人教版七年级数学下册平移检测题2
- 格式:doc
- 大小:270.00 KB
- 文档页数:3
七年级数学下册《图形的平移》单元测试卷(附答案解析)一.选择题(共8小题,满分24分)1.“冰墩墩”是2022年北京冬奥会吉祥物(如图).在如图的四个图中,能由如图经过平移得到的是()A.B.C.D.2.下列生活现象中,属于平移的是()A.升降电梯的上下移动B.荡秋千运动C.把打开的课本合上D.钟摆的摆动3.如图,将△ABC沿BC方向平移到△DEF,若A、D间的距离为2,CE=4,则BF=()A.4 B.6 C.8 D.104.如图,已知△ABC的周长为20cm,现将△ABC沿AB方向平移2cm至△A′B′C′的位置,连接CC′,则四边形AB′C′C的周长为()A.20cm B.22cm C.24cm D.26cm5.如图,△ABC中,∠ABC=90°,沿BC所在的直线向右平移得到△DEF,下列结论中,错误的()A.EC=CF B.∠A=∠D C.AC∥DF D.∠DEF=90°6.如图所示,某公园里有一处长方形风景欣赏区ABCD,AB长50米,BC宽25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小明同学在假期沿着小路的中间行走(图中虚线),小路宽1米,则小明同学所走的路径长为()A.98米B.100米C.123米D.75米7.下列语句中正确的有()个①过一点有且只有一条直线与已知直线平行;②如果两个角的两边互相平行,则这两个角相等;③垂直于同一直线的两直线平行;④△ABC平移到△A′B′C′,则对应点的连线段AA′、BB′、CC′平行且相等.A.0 B.1 C.2 D.38.如图,将△ABC沿着某一方向平移一定的距离得到△DEF,则下列结论:①AD=CF;②AC∥DF;③∠ABC =∠DFE;④∠DAE=∠AEB.其中正确的是()A.仅①②B.仅①②④C.仅①②③D.①②③④二.填空题(共10小题,满分30分)9.如图,△ABC沿BC所在直线向右平移得到△DEF,则△ABC平移的距离是图中线段的长度.10.如图,在宽为13米、长为24米的长方形地面上修筑同样宽的道路(图中阴影部分),道路的宽为2米,余下部分种植草坪.则草坪的面积为.11.要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是20元,台阶宽为3米,侧面如图所示,购买这种红地毯至少需要元.12.如图,△DEF是由△ABC先向右平移格,再向平移得到的.13.如图,直线a与∠AOB的一边射线OA相交,∠1=130°,向下平移直线a得到直线b,与∠AOB的另一边射线OB相交,则∠2+∠3=.14.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动,属于平移现象的有(只填序号).15.如图,在一块长为a米、宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为平方米.16.如图,直线a∥b,且a、b之间相距4cm,点P是直线a上一定点,点Q在直线b上运动,则在Q点的运动过程中,线段PQ的最小值是cm.17.把一副直角三角尺如图摆放,点C与点E重合,BC边与EF边都在直线l上,将△ABC向右平移得△A'B'C',当边A'C'经过点D时,∠EDC'=°.18.如图,已知长方形ABCD的长为a,宽为b,若将长方形ABCD向右平移,再向下平移,得到长方形A′B′C′D′,则阴影部分的面积为.(用含a、b的代数式表示)三.解答题(共6小题,满分46分)19.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A'B'C',图中标出了点B的对应点B'.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题保留画图痕迹:(1)画出△A'B'C';(2)连接AA'、CC',那么AA'与CC'的关系是,线段AC扫过的图形的面积为;20.在如图所示4×4方格中,按下列要求作格点三角形(图形的顶点都在正方形格纸的格点上).(1)在图1中,将△ABC平移,得到△A′B′C′,使得△A′B′C′与△ABC无重合部分.(2)在图2中,线段AB与CD相交,产生∠α,请画一个△ABE,使得△ABE中的一个角等于∠α.21.如图,在Rt△ABC中,∠ACB=90°,∠E=55°,将△ABC沿AB方向向右平移得到△DEF.(1)求∠A的度数;(2)若AE=8cm,DB=2cm,请求出AD的长度.22.如图,△ABC中,BC=4cm,将△ABC以0.2cm/s的速度沿BC所在直线向右平移,所得图形对应为△DEF,设运动时间为t秒.(1)若∠ADE=60°,求∠B的度数?(2)当t为何值时,EC=1cm?23.如图,已知直线CB∥OA,∠C=∠OAB=100°,点E、F在线段BC上,满足∠FOB=∠FBO=α,OE平分∠COF.(1)OC与AB是否平行?请说明理由.(2)用含有α的代数式表示∠COE的度数;(3)若左右平移线段AB,是否存在∠OEC=∠OBA的可能?若存在,求出此时α的值;若不存在,请说明理由.24.动手操作(1)如图1,在5×5的网格中,将线段AB向右平移,得到线段A'B',连接AA',BB'.①线段AB平移的距离是;②四边形ABB'A'的面积;(2)如图2,在5×5的网格中,将折线ACB向右平移3个单位长度,得到折线A'C'B'.