半导体硅材料基础知识.1
- 格式:docx
- 大小:22.84 KB
- 文档页数:5
硅材料的基本特性1、硅材料的基本特性;2、硅单晶材料的重要参数定义:晶向;导电类型;电阻率;杂质分布均匀性;微缺陷;晶片几何尺寸及公差;厚度;弯曲度;翘曲度;平行度;抛光片的平坦度;3、硅单晶中杂质的缺陷对器件的影响。
硅结晶型的硅是暗黑蓝色的,很脆,是典型的半导体。
化学性质非常稳定。
在常温下,除氟化氢以外,很难与其他物质发生反应。
硅的用途:①高纯的单晶硅是重要的半导体材料。
在单晶硅中掺入微量的第IIIA族元素,形成p型硅半导体;掺入微量的第VA族元素,形成n型和p型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。
在开发能源方面是一种很有前途的材料。
②金属陶瓷、宇宙航行的重要材料。
将陶瓷和金属混合烧结,制成金属陶瓷复合材料,它耐高温,富韧性,可以切割,既继承了金属和陶瓷的各自的优点,又弥补了两者的先天缺陷。
可应用于军事武器的制造。
第一架航天飞机“哥伦比亚号”能抵挡住高速穿行稠密大气时磨擦产生的高温,全靠它那三万一千块硅瓦拼砌成的外壳。
③光导纤维通信,最新的现代通信手段。
用纯二氧化硅拉制出高透明度的玻璃纤维,激光在玻璃纤维的通路里,无数次的全反射向前传输,代替了笨重的电缆。
光纤通信容量高,一根头发丝那么细的玻璃纤维,可以同时传输256路电话,它还不受电、磁干扰,不怕窃听,具有高度的保密性。
光纤通信将会使21世纪人类的生活发生革命性巨变。
④性能优异的硅有机化合物。
例如有机硅塑料是极好的防水涂布材料。
在地下铁道四壁喷涂有机硅,可以一劳永逸地解决渗水问题。
在古文物、雕塑的外表,涂一层薄薄的有机硅塑料,可以防止青苔滋生,抵挡风吹雨淋和风化。
天安门广场上的人民英雄纪念碑,便是经过有机硅塑料处理表面的,因此永远洁白、清新。
发现1822年,瑞典化学家白则里用金属钾还原四氟化硅,得到了单质硅。
名称由来源自英文silica,意为“硅石”。
分布硅主要以化合物的形式,作为仅次于氧的最丰富的元素存在于地壳中,约占地表岩石的四分之一,广泛存在于硅酸盐和硅石中。
微秒是10-6秒)。
所谓非平衡载流子是指当半导体中载流子的产生与复合处于平衡状态时,由于受某种外界条件的作用,如受到光线照射时而新增加的电子——空穴对,这部分新增加的载流子叫作非平衡载流子。
对于P型硅而言:新增加的电子叫作非平衡少数载流子;而新增加的空穴叫作非平衡多数载流子。
对于N型硅而言:新增加的空穴叫作非平衡少数载流子;而新增加的电子叫作非平衡多数载流子。
当光照停止后,这些非平衡载流子并不是立即全部消失,而是逐渐被复合而消失,它们存在的平均时间就叫作非平衡载流子的寿命。
非平衡载流子的寿命长短反映了半导体材料的内在质量,如晶体结构的完整性、所含杂质以及缺陷的多少,因为硅晶体的缺陷和杂质往往是非平衡载流子的复合中心。
少子寿命是一个重要的参数,用于高能粒子探测器的FZ硅的电阻率高达上万Ωcm,少子寿命上千微秒;用于IC工业的CZ硅的电阻率一般在5—30Ωcm范围内,少子寿命值多要求在100μs以上;用于晶体管的CZ硅的电阻率一般在30—100Ωcm,少子寿命也在100μs以上;而用于太阳能电池CZ硅片的电阻率在0.5—6Ωcm,少子寿命应≥10μs。
5. 氧化量:指硅材料中氧原子的浓度。
太阳能电池要求硅中氧含量<5×1018原子个数/cm3。
6. 碳含量:指硅材料中碳原子的浓度。
太阳能电池要求硅中碳含量<5×1017原子个数/cm3。
7、晶体缺陷另外:对于IC用硅片而言还要求检测:微缺陷种类及其均匀性;电阻率均匀性;氧、碳含量的均匀性;硅片的总厚度变化TTV;硅片的局部平整度LTV等等参数。
一、我公司在采购中常见的几种硅材料1.Cell:称为电池片,常常是电池片厂家外销的产品,它实际是一个单元电池。
2.Wafer:这通常指的是硅片,可能是圆片,也可能是方片。
圆片包括:硅切片,硅磨片、硅抛光片、图形片、污渍片、缺损片。
3.Ingot:常常指的是单晶硅锭,且是圆柱形的硅锭,也有用指多晶硅铸锭的。
