷的挥发。 特点: 直拉法的目的是实现均匀掺杂浓度的同时精确地复制籽晶结构,得到合适的硅锭直径并且限制杂质引入到硅中。优点:工艺成熟,便于控制晶体外形和电学参数,能成功地拉制低位错、大直径的硅单晶,尤其,能成功地拉制低位错、大直径的硅单晶,尤其制备10-4Ω?cm特殊低阻单晶。

光刻和晶圆级键合技术在3D互连中的研究

光刻和晶圆级键合技术在3D互连中的研究 作者:Margarete Zoberbier、Erwin Hell、Kathy Cook、Marc Hennemayer、Dr.-Ing. Barbara Neuber t,SUSS MicroTec 日益增长的消费类电子产品市场正在推动当今半导体技术的不断创新发展。各种应用对增加集成度、降低功耗和减小外形因数的要求不断提高,促使众多结合了不同技术的新结构应运而生,从而又催生出诸多不同的封装方法,因此可在最小的空间内封装最多的功能。正因如此,三维集成被认为是下一代的封装方案。 本文将探讨与三维互连技术相关的一些光刻挑战。还将讨论三维封装使用的晶圆键合技术、所面临的各种挑战、有效的解决方案及未来发展趋势。 多种多样的三维封装技术 为了适应更小引脚、更短互连和更高性能的要求,目前已开发出系统封装(SiP)、系统芯片(SoC)和封装系统(SoP)等许多不同的三维封装方案。SiP即“单封装系统”,它是在一个IC封装中装有多个引线键合或倒装芯片的多功能系统或子系统。无源元件、SAW/BA W滤波器、预封装IC、接头和微机械部件等其他元件都安装在母板上。这一技术造就了一种外形因数相对较小的堆叠式芯片封装方案。 SoC可以将所有不同的功能块,如处理器、嵌入式存储器、逻辑心和模拟电路等以单片集成的方式装在一起。在一块半导体芯片上集成系统设计需要这些功能块来实现。通常,So C设计与之所取代的多芯片系统相比,它的功耗更小,成本更低,可靠性更高。而且由于系统中需要的封装更少,因而组装成本也会有所降低。 SoP采用穿透通孔和高密度布线以实现更高的小型化。它是一种将整个系统安装在一个芯片尺寸封装上的新兴的微电子技术。过去,“系统”往往是一些容纳了数百个元件的笨重的盒子,而SoP可以将系统的计算、通信和消费电子功能全部在一块芯片上完成,从而节约了互连时间,减少了热量的产生。 最近穿透硅通孔(TSV)得到迅速发展,已成为三维集成和晶圆级封装(WLP)的关键技术之一。三维TSV已显现出有朝一日取代引线键合技术的潜力,因此它可以使封装尺寸进

半导体硅材料

半导体硅材料和光电子材料的发展现状及趋势 随着微电子工业的飞速发展, 作为半导体工业基础材料的硅材料工业也将随之发展,而光电子科技的飞速发展也使半导体光电子材料的研究加快步伐,所以研究半导体硅材料和光电子材料的发展现状及未来发展趋势势在必行。现代微电子工业除了对加工技术和加工设备的要求之外,对硅材料也提出了更新更高的要求。 在当今全球超过2000亿美元的半导体市场中,95%以上的半导体器件和99%以上的集成电路都是用高纯优质的硅抛光片和外延片制作的。在未来30-50年内,它仍将是集成电路工业最基本和最重要的功能材料。半导体硅材料以丰富的资源、优质的特性、日臻完善的工艺以及广泛的用途等而成为了当代电子工业中应用最多的半导体材料。 随着国际信息产业的迅猛发展, 电子工业和半导体工业也得到了巨大发展,并且直到20世纪末都保持稳定的15%的年增长率迅速发展,作为半导体工业基础材料的硅材料工业也将随之发展,所以研究半导体硅材料的发展现状及未来发展趋势势在必行。