③画出平移后的折线A'C'B';④连接AA',BB',多边形ACBB'C'A'的面积;拓展延伸(3)如图3,在一块长为a米,宽为b米的长方形草坪上,修建一条宽为m米的小路(小路宽度处处相同),直接写出剩下的草坪面积.参考答案与解析一.选择题(共8小题,满分24分)1.解:根据平移的性质可知:能由如图经过平移得到的是B,故选:B.2.解:A、升降电梯的运动,属于平移现象,故A符合题意;B、荡秋千运动,不属于平移现象,故B不符合题意;C、把打开的课本合上,不属于平移现象,故B不符合题意;D、钟摆的摆动,不属于平移现象,故D不符合题意;故选:A.3.解:∵将△ABC沿CB方向平移到△DEF的位置,点A,D之间的距离为2,∴BE=CF=2,∵CE=4,∴BF=CF+BE+CE=2+2+4=8,故选:C.4.解:根据题意,得A的对应点为A′,B的对应点为B′,C的对应点为C′,所以BC=B′C′,BB′=CC′,则四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm).故选:C.5.解:∵Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,∴AC∥DF,△ABC≌△DEF,∴∠ACB=∠DFE,∠DEF=∠ABC=90°,AC=DF,BC=EF,∠A=∠D,∴AC∥DF,∴BC﹣CE=EF﹣CE,即BE=CF,∴选项B、C、D正确,不符合题意,但BE不一定与EC相等,故选项A错误,符合题意;故选:A.6.解:将所走的路线分段进行平移可得,小明同学所走的路径长为50+(25﹣1)×2=98(米),故选:A.7.解:过直线外一点有且只有一条直线与已知直线平行,所以①错误;如果两个角的两边互相平行,则这两个角相等或互补,所以②错误;在同一平面内,垂直于同一直线的两直线平行,所以③错误;△ABC平移到△A′B′C′,则对应点的连线段AA′、BB′、CC′平行(或共线)且相等,所以④错误.故选:A.8.解:∵△ABC沿着某一方向平移一定的距离得到△DEF,∴①AD∥CF,正确;②AC=DF,正确;③∠ABC=∠DEF,故原命题错误;④∠DAE=∠AEB,正确.所以,正确的有①②④.故选:B.二.填空题(共10小题,满分30分)9.解:∵△ABC沿BC所在直线向右平移得到△DEF,∴△ABC平移的距离是图中线段BE或CF的长度,故答案为:BE或CF.10.解:草坪的面积为:(24﹣2)×(13﹣2)=242(平方米).故答案为:242平方米.11.解:利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为5.2米,4.8米,∴地毯的长度为5.2+4.8=10(米),地毯的面积为10×3=30(平方米),∴购买这种红地毯至少需要30×20=600(元).故答案为:600.12.解:如图所示:△ABC可以先向右平移6格,再向下平移3格,得到△DEF.故答案为:6,下,3.13.解:作OC∥a,如图∵直线m向上平移直线a得到直线b,∴a∥b,∴OC∥b,∴∠1=∠AOC=180°,∠3+∠BOC=180°,∴∠1+∠AOC+∠3+∠BOC=360°,即∠1+∠2+∠3=360°,∠2+∠3=360°﹣∠1=360°﹣130°=230°.故答案为230°.14.解:①用打气筒打气时,气筒里活塞的运动符合平移的定义,故正确;②直线传送带上,瓶装饮料的移动符合平移的定义,故正确;③在平直的公路上行驶的汽车符合平移的定义,故正确;④随风摆动的旗帜不在同一条直线上,故错误;⑤钟表的摆动不在同一条直线上,故错误;故答案为:①②③.15.解:由题可得,草地的面积是(ab﹣2b)平方米.故答案为:(ab﹣2b).16.解:当PQ⊥b时,根据垂线段最短,可以知道此时线段PQ最短, ∵直线a∥b,且a、b之间相距4cm,∴线段PQ的最小值是4cm,故答案为:4.17.解:由题意得:∠A′C′B′=60°,∠DEC′=45°,∴∠EDC'=180°﹣45°﹣60°=75°,故答案为:75.18.解:由题意,空白部分是矩形,长为,宽为,∴阴影部分的面积=ab×2﹣2×=,故答案为:.三.解答题(共6小题,满分46分)19.解:(1)如图,△A'B'C'即为所求;(2)根据平移的性质知,AA'∥CC',AA'=CC',线段AC扫过的图形为四边形CAA'C',∴四边形CAA'C'的面积为10,故答案为:AA'∥CC',AA'=CC',10.20.解:(1)如图1,△A′B′C′为所作;(2)如图2,△ABE为所作.21.解:(1)∵BC∥EF,∴∠ABC=∠E=55°,∵∠ACB=90°,∴∠A=90°﹣55°=35°;(2)由平移得,AD=BE=CF,∵AE=8cm,DB=2cm,∴AD=BE=×(8﹣2)=3(cm).22.解:(1)∵△ABC沿BC所在直线向右平移,所得图形对应为△DEF,∴∠B=∠DEF,AD∥BF,∵AD∥BF,∴∠DEF=∠ADE=60°,∴∠B=60°;(2)∵△ABC以0.2cm/s的速度沿BC所在直线向右平移,所得图形对应为△DEF,∴BE=0.2tcm,当E点在线段BC上,∵BE+CE=BC,∴0.2t+1=4,解得t=15,当E点在BC的延长线上时,∵BE=BC+CE,∴0.2t=4+1,解得t=25,,综上所述,当t=15或25时,EC=1cm.23.