半导体用的硅材料
一、硅材料
1、什么是硅材料
硅材料是一类经过精密加工和处理后,具有良好物理性能的半导体材料,它是半导体器件的基础组成部分。
硅材料具有优异的热稳定性、电性能和耐电压能力,是现代电子器件制造中不可缺少的重要原料。
2、硅材料的种类
硅材料可分为多种类型,按其微结构可以排列为晶体硅、气相沉积硅(CVD)、液相硅(LPCVD)、固体溶解硅、金属硅和化学气相沉积硅(PECVD)等几种。
3、硅材料的用途
硅材料是半导体电子元件的基本材料,可用于制作晶体管、晶闸管、半导体功率器件、芯片、半导体存储器、晶体管滤波器、互连器件和开关电路等,它们支撑着全球的信息网络和网络安全。
二、用于半导体产业的硅材料
1、Czochralski硅
Czochralski硅材料是以Czochralski法制备的硅单晶,它是玻璃改性的典范,可以用作半导体工艺中的衬底以及元器件的封装,它可以用于制作细小微型器件,是半导体行业中不可缺少的重要材料。
2、太阳能电池板硅
太阳能电池板是一种由多层硅片叠加而成的复合太阳能材料,是
太阳能发电技术的重要组成部分。
太阳能板的硅层厚度一般为
0.3-0.5毫米,其半导体特性良好,可以把太阳能转换为可靠的电能。
3、硅胶
硅胶是一种由二甲基硅氧烷和其他热固性填料混合而成的柔性
材料,具有优异的物理和机械性能,成为了半导体行业中不可或缺的重要材料。
它能够抗热、抗湿、抗老化、抗冲击,并且拉伸强度高,比表面穿透阻抗低,是优质的半导体隔离材料。
1.1 半导体基础知识1.1.1 半导体的特性自然界的各种物质,根据其导电能力的差别,可以分为导体、绝缘体和半导体三大类。
[下一页]半导体的特性硅原子的序数是14、原子核外有14个电子,最外层有4个电子,称为价电子,带4个单位负电荷。
通常把原子核和内层电子看作一个整体,称为惯性核。
惯性核带有4个单位正电荷,最外层有4个价电子带有4个单位负电荷,因此,整个原子为电中性。
[下一页]1.1.2 本征半导体在本征半导体的晶体结构中,每一个原子与相邻的四个原子结合。
每一个原子的价电子与另一个原子的一个价电子组成一个电子对。
这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓共价键的结构。
一般来说,共价键中的价电子不完全像绝缘体中价电子所受束缚那样强,如果能从外界获得一定的能量(如光照、升温、电磁场激发等),一些价电子就可能挣脱共价键的束缚而成为自由电子,这种物理现象称作为本征激发,价电子受激发挣脱原子核的束缚成为自由电子的同时,在共价键中便留下了一个空位子,称“空穴”。
如图所示。
当空穴出现时,相邻原子的价电子比较容易离开它所在的共价键而填补到这个空穴中来,使该价电子原来所在共价键中出现一个新的空穴,这个空穴又可能被相邻原子的价电子填补,再出现新的空穴。
价电子填补空穴的这种运动无论在形式上还是效果上都相当于带正电荷的空穴在运动,且运动方向与价电子运动方向相反。
为了区别于自由电子的运动,把这种运动称为空穴运动,并把空穴看成是一种带正电荷的载流子。
在本征半导体内部自由电子与空穴总是成对出现的,因此将它们称作为电子-空穴对。
当自由电子在运动过程中遇到空穴时可能会填充进去从而恢复一个共价键,与此同时消失一个“电子-空穴”对,这一相反过程称为复合。
在一定温度条件下,产生的“电子空穴对”和复合的“电子空穴对”数量相等时,形成相对平衡,这种相对平衡属于动态平衡,达到动态平衡时,“电子-空穴对”维持一定的数目。
硅片相关知识点总结一、硅片的特性1.硅片材料:硅片是由硅单质制备而成的,硅单质是一种非金属元素,常温下呈灰色晶体,具有金属性质量良好的晶体是制备硅片的基础。
2.硅片的晶体结构:硅片具有钻石结构,在硅片结晶中,硅原子通过共价键相互连接,形成一种非常坚固稳定的结构。
3.硅片的电学特性:硅片是半导体材料,它在室温下的电导率介于导体和绝缘体之间。
硅片的电导率可以通过掺杂来调节,掺杂后的硅片可以得到P型硅片和N型硅片。