一、半导体硅材料的发展现状 由于半导体的优良性能,使其在射线探测器、整流器、集成电路、硅光电池、传感器等各类电子元件中占有极为重要的地位。同时,由于它具有识别、存储、放大、开关和处理电信号及能量转换的功能,而使“半导体硅”实际上成了“微电子”和“现代化电子”的代名词。 二、现代微电子工业的发展对半导体硅材料的新要求 随着微电子工业飞速发展, 除了本身对加工技术和加工设备的要求之外, 同时对硅材料也提出了更新更高的要求。 1. 对硅片表面附着粒子及微量杂质的要求 随着集成电路的集成度不断提高,其加工线宽也逐步缩小,因此, 对硅片的加工、清洗、包装、储运等工作提出了更高的新要求。对于兆位级器件, 0.10μm的微粒都可能造成器件失效。亚微米级器件要求0.1μm的微粒降到10个/片以下同时要求各种金属杂质如Fe、Cu、Cr、Ni、A1、Na 等, 都要控制在目前分析技术的检测极限以下。 2. 对硅片表面平整度、应力和机械强度的要求

晶圆级封装WLP优势

晶圆级封装W L P优势 The Standardization Office was revised on the afternoon of December 13, 2020

晶圆级封装(WLP)优势 晶圆级封装(WLP)以BGA技术为基础,是一种经过改进和提高的CSP(芯片级封装),充分体现了BGA、CSP的技术优势。它具有许多独特的优点。 晶圆级封装(Wafer Level Package,WLP)采用传统的IC工艺一次性完成后道几乎所有的步骤,包括装片、电连接、封装、测试、老化,所有过程均在晶圆加工过程中完成,之后再划片,划完的单个芯片即是已经封装好的成品;然后利用该芯片成品上的焊球阵列,倒装焊到PCB板上实现组装。WLP的封装面积与芯片面积比为1:1,而且标准工艺封装成本低,便于晶圆级测试和老化。 晶圆级封装以BGA技术为基础,是一种经过改进和提高的CSP,充分体现了BGA、CSP的技术优势。它具有许多独特的优点: (1)封装加工效率高,它以晶圆形式的批量生产工艺进行制造; (2)具有倒装芯片封装的优点,即轻、薄、短、小; 图5 WLP的尺寸优势 (3)晶圆级封装生产设施费用低,可充分利用晶圆的制造设备,无须投资另建封装生产线; (4)晶圆级封装的芯片设计和封装设计可以统一考虑、同时进行,这将提高设计效率,减少设计费用; (5)晶圆级封装从芯片制造、封装到产品发往用户的整个过程中,中间环节大大减少,周期缩短很多,这必将导致成本的降低;

(6)晶圆级封装的成本与每个晶圆上的芯片数量密切相关,晶圆上的芯片数越多,晶圆级封装的成本也越低。晶圆级封装是尺寸最小的低成本封装。晶圆级封装技术是真正意义上的批量生产芯片封装技术。 WLP的优势在于它是一种适用于更小型集成电路的芯片级封装(CSP)技术,由于在晶圆级采用并行封装和电子测试技术,在提高产量的同时显著减少芯片面积。由于在晶圆级采用并行操作进行芯片连接,因此可以大大降低每个I/O 的成本。此外,采用简化的晶圆级测试程序将会进一步降低成本。利用晶圆级封装可以在晶圆级实现芯片的封装与测试。

半导体材料

摘要本文重点对半导体硅材料,GaAs和InP单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料,宽带隙半导体材料,光子晶体材料,量子比特构建与材料等目前达到的水平和器件应用概况及其发展趋势作了概述。最后,提出了发展我国半导体材料的建议。 关键词半导体材料量子线量子点材料光子晶体 1半导体材料的战略地位 上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。 2几种主要半导体材料的发展现状与趋势 1硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸的Si单晶已实现大规模工业生产,基于直径

为12英寸硅片的集成电路技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料,低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,非凡是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。 2GaAs和InP单晶材料 GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐

半导体材料的发展简史

半导体材料的发展简史 半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 半导体材料是半导体工业的基础,它的发展对半导体工业的发展具有极大的影响。如果按化学成分及内部结构,半导体材料大致可以分为以下几类:一是元素半导体材料,包括锗(Ge)、硅(Si)、硒(Se)、硼(B)等。20世纪50年代,锗在半导体工业中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到20世纪60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种半导体材料,目前的集成电路大多数是用硅材料制造的。二是化合物半导体,它是由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。其中砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。由于砷化镓是一种直接带隙的半导体材料,并且具有禁带宽度宽、电子迁移率高的优点,因而砷化镓材料不仅可直接研制光电子器件,如发光二极管、可见光激光器、近红外激光器、量子阱大功率激光器、红外探测器和高效太阳能电池等,而且在微电子方面,以半绝缘砷化镓(Si-GaAs)为基体,用直接离子注入自对准平面工艺研制的砷化镓高速数字电路、微波单片电路、光电集成电路、低噪声及大功率场效应晶体管,具有速度快、频率高、低功耗和抗辐射等特点。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。氮化镓材料是近十年才成为研究热点,它是一种宽禁带半导体材料(Eg=3.4eV),具有纤锌矿结构的氮化镓属于直接跃迁型