解:(1)OC∥AB,理由如下:∵BC∥OA,∴∠COA+∠C=180°,∵∠C=∠OAB,∴∠COA+∠OAB=180°,∴OC∥AB;(2)∵∠CFO=∠FOB+∠FBO,∠FOB=∠FBO=α,∴∠CFO=2α,∴∠COF=180°﹣2α﹣100°=80°﹣2α,∵OE平分∠COF,∴∠COE=∠COF=40°﹣α;(3)存在∠OEC=∠OBA,理由如下:∵∠COE=∠EOF=40°﹣α,∠FOB=∠FBO=α,∴∠EOB=40°,∵∠CEO=∠ABO,∴∠ABO=∠CEO=∠EOB+∠FBO=40°+α,∵AB∥OC,∴∠C+∠ABC=180°,∵∠C=100°,∴∠ABC=80°,∴40°+α+α=80°,∴α=20°.24.解:(1)①线段AB平移的距离是4;②四边形ABB'A'的面积=4×2=8;故答案为:4,8;(2)③如图所示,多边形ACBB'C'A'的面积=×+3×2=7,故答案为:7;(3)由题意可得:铺设小径后草坪(阴影部分)的面积=(a﹣m)•b=(ab﹣bm).答:铺设小径后草坪(阴影部分)的面积为(ab﹣bm)米2.故答案为:(ab﹣bm)米2.。
人教版七年级下册数学5.4平移课时练习题(含答案)一、单选题1.“水是生命之源,滋润着世间万物”国家节水标志由水滴,手掌和地球变形而成.寓意:像对待掌上明珠一样,珍惜每一滴水!以下通过平移节水标志得到的图形是()A.B.C.D.2.在下列现象中,属于平移的是()A.月亮绕地球运动B.翻开书中的每一页纸张C.教室可移动黑板的左右移动D.投掷出去的铅球3.下列几种运动中属于平移的有()①水平运输带上砖的运动;②笔直的铁路上行驶的动车(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.4种B.3种C.2种D.1种4.如图,在平面直角坐标系中,已知点A(2,1),B(3,-1),平移线段AB,使点B落在点B1(-1,-2)处,则点A的对应点A1的坐标为()A.(0,-2)B.(-2,0)C.(0,-4)D.(-4,0)5.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标()A.纵坐标不变,横坐标减2 B.纵坐标不变,横坐标先除以2,再均减2C.纵坐标不变,横坐标除以2 D.纵坐标不变,横坐标先减2,再均除以26.如图,ΔABC是直角三角形,它的直角边AB=6,BC=8,将ΔABC沿边BC的方向平移到ΔDEF 的位置,DE交AC于点G,BE=2,ΔCEG的面积为13.5,下列结论:①ΔABC平移的距离是4:②DG=1.5;③AD∥CF;④四边形ADFC的面积为6.其中正确的结论是()A.①②B.②③C.③④D.②④7.如图所示,将三角形ABC平移得到三角形EFG,则图中共有平行线(含虚线)()A.3对B.4对C.5对D.6对8.如图,△ABC沿直线BC向右平移得到△DEF,已知EC=2,BF=8,则CF的长为()A.3B.4C.5D.69.如图,将△ABC向右平移8个单位长度得到△DEF,且点B,E,C,F在同一条直线上,若EC=4,则BC的长度是()A.11B.12C.13D.1410.如图,在平面直角坐标系xOy中,将四边形ABCD先向上平移,再向左平移得到四边形A1B1C1D1,已知A1(−3,5),B1(−4,3),A(3,3),则点B坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)11.如图,在平面直角坐标系中,▱AOBC的顶点O与原点重合,顶点B在x轴正半轴上,顶点A 的坐标为(−1,2).按以下步骤作图:先以点O为圆心,适当长为半径作弧,分别交边OA,OB于点D,E;再分别以点D,E为圆心,大于12DE的长为半径作弧,两弧在∠AOB内交于点F,作射线OF交AC边于点G.则点G的坐标为()A.(3−√5,2)B.(√5,2)C.(√5−2,2)D.(√5−1,2) 12.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动;第一次将点A向左移动3个单位长度到达点A1,第二次将点A向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于17,那么n的最小值是()A.9B.10C.11D.12二、填空题13.如图,将△ABC沿直线BC方向平移3个单位得到△DEF,若BC=5,则BF=.14.如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为.15.在平面直角坐标系中,将点A(9,-7)向左平移2个单位长度,则平移后对应的点A‘的坐标是。
人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案)一、单选题1.将点(-3,4)向右平移3个单位、向下平移2个单位后的坐标为( ) A.(-6,0) B.(6,0) C.(0,-2) D.(0,2)【答案】D【解析】【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,即可求解.【详解】解:横坐标右移加,左移减;纵坐标上移加,下移减,将点A(-3,4)向右平移3个单位,再向下平移2个单位,得到的点A′的坐标是(0,2).故选:D.【点睛】本题主要考查了在平面直角坐标系中,图形的平移与图形上某点的平移相同,难度适中.2.在平面直角坐标系中,点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A.(﹣3,﹣1)B.(﹣3,7)C.(1,﹣1)D.