4.硅片的热学特性:硅片的热导率很高,因此可以很好地传导热量,这使得硅片在集成电路等高密度电子器件中有着重要的应用。
5.硅片的光学特性:硅片是半透明材料,对不同波长的光有不同的透射率和反射率。
这些特性使得硅片在太阳能电池等光电器件中有着广泛的应用。
二、硅片的制备工艺1.单晶硅片的制备:单晶硅片是通过在高温下将硅石熔融后缓慢冷却得到的,在冷却过程中控制温度和降温速率,使得硅原子按照晶格结构有序排列。
2.多晶硅片的制备:多晶硅片是通过将熔融的硅融料浇铸在铸模中制备成块状,再通过多次拉拔、切割和去除表面缺陷等加工工艺得到的。
3.硅片的清洗和处理:制备好的硅片需要进行严格的清洗和表面处理,以去除表面的污染物和缺陷,增强硅片的电学和光学性能。
4.硅片的加工和切割:硅片需要根据具体的用途进行加工和切割,例如晶圆的制备、太阳能电池板和集成电路的制备等。
三、硅片在电子器件中的应用1.集成电路:硅片是集成电路的基础材料,通过在硅片上沉积不同的材料和通过光刻、蒸镀等工艺,制备出晶体管、电容器、电阻器等微小电子器件。
2.太阳能电池:硅片是太阳能电池的主要材料之一,通过在硅片上沉积P型或N型硅层,并加工形成PN结,吸收太阳光能产生电流,实现太阳能的转换。
3.光电器件:硅片在光电器件中也有广泛的应用,例如感光元件、光耦合器、激光器等,利用硅片对光的敏感性和半导体特性,实现光信号的检测与处理。
四、硅片相关的新技术和发展趋势1.硅片的微纳加工:随着微纳加工技术的不断发展,硅片的微纳加工工艺也在不断完善,可以制备出更加微小精密的电子器件,实现高集成度、高性能和小尺寸化。
硅片知识点总结1. 硅片的概念硅片是一种重要的半导体材料,被广泛应用于电子、光电子等领域。
硅片的主要成分是硅元素,具有优良的电子特性和光学特性,因此被广泛用于制造集成电路、光伏电池、LED等产品。
2. 硅片的制备硅片的制备主要包括晶体生长、切割、抛光等工艺。
首先,通过化学气相沉积或单晶生长炉等方法,在硅溶液中生长出大尺寸的硅单晶棒。
然后,利用锯片将硅单晶棒切割成薄片,再通过化学机械抛光等工艺对硅片表面进行精细加工,最终形成高质量的硅片。
3. 硅片的特性硅片具有优良的电子特性和光学特性,主要包括以下几个方面:(1)电子特性:硅片是一种半导体材料,具有一定的导电性能。
经过掺杂或特殊处理后,硅片可以具有N型或P型的电子特性,广泛用于制造集成电路等电子产品。
(2)光学特性:硅片在可见光和红外光范围具有很好的透光性,因此被广泛应用于光伏电池、光电器件等领域。
此外,硅片还具有较高的折射率和低的光学吸收系数,使其成为一种优良的光学材料。
4. 硅片的应用硅片作为半导体材料,被广泛应用于电子、光电子等领域,主要包括以下几个方面:(1)集成电路:硅片是制造集成电路的基础材料,通过光刻、离子注入、金属蒸镀等工艺,在硅片表面上制造出晶体管、电容器、电阻器等元器件,从而实现电子器件的集成化和微小化。
(2)光伏电池:硅片是光伏电池的主要材料,通过将硅片制成P-N结,当受到阳光照射时会产生光伏效应,将光能转换为电能,从而产生电流。
(3)LED:硅片还被用于制造LED器件,通过在硅片表面上沉积金属电极和发光层等材料,实现LED的发光。
5. 硅片的发展趋势随着科技的发展和需求的不断变化,硅片的应用领域和产品性能也在不断创新和发展,主要包括以下几个方面:(1)微电子器件:随着半导体工艺的不断精进和升级,微电子器件对硅片的要求也在不断提高,需要更高的晶格纯度和表面平整度。
(2)光伏材料:随着清洁能源的发展,光伏电池对硅片的要求也在不断增加,需要更高的光电转换效率和稳定性。
半导体器件重要知识点总结一、半导体基础知识1. 半导体的概念及特性:半导体是指导电性介于导体和绝缘体之间的一类材料。
由于半导体材料的导电性能受温度、光照等外部条件的影响比较大,它可以在不同的条件下表现出不同的导电特性。
半导体材料常见的有硅、锗等。
2. P型半导体和N型半导体:P型半导体是指在半导体材料中掺入了3价元素,如硼、铝等,使其成为带正电荷的空穴主导的半导体材料。
N型半导体是指在半导体材料中掺入了5价元素,如磷、砷等,使其成为自由电子主导的半导体材料。