晶圆级封装(WLP)优势

晶圆级封装(WLP)优势 晶圆级封装(WLP)以BGA技术为基础,是一种经过改进和提高的CSP(芯片级封装),充分体现了BGA、CSP的技术优势。它具有许多独特的优点。 晶圆级封装(Wafer Level Package,WLP)采用传统的IC工艺一次性完成后道几乎所有的步骤,包括装片、电连接、封装、测试、老化,所有过程均在晶圆加工过程中完成,之后再划片,划完的单个芯片即是已经封装好的成品;然后利用该芯片成品上的焊球阵列,倒装焊到PCB板上实现组装。WLP的封装面积与芯片面积比为1:1,而且标准工艺封装成本低,便于晶圆级测试和老化。 晶圆级封装以BGA技术为基础,是一种经过改进和提高的CSP,充分体现了BGA、CSP的技术优势。它具有许多独特的优点: (1)封装加工效率高,它以晶圆形式的批量生产工艺进行制造; (2)具有倒装芯片封装的优点,即轻、薄、短、小; 图5 WLP的尺寸优势 (3)晶圆级封装生产设施费用低,可充分利用晶圆的制造设备,无须投资另建封装生产线; (4)晶圆级封装的芯片设计和封装设计可以统一考虑、同时进行,这将提高设计效率,减少设计费用; (5)晶圆级封装从芯片制造、封装到产品发往用户的整个过程中,中间环节大大减少,周期缩短很多,这必将导致成本的降低;

(6)晶圆级封装的成本与每个晶圆上的芯片数量密切相关,晶圆上的芯片数越多,晶圆级封装的成本也越低。晶圆级封装是尺寸最小的低成本封装。晶圆级封装技术是真正意义上的批量生产芯片封装技术。 WLP的优势在于它是一种适用于更小型集成电路的芯片级封装(CSP)技术,由于在晶圆级采用并行封装和电子测试技术,在提高产量的同时显著减少芯片面积。由于在晶圆级采用并行操作进行芯片连接,因此可以大大降低每个I/O的成本。此外,采用简化的晶圆级测试程序将会进一步降低成本。利用晶圆级封装可以在晶圆级实现芯片的封装与测试。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

半导体材料的历史现状及研究进展(精)

半导体材料的历史现状及研究进展(精)

半导体材料的研究进展 摘要:随着全球科技的快速发展,当今世界已经进入了信息时代,作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。半导体材料凭借着自身的性能特点也在迅速地扩大着它的使用领域。本文重点对半导体材料的发展历程、性能、种类和主要的半导体材料进行了讨论,并对半导体硅材料应用概况及其发展趋势作了概述。 关键词:半导体材料、性能、种类、应用概况、发展趋势 一、半导体材料的发展历程 半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。宰二十世纪初,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。 新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展.以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表和第二代半导体材料(以砷化镓和磷化铟为代表之后,在近10年发展起来的新型宽带半导体材料.作为第一代半导体材料,硅基半导体材料及其集成电路的发展导致了微型计算机的出现和整个计算机产业的飞跃,并广泛应用于信息处理、自动控制等领域,对人类社会的发展起了极大的促进作用.硅基半导体材料虽然在微电子领域得到广泛应用,但硅材料本身间接能带结构的特点限制了其在光电子领域的应用.随着以光通