(1,7)【答案】C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为(﹣1+2,3﹣4),即(1,﹣1),故选:C.【点睛】本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.3.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为( ) A.(6,3) B.(0,3) C.(6,﹣1) D.(0,﹣1)【答案】D【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】解:由题意A (1,3)的对应点的坐标为(-2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B (3,1)的对应点的坐标为(0,-1).故选:D .【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.4.抛物线23y x =先向下平移1个单位,再向左平移2个单位,所得的抛物线是( )A .23(2)1y x =+-.B .23(2)1y x =-+C .2(2)1y x =--D .23(2)1y x =++ 【答案】A【解析】【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将抛物线y=3x 2先向向下平移1个单位可得到抛物线y=3x 2-1;由“左加右减”的原则可知,将抛物线y=3x 2-1先向左平移2个单位可得到抛物线23(2)1y x =+-.故选A.本题考查二次函数图象与几何变换,解题的关键是掌握函数图象平移的法则“左加右减,上加下减”的原则.5.将点A(3, 1)向上平移2个单位得到点B , 点B 的坐标是( )A .(5,3)B .(1, 3)C .(3, 3)D .(5, 1)【答案】C【解析】【分析】根据点的平移规律,向上平移2个单位,将纵坐标加2即可.【详解】点A(3, 1)向上平移2个单位,纵坐标加2得(3, 3),故B 的坐标是(3, 3),选C.【点睛】本题考查点的平移,熟练掌握上下平移是改变纵坐标,左右平移改变横坐标是关键,与函数图像平移的“左加右减”要进行区分. 6.点()34--,先向上平移5个单位,再向右平移4个单位后的坐标为( )A .()20,B .()71-,C .()19-,D .()11, 【答案】D【解析】【分析】根据坐标系中点的平移规律,上下平移改变纵坐标,左右平移改变横坐标,即可解答.向上平移5个单位,纵坐标为-4+5=1,向右平移4个单位,横坐标为-3+4=1,所以平移后的坐标为()11,,故选D.【点睛】本题考查坐标系中点的平移,熟记平移规律是解题的关键.7.将△ABC向左平移2个单位长度后得到△A'B'C'.若点A的坐标是(-3,7),则点A'的坐标是( )A.(-5,5) B.(-1,9) C.(-5,7) D.(-1,7)【答案】C【解析】【分析】根据平移点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)求解.【详解】解:∵△ABC向左平移2个单位长度后得到△A′B′C′,∴点A(-3,7)向左平移2个单位长度后得到的点A′的坐标为(-5,7).故选:C.【点睛】本题考查了坐标与图形变化——平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.8.在平面直角坐标系中,将点(2,3)向右平移2个单位,所得到的点的坐标是()A.(2,5 )B.(4,3 )C.(0,3 )D.(2,1 )【答案】B【解析】【分析】把点(2,3)的横坐标加2,纵坐标不变得到(4,3),就是平移后的对应点的坐标.【详解】点(2,3)向右平移2个单位长度后得到的点的坐标为(4,3).故选B.【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键.9.在如图所示的网格中,有两个完全相同的直角三角形纸片,如果把其中一个三角形纸片先横向平移m格,再纵向平移n格,就能使它的一条边与另一个三角形纸片的一条边重合,拼接成一个四边形,那么m n 的结果()A.只有一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值【答案】B【解析】【分析】根据使一个三角形的一条边与另一个三角形的一条边重合,分情况讨论平移方式,然后分别求出m+n即可.【详解】解:①上边的三角形向右平移两个单位,向下平移三个单位,此时m+n=5;②上边的三角形向右平移两个单位,向下平移五个单位,此时m+n=7;③上边的三角形向左平移两个单位,向下平移三个单位,此时m+n=5;所以m n+的结果有两个不同的值,故选B.【点睛】本题考查图形的平移,根据题目要求判断出平移方式是解题关键.A B,其中点A,B的对应点分别10.如图,线段AB经过平移得到线段''A B 为点'A,'B,这四个点都在格点上.若线段AB上有一个点(),P a b,则点P在''上的对应点P'的坐标为()A .()2,3a b -+B .()2,3a b --C .()2,3a b ++D .()2,3a b ++ 【答案】A【解析】【分析】 先根据点A 到它的对应点'A 的平移规律即可得到线段AB 到线段''A B 的平移规律,从而得到点P 到对应点P' 的平移规律,即可得到P'的坐标【详解】解:∵点A (1,﹣1)到它的对应点'A (﹣1,2)的平移规律是:先向左平移2个单位,再向上平移3个单位,∴AB 到线段''A B 的平移规律是:先向左平移2个单位,再向上平移3个单位,∴点(),P a b 平移后对应点P'的坐标为:()2,3a b -+故选A.【点睛】此题考查的是坐标与图形的变化——平移:横坐标为左减右加,纵坐标为上加下减,掌握点的平移规律是解决此题的关键.。