3. 掺杂:半导体器件在制造过程中一般都要进行掺杂,以改变其导电性能。
掺杂分为N型掺杂和P型掺杂,通过掺杂可以使半导体材料的导电性能得到调控,从而获得所需要的电子特性。
4. pn结:pn结是指将P型半导体和N型半导体直接连接而成的结构,它是构成各类半导体器件的基础之一。
pn结具有整流、发光、光电转换等特性,在各类器件中得到了广泛的应用。
二、半导体器件的基本知识1. 二极管(Diode):二极管是一种基本的半导体器件,它采用pn结的结构,在正向偏置时可以导通,而在反向偏置时则将电流阻断。
二极管在各类电子电路中具有整流、电压稳定、信号检测等重要作用。
2. 晶体管(Transistor):晶体管是一种由半导体材料制成的三电极器件,它采用多个pn结的结构,其主要功能是放大信号、开关电路和稳定电路等。
晶体管在各类电子器件中扮演着至关重要的作用,是现代电子技术的重要组成部分。
3. 集成电路(IC):集成电路是将大量的半导体器件集成在一块半导体芯片上的器件,它可以实现各种功能,如存储、计算、通信等。
集成电路在现代电子技术中已成为了各类电子产品不可或缺的一部分,是现代电子产品的核心之一。
4. MOS场效应管(MOSFET):MOSFET是一种基于金属-氧化物-半导体的结构的场效应晶体管,它在功率控制、开关电路、放大器等方面有着重要的应用。
MOSFET在各类电源、电动机控制等领域得到了广泛的应用。
1.1 半导体基础知识概念归纳本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。
电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。
绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。
绝缘体导电性:极差。
如惰性气体和橡胶.半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧.半导体导电性能:介于半导体与绝缘体之间.半导体的特点:★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。
★在光照和热辐射条件下,其导电性有明显的变化.晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。
共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。
自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子.空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。
电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。
空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。
本征半导体的电流:电子电流+空穴电流.自由电子和空穴所带电荷极性不同,它们运动方向相反。
载流子:运载电荷的粒子称为载流子。
导体电的特点:导体导电只有一种载流子,即自由电子导电。
本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。
本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发.复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。
动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。
载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。
硅知识点总结120919硅(Ge)是一种常见的半导体材料,它广泛应用于电子器件和集成电路中。