半导体硅材料基础知识.1

半导体硅材料基础知识讲座 培训大纲 什么是半导体? 导体(Conductor) 导体是指很容易传导电流的物质 绝缘体(Insolator) 是指极不容易或根本不导电的一类物质 半导体(Semiconductor) 导电性能介于导体和绝缘体之间且具备半导体的基本特性的一类材料。 半导体硅材料的电性能特点 硅材料的电性能有以下三个显著特点: 一是它对温度的变化十分灵敏; 二是微量杂质的存在对电阻率的影响十分显著; 三是半导体材料的电阻率在受光照时会改变其数值的大小。 综上所述,半导体的电阻率数值对温度、杂质和光照三个外部条件变化有较高的敏感性。半导体材料的分类 元素半导体 化合物半导体 有机半导体 无定形半导体 迄今为止,工艺最为成熟、应用最为广泛的是前两类半导体材料,尤其是半导体硅材料,占整个半导体材料用量的90%以上。硅材料是世界新材料中工艺最为成熟、使用量最大的半导体材料。它的实验室纯度可接近本征硅,即12个“九”,即使是大工业生产也可以到7—9个“九”的纯度。 半导体硅材料的制备 冶金级硅(工业硅)的制备 冶金级硅是将比较纯净的SiO2矿石和木炭或石油焦一起放入电弧炉里,在电孤加热的情况下进行还原而制成。 其反应式是: SiO2+2C →Si+2CO 普通冶金级硅的纯度大约是2~3个“九”。目前市面上也有号称4~5个“九”纯度的冶金级硅,那是通过多次“冶金法”或称为“物理法”提纯后获得的。 多晶硅的制备 目前全世界多晶硅的生产方法大体有三种:一是改良的西门子法;二是硅烷法;三是粒状硅法。 改良的西门子法生产半导体级多晶硅: 这是目前全球大多数多晶硅生产企业采用的方法,知名的企业有美国的Harmlock、日本的TOKUYAMA、三菱公司、德国的瓦克公司以及乌克兰和MEMC意大利的多晶硅厂。全球80%以上的多晶硅是用此法生产的。其工艺流程是: 原料硅破碎筛分(80目)沸腾氯化制成液态的SiHCl3 粗馏提纯精馏提纯氢还原棒状多晶硅破碎洁净分装。 经验上,新建设一座多晶硅厂需要30—36个月时间,而老厂扩建生产线也需要大约14—18

晶圆级封装技术的发展现状

晶圆级封装技术的发展现状 2016-04-18 12:36来源:内江洛伯尔材料科技有限公司作者:研发部 晶圆级封装随着IC芯片技术的发展,芯片封装技术也不断达到新的水平,目前已可在单芯片上实现系统的集成。 在众多的新型封装技术中,晶圆级封装技术最具创新性、最受世人瞩目,是封装技术取得革命性突破的标志。晶圆级封装技术的构思是在整片晶圆上进行CSP封装技术的制造,也就是在晶圆级基本完成了大部分的封装工作。因此,晶圆级封装结构,则可省略覆晶技术点胶的步骤,目前可采用弹性体或是类弹性体来抵消应力,而这些弹性体的制程,可在整片晶圆上完成,因此省去了对一个个组件分别点胶的复杂制程。方形晶圆封装技术的设计理念,首先为增加组件与底材之间的距离,亦即选用更大的锡铅焊料球实现导电性,现有的晶圆级封装技术,采用重新布局技术来加大锡铅焊料球的间距,以达到加大锡铅焊料球体积的需求,进而降低并承受由基板与组件之间热膨胀差异而产生的应力,提高组件的可靠性。 晶圆级封装和晶圆级芯片尺寸封装(WLCSP)是同一概念,它是芯片尺寸封装的一个突破性进展,表示的是一类电路封装完成后仍以晶圆形式存在的封装,其流行的主要原因是它可将封装尺寸减小到和IC芯片一样大小以及其加工的成本低,晶圆级封装目前正以惊人的速度增长,其平均年增长率(CAGR)可达210%,推动这种增长的器件主要是集成电路、无源组件、高性能存储器和较少引脚数的器件。 目前有5种成熟的工艺技术可用于晶圆凸点,每种技术各有利弊。其中金线柱焊接凸点和电解或化学镀金焊接凸点主要用于引脚数较少的封装(一般少于40),应用领域包括玻璃覆晶封装(COG)、软膜覆晶封装(COF)和RF模块。由于这类技术材料成本高、工序时间长,因此不适合I/O引脚多的封装件。另一种技术是先置放焊料球,再对预成形的焊料球进行回流焊接,这种技术适用于引脚数多达300的封装件。目前用得最多的两种晶圆凸点工艺是电解或化学电镀焊料,以及使用高精度压印平台的焊膏印刷。 印刷焊膏的优点之一是设备投资少,这使很多晶圆凸点加工制造厂家都能进入该市场,为半导体制造厂家服务。随着WLP逐渐为商业市场所接受,全新的晶圆凸点专业加工服务需求持续迅速增长。的确,大多数晶圆凸点加工厂都以印刷功能为首要条件,并提供一项或多项其它技术。业界许多人士都认为焊膏印刷技术将主导多数晶圆凸点的应用。