第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移班级:姓名:知识点1用坐标表示点的平移1.将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)2.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,点B的坐标是()A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)3.点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P'的坐标是.4.将点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',则点A'的坐标是.5.将点A(1,-3)向右平移2个单位长度,再向下平移2个单位长度后得到点B(a,b),则ab=.6.(1)如图,将点A向右平移几个单位长度可得到点B()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度(2)将点A向下平移5个单位长度后,将重合于图中的()A.点CB.点FC.点DD.点E(3)将点A先向右平移3个单位长度,再向下平移5个单位长度,得到A',将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B',则A'与B'相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度(4)点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G',则G'的坐标为()A.(6,5)B.(4,5)C.(6,3)D.(4,3)7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)知识点2用坐标表示图形的平移8.将一个三角形的三个顶点的坐标分别向上平移1个单位长度,再向左平移4个单位长度所得点的坐标分别是(2,1),(-1,3),(4,-5),则平移前三个顶点的坐标分别是()A.(6,0),(3,2),(8,-6)B.(-1,-5),(2,-7),(3,-1)C.(1,5),(2,-7),(-3,1)D.(-1,5),(2,-7),(-3,1)9.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则点P平移后的坐标是()A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)10.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.如图,三角形OAB 的顶点B 的坐标为(4,0),把三角形OAB 沿x 轴向右平移得到三角形CDE.如果CB=1,那么OE 的长为.12.如图,A,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,A 1,B 1的坐标分别为(2,a),(b,3),则a+b=.13.如图,梯形A'B'C'D'可以由梯形ABCD 经过怎样的平移得到?对应点的坐标有什么变化?综合点学科内综合14.如图,点A,B 的坐标分别为(1,2),(4,0),将三角形AOB 沿x 轴向右平移,得到三角形CDE,已知DB=1,则点C 的坐标为.15.如图,三角形A'B'C'是由三角形ABC 平移后得到的,已知三角形ABC 中一点P(x 0,y 0)经平移后对应点为P'(x 0+5,y 0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A',B',C'的坐标;(2)试说明三角形A'B'C'是如何由三角形ABC平移得到的;(3)请直接写出三角形A'B'C'的面积为_____.拓展训练拓展点坐标中的规律探究16.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点D,点B 与点E,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M 的坐标(x,y),那么它的对应点N的坐标是什么?第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移答案与点拨1.A(点拨:点A'的横坐标为2-2=0,纵坐标为1,∴A'的坐标为(0,1).故选A.)2.B(点拨:∵A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,∴1+2=3,-2+3=1;点B的坐标是(1,3).故选B.)3.(-2,-2)(点拨:点(2,-3)向左平移4个单位长度,横坐标为:2-4=-2,向上平移1个单位长度,纵坐标为:-3+1=-2,∴点P'(-2,-2).)4.