在学习硅的知识点时,我们需要了解硅的物理和化学性质、硅晶体的结构和生长方法、硅的掺杂和掺杂技术、硅的杂质和缺陷等。
下面我将为您总结一些关键的知识点。
1.硅的基本信息硅是地壳中含量最高的元素之一,化学符号为Ge,原子序数为32、它是一种灰白色的硬质金属,熔点为937.4℃,沸点为2830℃。
硅的密度为5.323克/立方厘米,具有良好的热导性和电导性。
2.硅的结构硅的结构类似于碳,它具有钻石型晶体结构。
硅原子通过共价键连接在一起,形成一个三维网格结构。
硅晶体可以分为两种结构:多晶硅和单晶硅。
多晶硅由许多晶粒组成,晶粒之间存在晶界;单晶硅由一个连续的晶体结构组成,没有晶界。
3.硅的生长方法硅晶体可以通过多种方法生长,包括Czochralski法、区域熔凝法、气相外延法等。
其中,Czochralski法是最常用的方法。
该方法通过在熔融硅中放入一个种子晶体,然后缓慢提拉并旋转晶体,使其逐渐生长为一个完整的单晶体。
4.硅的掺杂硅可以通过掺杂来调节其导电性能。
掺杂是指将少量杂质原子引入硅晶体中,以改变硅的电子能带结构。
通常使用磷(P)、硼(B)、砷(As)等元素进行掺杂。
磷掺杂的硅是N型硅,硼掺杂的硅是P型硅。
N型硅中的电子浓度高于空穴浓度,P型硅中的空穴浓度高于电子浓度。
5.硅的掺杂技术硅的掺杂技术主要有扩散法、离子注入法和外延法。
扩散法是将掺杂材料的薄层放在硅晶体表面,并在高温下使其扩散到晶体内部。
离子注入法是将掺杂材料的离子注入到硅晶体中,然后通过热退火来修复晶格损伤。
外延法是在硅晶体表面上沉积一层掺杂材料,使其在晶体生长过程中被夹在两个硅层之间。
6.硅的杂质和缺陷硅晶体中可能存在一些杂质和缺陷,它们会对硅的性能产生影响。
常见的杂质有氧气、碳、金属杂质等。
氧气和碳是硅晶体的主要杂质,会影响硅的电子迁移率和载流子浓度。
半导体材料的基础知识半导体材料是一种在现代电子学和信息技术中应用广泛的材料。
它的基础性质和应用原理可以说是当代物理学和电子技术的重要研究内容。
在本文中,我们将介绍半导体材料的基础知识。
1. 半导体材料的基本结构半导体材料通常由硅,锗,蓝宝石,碳化硅等多种材料组成。
半导体材料的结构比较复杂,但是可以分为三个主要部分:晶格结构,杂质、缺陷与材料表面。
(1)晶格结构半导体材料是由晶体结构组成的,它具有一定的周期性和对称性。
硅族元素和氮族元素晶格结构通常为立方晶系,锗和砷的晶格结构则为钻石晶系。
晶格结构的大小和组成决定了材料的物理性质。
(2)杂质、缺陷和材料表面半导体材料的表面和晶界可能存在杂质和缺陷。
杂质是指掺入半导体晶体中的不同元素,通常称为掺杂。
这种掺杂可以改变材料的特性,如电导率、热导率等,从而使其达到所需的性能。
缺陷则是材料的晶体中的结构性变化。
他们可以导致材料的导电性变化,从而影响整个电子系统的运行效果。
2. 半导体物理特性半导体材料数电子学通常被用于发展系统和设备。
因为半导体材料具有一些特殊的物理和电学特性。
(1)导电类型半导体材料的导电型别主要有p型和n型。
它们的特点在于材料中的掺杂浓度不同。
p型是指加入含有三个电子的元素,取代了材料中原来的元素。
这些三价元素可以在p型半导体中留下空位置,其中可以容纳自由电子,从而形成电子空穴。
n型半导体与p 型有所不同,它是通过向材料中掺入含有五个电子的元素来形成的,如磷、硒等元素。
这些五价元素可以提供更多的自由电子,从而导致电子流通的过程。
(2)禁带宽度半导体材料有一个固有的能带结构,这个能带称为禁带。
当材料导电时,电子从导带中被激发到价带中。
而导带和价带之间的距离称为禁带宽度。
这个宽度影响材料的电性质,并且也很重要,因为它决定了材料能否被用作半导体器件的基础。
3. 典型半导体器件半导体材料不仅可以作为电子元器件的基础材料,还可以制成各种各样的器件。
硅基半导体材料一、引言硅基半导体材料是当今电子工业中最重要的材料之一。
它具有很高的热稳定性、化学稳定性和机械强度,同时还具有优异的电学特性,因此被广泛应用于集成电路、太阳能电池等领域。
二、硅基半导体材料的种类1.单晶硅:单晶硅是最常见的硅基半导体材料。