关于半导体材料硅和砷化镓的钎焊

关于半导体材料硅和砷化镓的钎焊 半导体材料种类繁多,但除硅与砷化镓外,工业上利用钎焊技术进行链接的并不多。再者,半导体材料的特性与所含杂质的成分和数量有关。两种材料之间必须保证是欧姆接触。为了保证材料的性质不变,在钎焊过程中,钎焊温度必须低于母材的最高工作温度。钎焊方法分两种:一种为普通软钎焊,即用钎料片放置于半导体材料和管壳或引线之间进行钎焊;另一种为共晶钎焊,即在半导体材料上覆盖多层金属膜,升温过程中金属膜之间互相扩散成共晶成分,当温度达到共晶熔化温度时,金属膜融化使半导体材料与管壳等连到一起。半导体材料的钎焊一般都在保护气氛中进行。钎焊温度通常不超过450℃。 半导体材料是电阻率介于导体(主要是金属)和非导体(电介质)之间的一类物质。它们的点阻力介于10-4~109Ω·cm之间。 半导体材料的应用特性极大地依赖于其中所含的微量杂质。若半导体材料中的杂质含量从10-9变到10-2,则它的电导率会变化数百万倍。半导体材料的另一个特征是,它传导电流时不仅依靠电荷——电子,而且依靠在数量上与电子相等的正电荷——空穴。电子导电性称为n型导电性,空穴导电性称为p型导电性。 具有半导体性质的材料种类繁多,按化学成分可分成六类。 1.元素半导体材料。元素半导体材料有硼(B)、碳(C)、硅(Si)、锗(Ge)、锡(Sn)、磷(P)、砷(As)、锑(Sb)、硫(S)、硒(Se)、碲(Te)和碘(I)等十二种元素。硅、锗、硒是常用元素半导体材料。 硒是最早使用的元素半导体材料,主要用于制造硒整流器,硒光电池和静电复印半导体。 锗是一种稀有元素,是工业上最先实用化的半导体材料,由于在地壳中含量极少,大约为百万分之二,而且极为分散,因此料源十分贫乏。锗的禁带宽度(0.67eV)比硅的宽度(1.08eV)小,因而锗器件的最高工作温度(≈100℃)较硅器件(≈250℃)低;锗的电阻率范围较硅小三个数量级;用于制造器件的品种少,不宜制作高反向耐压的大功率器件。因此在半导体器件的应用上大部分已被硅代替。 硅是一种性能优越、资源丰富、工艺成熟和应用广泛的元素半导体材料。从20世纪60年代开始称为主要半导体材料。主要用于制造集成电路、晶体管、二极管、整流元件、光电池、粒子探测器等。 2.二元化合物半导体材料。这类材料包括Ⅲ-Ⅴ族、Ⅱ-Ⅵ族、Ⅳ-Ⅳ族、Ⅴ-Ⅳ族、Ⅴ-Ⅴ族、Ⅴ-Ⅵ族等化合物 Ⅲ-Ⅴ族化合物有氮化镓(GaN)、磷化镓(GaP)、砷化镓(GaAs)、锑化铟(InSb)等; Ⅱ-Ⅵ族化合物有硫化镉(CdS)、硫化锌(ZnS)等;Ⅳ-Ⅳ族化合物有碳化硅(SiC)等; Ⅴ-Ⅳ族化合物如硒化铋(Bi2Se3)、Ⅴ-Ⅴ族化合物如锑化铋(BiSb)、Ⅴ-Ⅵ族化合物如碲化锑等。 在二元化合物半导体中,研究最多应用最广的是砷化镓。它的禁带宽度比锗、硅都大,所以最高工作温度可达450℃;并且它的电子迁移率高,是高温、高频、抗辐射、低噪音器件的良好材料。砷化镓的能带具有双能谷结构,适合于制作体效应器件。砷化镓也是制作高效率激光器和红外线光源的良好材料,砷化镓还广泛用于制作其他微波器件,用砷化镓还可以制得高速集成电路。 3.固溶体半导体材料。此种材料是指两种或两种以上的元素或化合物溶合而成的材料。目前应用较多的是Ⅲ-Ⅴ族化合物或Ⅱ-Ⅵ族化合物组成的固溶体。前者有镓砷磷(CaAs、1-xPx)、镓铝砷(Ca、1-xAl x As)和铟镓磷(In、1-xGaxP)等;后者有碲镉汞(Hg、1-xCd x Te)