(-7,3)(点拨:点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',∴A'的坐标是(-3-4,-2+5),即(-7,3).)5.-15(点拨:将点A向右平移2个单位长度,纵坐标不变,横坐标增加2,此时点的坐标为(3,-3),再向下平移2个单位长度,横坐标不变,纵坐标减2,此时的坐标为(3,-5),即点B坐标为(3,-5),∴a=3,b=-5,∴ab=3×(-5)=-15.)6.(1)B(2)D(3)A(点拨:先分别找到A',B'的位置,再观察它们之间的距离.)(4)D7.D(点拨:逆向思考,把点(-3,2)先向右平移5个单位长度,再向下平移3个单位长度可得到A点坐标.)8.A(点拨:将平移后各点横坐标加4,纵坐标减1,可得到平移前的点的坐标分别是:(2+4,1-1),(-1+4,3-1),(4+4,-5-1),即(6,0),(3,2),(8,-6).)9.A(点拨:由图形知点P的坐标为P(-4,-1),由平移规律得平移后P点的坐标是(-4+2,-1-3)即(-2,-4).故选A.)10.(5,4)(点拨:左眼坐标由(-4,2)到(3,4)是向右平移7个单位长度,又向上平移2个单位长度,右眼由(-2,2)作同样的平移得坐标为(5,4).)11.7(点拨:因为三角形OAB的顶点B的坐标为(4,0),所以OB=4,所以OC=OB-CB=4-1=3,因此平移的距离为3.因为把三角形OAB沿x轴向右平移得到三角形CDE,所以CE=OB=4,所以OE=OC+CE=3+4=7.)12.2(点拨:∵A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),可知线段AB向右平移了1个单位长度,向上平移了1个单位长度,则a=0+1=1,b=0+1=1,则a+b=1+1=2.)13.可由ABCD向左平移7个单位长度,向上平移7个单位长度得到.各对应点的坐标横坐标减7,纵坐标加7.14.(4,2)(点拨:O与D是一对对应点,因此平移距离为OD=OB-DB=4-1=3,因此平行规律为向右平移3个单位长度,所以A(1,2)的对应点C的坐标为(4,2).)15.(1)A'(4,0),B'(1,3),C'(2,-2)(2)三角形ABC向右平移5个单位长度,再向下平移2个单位长度(或先下平移2个单位长度,再向右平移5个单位长度)即可得到三角形A'B'C'.(3)616.A(4,3),D(-4,-3),B(3,1),E(-3,-1),C(1,2),F(-1,-2);N(-x,-y)。
第七章 平面直角坐标系7.2.2 用坐标表示平移一、选择题1、如图,如果将三角形ABC 向左平移2格得到三角形A ′B ′C ′,则顶点A ′的位置用数对表示为( )A .(5,1)B .(1,1)C .(7,1)D .(3,3)2、如图,在平面直角坐标系中,三角形ABC 的顶点都在方格纸的格点上,如果将三角形ABC 先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A 1B 1C 1,那么点A 的对应点A 1的坐标为( )A .(4,3)B .(2,4)C .(3,1)D .(2,5)3、将△ABC 的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比( ) A.向右平移了3个单位 B. 向左平移了3个单位 C. 向上平移了3个单位 D. 向下平移了3个单位4、把点P 1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P 2处,则P 2的坐标是( )A.(5,-1)B.(-1,-5)C.(5,-5)D.(-1,-1) 5、在如图所示的单位正方形网格中,三角形ABC 经过平移后得到三角形A 1B 1C 1,已知在AC 上一点P(2.4,2)平移后的对应点为P 1,则P 1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1) 二、填空题6、线段CD 是由线段AB 平移得到的。
点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为7、如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 2016的坐标为 .8、在平面直角坐标系中,已知线段AB 的两个端点分别是A(4,-1)、B(1,1),将线段AB 平移后得到线段A′B′(点A’与点A 对应).若点A′的坐标为(-2,2),则点B′的坐标为__________.9、△ABC 的三个顶点A (1,2),B (-1,-2),C (-2,3)将其平移到点A ′(-1,-2)处,使A 与A ′重合,则B ′、C ′两点坐标分别为 , .10、点P (-5,1)沿x 轴正方向平移2个单位,在沿y 轴负方向平移4个单位所得的点的坐标为 。
七年级下5.4《平移》检测题一、选择题1、在以下现象中:①温度计中液面上升或下降,②用打气筒打气时活塞的移动,③钟摆的摆动,④传送带带着瓶装饮料的移动。