它由纯度极高的硅棒通过Czochralski法或浮区法生长而成。
单晶硅具有非常高的电子迁移率和长寿命,因此被广泛应用于制造高性能集成电路。
2.多晶硅:多晶硅由不同方向生长的小晶粒组成,因此具有较低的电子迁移率和短寿命。
但它可以通过掺杂等方式改变其导电性质,被广泛应用于太阳能电池等领域。
3.氧化物:氧化物是一种非常常见的硅基半导体材料。
它包括SiO2、SiOxNy等不同种类,通常被用作绝缘层或隔离层。
三、硅基半导体材料的制备方法1.单晶硅的制备:单晶硅的制备通常采用Czochralski法或浮区法。
其中Czochralski法是最常用的方法,它通过将纯度极高的硅棒放入熔融的硅中,然后缓慢地提拉出来,使得硅棒逐渐生长成为单晶硅。
2.多晶硅的制备:多晶硅通常通过化学气相沉积(CVD)或物理气相沉积(PVD)等方法制备。
其中CVD法是最常用的方法,它通过在高温下将气态硅源和掺杂源引入反应室中,在衬底上生长出多晶硅薄膜。
3.氧化物的制备:氧化物通常采用热氧化或PECVD等方法制备。
其中热氧化是最常用的方法,它通过将硅基材料放入高温下加氧化性气体进行反应,形成SiO2薄膜。
四、应用领域1.集成电路:单晶硅被广泛应用于集成电路中。
它可以作为基片、掩膜、源极等多种元件,具有非常高的电子迁移率和长寿命,因此可以制造出高性能的集成电路。
2.太阳能电池:多晶硅被广泛应用于太阳能电池中。
它可以通过掺杂等方式改变其导电性质,从而提高太阳能电池的效率。
3.其他领域:硅基半导体材料还被广泛应用于LED、光伏、传感器等领域。
五、发展趋势1.晶圆尺寸的增大:随着半导体工艺的不断进步,晶圆尺寸也在不断增大。
半导体硅材料基础知识讲座培训大纲什么是半导体?导体(Conductor)导体是指很容易传导电流的物质绝缘体(Insolator)是指极不容易或根本不导电的一类物质半导体(Semiconductor)导电性能介于导体和绝缘体之间且具备半导体的基本特性的一类材料。
半导体硅材料的电性能特点硅材料的电性能有以下三个显著特点:一是它对温度的变化十分灵敏;二是微量杂质的存在对电阻率的影响十分显著;三是半导体材料的电阻率在受光照时会改变其数值的大小。
综上所述,半导体的电阻率数值对温度、杂质和光照三个外部条件变化有较高的敏感性。
半导体材料的分类元素半导体化合物半导体有机半导体无定形半导体迄今为止,工艺最为成熟、应用最为广泛的是前两类半导体材料,尤其是半导体硅材料,占整个半导体材料用量的90%以上。
硅材料是世界新材料中工艺最为成熟、使用量最大的半导体材料。
它的实验室纯度可接近本征硅,即12个“九”,即使是大工业生产也可以到7—9个“九”的纯度。
半导体硅材料的制备冶金级硅(工业硅)的制备冶金级硅是将比较纯净的SiO2矿石和木炭或石油焦一起放入电弧炉里,在电孤加热的情况下进行还原而制成。
其反应式是:SiO2+2C →Si+2CO普通冶金级硅的纯度大约是2~3个“九”。
目前市面上也有号称4~5个“九”纯度的冶金级硅,那是通过多次“冶金法”或称为“物理法”提纯后获得的。
多晶硅的制备目前全世界多晶硅的生产方法大体有三种:一是改良的西门子法;二是硅烷法;三是粒状硅法。
改良的西门子法生产半导体级多晶硅:这是目前全球大多数多晶硅生产企业采用的方法,知名的企业有美国的Harmlock、日本的TOKUYAMA、三菱公司、德国的瓦克公司以及乌克兰和MEMC意大利的多晶硅厂。
全球80%以上的多晶硅是用此法生产的。
其工艺流程是:原料硅破碎筛分(80目)沸腾氯化制成液态的SiHCl3粗馏提纯精馏提纯氢还原棒状多晶硅破碎洁净分装。
经验上,新建设一座多晶硅厂需要30—36个月时间,而老厂扩建生产线也需要大约14—18个月时间,新建一座千吨级的多晶硅厂大约需要10—12亿元人民币,也就是说每吨的投资在100万元人民币以上。
硅烷法生产多晶硅用硅烷法生产多晶硅的工厂仅有日本的小松和美国的ASMY两家公司,其工艺流程是:原料破碎筛分硅烷生成沉积多晶硅棒状多晶破碎、包装(3)粒状多晶硅全球用此法生产多晶硅的仅有美国休斯顿的PASADENA工厂,它的生产流程与硅烷法生产多晶硅的工艺大体相似,所不同的是它沉积出来的多晶硅不是棒状,而是直径仅为φ1—3mm 的硅粒。