半导体材料

半导体材料论文 1半导体材料的简介 自然界的物质、材料按导电能力大小可分为导体、半导体、和绝缘体三大类。半导体的电导率在10~10欧/厘米之间。在一般情况下,半导体电导率随温度的升高而增大,这与金属导体恰好相反。凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。 2半导体材料的主要种类 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 3最主要的集中半导体材料 3.1几种半导体材料:硅材料,GaAs和InP单晶材料,半导体超晶格、量子阱材料, 宽带隙半导体材料, 低维半导体材料。 3.2这几种半导体材料的发展现状与趋势 3.2.1硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si 单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC…s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC…S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smart cut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。 3.2.2 GaAs和InP单晶材料 GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。 目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展

锂电池硅基负极材料技术现状与展望

锂电池硅基负极材料技术现状与展望 与传统石墨负极相比,硅具有超高的理论比容量(4200 mAh/g)和较低的脱锂电位(<0.5 V),且硅的电压平台略高于石墨,在充电时难引起表面析锂,安全性能更好。硅成为锂离子电池碳基负极升级换代的富有潜力的选择之一。 但硅作为锂离子电池负极材料也有缺点。硅是半导体材料,自身的电导率较低。在电化学循环过程中,锂离子的嵌入和脱出会使材料体积发生300%以上的膨胀与收缩,产生的机械作用力会使材料逐渐粉化,造成结构坍塌,最终导致电极活性物质与集流体脱离,丧失电接触,导致电池循环性能大大降低。此外,由于这种体积效应,硅在电解液中难以形成稳定的固体电解质界面(SEI)膜。伴随着电极结构的破坏,在暴露出的硅表面不断形成新的SEI 膜,加剧了硅的腐蚀和容量衰减。 为改善硅基负极循环性能,提高材料在循环过程中的结构稳定性,通常将硅材料纳米化和复合化。目前,硅材料纳米化的主要研究方向包括:硅纳米颗粒(零维纳米化)、硅纳米线/管(一维纳米化)、硅薄膜(二维纳米化)和3D多孔结构硅、中空多孔硅(三维纳米化);硅材料复合化的主要研究方向包括:硅/金属型复合、硅/碳型复合及三元型复合(如硅/无定型碳/石墨三元复合体系)。 其中,硅纳米颗粒和三维多孔结构硅都可以在一定程度上抑制材料的体积效应,同时还能减小锂离子的扩散距离,提高电化学反应速率。但它们的比表面积都很大,增大了与电解液的直接接触,导致副反应及不可逆容量增加,降低库仑效率。此外,硅活性颗粒在充放电过程中很容易团聚,发生“电化学烧结”,加快容量衰减。 硅纳米线/管可减小充放电过程中径向的体积变化,实现良好的循环稳定性,并在轴向提供锂离子的快速传输通道。但会减小硅材料的振实密度,导致硅负极的体积比容量降低。硅薄膜可降低与薄膜垂直方向上产生的体积变化,维持电极的结构完整性。但经多次循环后,硅薄膜易发生破碎,并与衬底脱离,且硅薄膜的制备成本较高。 硅/金属型复合中的金属组分可以提高材料的电子电导,减小硅材料的极化,提高硅材料的倍率性能。金属的延展性可以在一定程度上抑制硅材料的体积效应,提高循环性能,但制备过程中产生的硅结构缺陷具有很高的电化学活性,会导致不可逆容量变大。且硅与金属复合无法避免活性硅与电解液直接接触,生成不稳定的SEI 膜,导致电池循环性能降低。 硅/碳型复合中,因碳材料具有较高的电子电导与离子电导,可改善硅基材料的倍率性能,抑制硅在循环过程中的体积效应。此外,碳材料能阻隔硅与电解液直接接触,降低不可逆容量。但缺点是硅材料和碳材料二者的界面接触较差,对硅材料纳米尺度的孔内壁进行完整均匀的碳包覆难度较大。

相关主题
文本预览
相关文档 最新文档