其中平移的有( )A 、①②④B 、①③C 、②③D 、②④ 2、如图所示ABC ∆平移到C B A '''∆, 则图中平行相等的线段有_____对( ) A 、3对 B 、4对 C 、5对 D 、6对3、在平移过程中,对应线段( )A 、互相平行且相等B 、互相垂直且相等C 、互相平行(或在同一条直线上)且相等D 、相交且相等 4、如图,ABC ∆平移后得到FDE ∆,则和BD 对应的线段是( ) A 、DC B 、DE C 、CE D 、以上都不对(4题图) (5题图)5、DEF ∆经过平移后得到ABC ∆,则C ∠的对应角和ED 的对应边分别是( ) A 、F ∠、AC B 、BOD ∠、BA C 、F ∠、BA D 、BOD ∠、AC 二、填空题1、平移后,对应线段________________________________,对应角__________2、如图DEF ∆,ABC ∆是沿BC 方向平移后的图形,试判断FCGD 四边形S 与GAB S E 四边形的面积关系是______________BAC C 'B 'A 'BECAFDAB EC FD OABG ECF D(2题图) (3题图)3、如图,直角ABO ∆的周长为100,在其内部有4个小直角三角形,则这4个小直角三角形周长之和为( )A 、90B 、100C 、110D 、1204、在长为a m ,宽为b m 的一块草坪上修了一条1m 宽的笔直小路,则余下草坪的面积可表示为__________m 2,现为增加美感,把这条小路改为竖直方向的宽恒为1m 的弯曲小路,则此时余下草坪的面积为__________ m 25、如图,平移ABC ∆可得到DEF ∆,若A ∠=50°,C ∠=60°,则E ∠=__________,EDF ∠=__________,F ∠=__________,DOB ∠=__________(4题图) (5题图) (6题图)6、如图,是一块钜形ABCD 的场地,长AB =101米,宽AD =52米,从A 、B 两处入口的中路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为__________米2 三、解答题1、如图,将Rt ABC ∆沿AB 方向平移AD 距离得到Rt DEF ∆,已知BE =5,EF =8,CG =3,求ADBEFC O图中阴影部分面积。
人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案)如图,平面直角坐标系中,A (﹣3,0)B (0,4)把△AOB 按如图标记的方式连续做旋转变换,这样得到的第2017个三角形中,O 点的对应点的坐标为_____.【答案】(8064,0)【解析】解:∵A (﹣3,0),B (0,4),∴OA =3,OB =4,由勾股定理得:AB =,∴△ABC 的周长=3+4+5=12.∵△OAB 每连续变换3次后与原来的状态一样,2017÷3=672…1,∴第2017个三角形的直角顶点是第673个循环组第一个三角形的直角顶点,∴三角形2017的直角顶点O 的横坐标=672×12=8064,∴三角形2017的直角顶点O 的坐标为(8064,0).故答案为:(8064,0).点睛:本题考查了坐标与图形变化﹣旋转,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.42.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.【答案】(2,0)【解析】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,0),P6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P2017与P1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.43.在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为_____.【答案】22016【解析】根据点A0的坐标为(1,0),可得OA=1.然后根据题意,将线段OA绕原点O沿逆时针方向旋转45°,可知360°÷45°=8,可得A1、A9、A17、···A2017都在第一象限,再根据OA1=2OA=2,∠A1OA=45°,可求得A1的纵坐标为同理可得,A 99;∴A201720172016故答案为:20162.44.点P(2,m )在x 轴上,则B (m -1,m+1)在第________________象限.【答案】二【解析】【分析】根据x 轴上的点的坐标特征可得m=0,然后把m 代入点B 的坐标中,即可确定出点B 的具体坐标,根据点B 的坐标即判断所在的象限.【详解】∵点P (2,m )在x 轴上,∴m=0,∵点B (m-1,m+1),∴B (-1,1),∴点B 在第二象限,故答案为:二.【点睛】本题考查了点的坐标特征,熟练掌握点的坐标特征是解题的关键.坐标轴上的点的特征:x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0;坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,各象限点的坐标的符号特征:一象限(+,+),二象限(-,+),三象限(-,-),四象限(+,-).45.已知线段MN 平行于x 轴,且MN 的长度为5,若()2,2M -,则点N的坐标______.【答案】()7,2-或()3,2--.【解析】【分析】根据“平行于x 轴的直线上的点的坐标的特征”结合已知条件分析解答即可.【详解】∵MN ∵x 轴,且M 的坐标为(2,-2),∵可设点N 的坐标为(a ,-2),又∵MN=5, ∵25a -=,∵25a -=或25a -=-,解得:7a =或3a =-,∵点N 的坐标为(7,-2)或(-3,-2).