单晶硅的制备根据单晶硅的使用目的不同,单晶硅的制备工艺也不相同,主要的制备工艺有两种:区域熔炼法(简称区熔法或FZ法,Float Zone)。
这是制备高纯度,高阻单晶的方法,区熔法既可以提纯,又可以成晶。
它是利用杂质在其固体和液体中分凝系数的差异,通过在真空下经数次乃至数十次的区域熔炼提纯,然后成晶而制成。
切克劳斯基法(简称直拉法。
CZ法,Czochralski)这是将清洗好的多晶硅块料(块径>5mm以上)装入石英坩埚再把装好料的石英坩埚放入直拉单晶炉内置的石墨托碗上-→抽真空—→充氩气—→高频加热石墨托碗使石英坩埚内的多晶料熔化成液体(需要在1430℃以上)—→降下预先置于炉顶部的籽晶-→引晶-→缩颈-→放肩-→等径生长-→收尾等一系列复杂的工艺而制成。
半导体硅材料的加工这是指由Ingot -→wafer的过程。
硅片的加工大体包括:硅棒外径滚磨、硅切片、倒角、硅磨片、硅抛光等几个过程硅切片硅切片是将单晶硅锭加工成硅片的过程,通常使用的设备有两种:内圆切片机:一般加工直径≤6″的硅单晶锭。
片厚300—400μm,刀口厚度在300—350μm,加工损失在50%以上。
用这种设备加工的硅切片一般有划道、崩边、且平整度较差,往往需要研磨后才可使用。
线切割机:一般用于加工直径≥6″的单晶(如8″、12″等),片厚最薄可达200μ—250μ,刀口厚度≤200μ,加工损失在40%左右,较内圆切割机可多出5~10%左右的硅片,用这种设备加工的硅切片表面光滑,平整度好,不用经过磨片工序即可投入太阳电池片的生产。
但线切割机较为昂贵,单机价格是内圆切片的8—10倍。
硅磨片一般是双面磨,用金刚砂作原料,去除厚度在50—100μ时大约需要15—20分钟,用磨片的方法可去除硅片表面的划痕,污渍和图形等,可提高硅片表面平整度。
凡用内圆切片机加工的硅片一般都需要进行研磨。
硅抛光片这是只有大规模集成电路工业才用的硅片,这里不述及。
半导体硅材料的主要性能参数导电类型这是讲半导体内部导电是以什麽类型的载流子在载带电荷。
这里我们介绍三种情况:本征硅:习惯上我们把绝对纯净而没有缺陷的半导体叫作本征半导体。
通常纯净而没有缺陷的硅晶体叫作本征硅。
N型硅:若在纯硅中掺入V族元素(如磷、砷等)以后,由于V族元素最外层是5个价电子,当这5个价电子中4个与硅原子最外层的4个价电子形成共价键时,就会有一个多余的电子脱离出来成为自由电子,从而就提供了同等数量的导电电子,这种能提供自由电子的杂质统称为施主杂质(如P、AS等),掺入施主杂质、以电子为多数载流子的硅叫N型硅。
P型硅:如果在纯硅中掺入III族元素(如硼)以后,由于硼原子的最外层是3个价电子,当它进入硅的晶体构成共价键时,就缺少了一个电子,因而它就有一种从别处夺来一个电子使自己成为负离子,并与硅晶体相匹配的趋势,因此我们可以认为硼原子是带有一个很容易游离于晶体间的空穴。
在半导体中,这种具有接受电子的杂质称为受主杂质。
掺入受主杂质、以空穴为多数载流子的硅叫作P型硅。
晶体结构自然界中的固体可以分为晶体和非晶体两大类,晶体是指有固定熔点的固体(如:Si、GaAs、冰及一般的金属等),而没有固定熔点,加热时在某一温度范围内逐渐软化的固体叫作非晶体。
(如:松香、玻璃、橡胶等)(1)单晶、多晶和无定形:晶体又可以分为单晶体、多晶体和无定形体。
现有的晶体都是由原子、离子或分子在三维空间上有规则的排列而形成的。
这种对称的有规则排列叫作晶体的点阵或叫晶格。
最小的晶格叫晶胞,晶胞的各向长度叫晶格常数。
将晶格周期性的重复排列,就可以构成整个晶体,这就是晶体的固有特性,而非晶体则没有这种特征。
那种近程有序而远程无序排列的称为无定形体。
一块晶体如果从头至尾都按同一种排列重复下去叫作单晶体,由许多微小单晶颗粒杂乱地排列在一起的称为多晶体。
(2)晶格结构:我们对一些主要的晶体进行研究后发现,其中的晶胞多不相同,常见的晶胞有:简单立方结构、体心立方结构、面心立方机构、金刚石结构(如:Si、Ge等),闪锌矿结构(如GaAs、Gap、Iusb等),一般元素半导体多为金刚石结构,III—V族化合物半导体多为闪锌矿结构。
金刚石结构是两个面心立方结构的晶胞在对角线上滑移1/4距离后形成,而闪锌矿结构是在金刚石结构中把相邻两个Si原子分别换作Ga和As而形成。
(3)晶面和晶向:晶体中那些位于同一平面内的原子形成的平面称为晶面。
晶面的法线方向称为晶向。
单晶常用的晶向有(100)、(111)和(110),晶体在不同的方向上具有不同的性质,这就是晶体的多向异性。
晶向示意图(4)晶体中的缺陷:当晶体中的原子周期性重复排列遭到破坏或出现不规则的地方就形成了缺陷,硅单晶中常见的缺陷有:点缺陷、线缺陷、面缺陷、孪晶、旋涡、杂质条纹、堆垛层错、氧化层错、滑移线等等。
电阻率电阻率是半导体材料的一个极其重要的参数,前面我们已经提到电阻率是区分导体、绝缘体和半导体的关键因素。
不同的器件要求不同的电阻率。
少子寿命所谓少子寿命是指半导体中非平衡少数载流子平均存在的时间长短,单位是μs(1微秒是10-6秒)。
所谓非平衡载流子是指当半导体中载流子的产生与复合处于平衡状态时,由于受某种外界条件的作用,如受到光线照射时而新增加的电子——空穴对,这部分新增加的载流子叫作非平衡载流子。
对于P型硅而言:新增加的电子叫作非平衡少数载流子;而新增加的空穴叫作非平衡多数载流子。
对于N型硅而言:新增加的空穴叫作非平衡少数载流子;而新增加的电子叫作非平衡多数载流子。
当光照停止后,这些非平衡载流子并不是立即全部消失,而是逐渐被复合而消失,它们存在的平均时间就叫作非平衡载流子的寿命。
非平衡载流子的寿命长短反映了半导体材料的内在质量,如晶体结构的完整性、所含杂质以及缺陷的多少,因为硅晶体的缺陷和杂质往往是非平衡载流子的复合中心。
少子寿命是一个重要的参数,用于高能粒子探测器的FZ硅的电阻率高达上万Ωcm,少子寿命上千微秒;用于IC工业的CZ硅的电阻率一般在5—30Ωcm范围内,少子寿命值多要求在100μs以上;用于晶体管的CZ硅的电阻率一般在30—100Ωcm,少子寿命也在100μs以上;而用于太阳能电池CZ硅片的电阻率在0.5—6Ωcm,少子寿命应≥10μs。
5. 氧化量:指硅材料中氧原子的浓度。
太阳能电池要求硅中氧含量<5×1018原子个数/cm3。
6. 碳含量:指硅材料中碳原子的浓度。
太阳能电池要求硅中碳含量<5×1017原子个数/cm3。
7、晶体缺陷另外:对于IC用硅片而言还要求检测:微缺陷种类及其均匀性;电阻率均匀性;氧、碳含量的均匀性;硅片的总厚度变化TTV;硅片的局部平整度LTV等等参数。
我公司在采购中常见的几种硅材料1.Cell:称为电池片,常常是电池片厂家外销的产品,它实际是一个单元电池。
2.Wafer:这通常指的是硅片,可能是圆片,也可能是方片。
圆片包括:硅切片,硅磨片、硅抛光片、图形片、污渍片、缺损片。
3.Ingot:常常指的是单晶硅锭,且是圆柱形的硅锭,也有用指多晶硅铸锭的。
4.Polysilicon:通常是指多晶硅料,它又分为棒料、块料、碎料。
5.碳头料(goods with carbon):通常指多晶硅棒的下部接近石墨头的部分6.横梁料(beam):通常是指多晶硅棒最上部的横梁,由于其处在硅棒上部,靠近炉顶部,且过热(生成温度超过1100℃),也常是金属杂质较多的部分,常不适合于IC工业,而作为太阳电池材料。
7.头尾料(top and tail):这是指拉制单晶锭的头部和尾部的部分,它由于电阻率范围不在IC适用范围内,杂质浓度高(如尾料),或缺陷密度大(如头部料)而被切下报废,但可作太阳电池的原料。
8.埚底料(Pot scrap):这是指CZ单晶拉制结束后残留于石英埚底部的余料,常用作太阳电池片的原料。
9.边皮料(Side walls):目前理解方法有两种,一种是单晶锭劈成方锭时取下的料,这应是一种比较好的原料,可用于回炉再次拉制单晶锭。
另一种是浇注硅的大方锭六面劈下的废料(由于上方有浮渣,其余五面接触石英,故需剖下),腐浊清洗后才可再用于浇注硅方锭。