故答案为:(7,-2)或(-3,-2).【点睛】本题解题有以下两个要点:(1)平行于x 轴的直线上的点的纵坐标相等;(2)平行于x 轴的直线上两点间的距离等于这两个点的横坐标差的绝对值.46.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1),B (1,3),将线段AB 经过平移后得到线段A ′B ′,若点A 的对应点为A ′(3,2),则点B 的对应点B ′的坐标是___.【答案】(6,4)【解析】【分析】先求出点A 经过怎样的平移得到A ′,再将B 进行同样的平移即可.【详解】∵-2+5=3,1+1=2,∴A 点向右平移5个单位长度,向上平移1个单位长度,∴1+5=6,3+1=4,∴点B ′的坐标为(6,4).【点睛】此题主要考察线段的平移,根据对应点的平移分式相同是解题的关键.47.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么粒子运动到点(3,0)时经过了________秒,粒子运动60秒后的坐标为_________________.【答案】15 (7,3)【解析】分析:该题是点的坐标规律,通过对部分点分析,设粒子运动到12,,,n A A A ⋯时所用的间分别为12,,,n a a a ⋯, 12342,6,12,20,a a a a ==== 找出规律.详解:由题意,设粒子运动到12,,,n A A A ⋯时所用的间分别为12,,,n a a a ⋯,则12342,6,12,20,a a a a ====1122,a =⨯=2236,a =⨯=33412,a =⨯=44520,a =⨯= ,()1n a n n =+,第12秒的时候在()33,3,A 向下运动3秒,到点()3,0.即在第15秒的时候运动到点()3,0.77856,A =⨯=即粒子运动56秒后到点()77,7.A 然后粒子向下运动4秒后到点()7,3. 即粒子运动60秒后的坐标为()7,3.故答案为:()15,7,3.点睛:属于找规律题目,找出它们之间的规律是解题的关键.48.如图,在平面直角坐标系中,点A 的坐标为(﹣2,,以原点O为中心,将点A 顺时针旋转165°得到点A ′,则点A ′的坐标为___________.【答案】(【解析】作AB ⊥x 轴于点B ,∴AB=OB=2,则tan ∠AOB=AB BO == ∴∠AOB=60°,∴∠AOy=30°,∴将点A 顺时针旋转165°得到点A ′后,∠A ′OC=165°-30°-90°=45°,OA ′=OA=2OB=4,∴A ′C=OC=即A ′(−),故答案为:(.49.如图,在直角坐标系中,设一动点M 自P 0(1,0)处向上运动1个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…如此继续运动下去,设P n (x n ,y n ),n =1,2,3,…求x 1+x 2+…+x 99+x 100的值.【答案】50【解析】由题意可得:x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2;∴原式=2×(100÷4)=50.故答案为:50.50.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为_____.【答案】3【解析】【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=1BC=3,2于是得到AA′=3.【详解】∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=12BC=3,∴AA′=3.故答案是:3.点睛:考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.。
5.4 平移一.选择题(共8小题)1.下列现象中是平移的是()A.将一张纸沿它的中线折叠B.电梯的上下移动C.飞碟的快速转动D.翻开书中的每一页纸张2.在下图所示的四个三角形中,能由△ABC经过平移得到的是()A.B.C.D.3.下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤4.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格5.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.6.下列四组图形中,平移其中一个三角形可以得到另一个三角形的一组图形是()A.B.C.D.7.下列平移作图错误的是()A.B.C.D.8.下列平移作图不正确的是()A.B.C.D.二.填空题(共6小题)9.如图,将△ABC沿BC方向平移到△DEF,若A、D间的距离为1,CE=2,则BF=.10.如图,将周长为8的△ABC沿BC方向向右平移1.5个单位得到△DEF,则四边形ABFD的周长为.11.如图,△ABC平移后的图形是△A′B′C′,其中C与C′是对应点,请画出平移后的三角形△A′B′C′.(作图题)12.如图,在一块长为20m,为10m的长方形草地上,修建两条宽为2m的长方形小路,则这块草地的绿地面积(图中空白部分)为m213.如图,在△ABC中,∠B=90°,BC=5cm,AB=12cm,则图中4个小直角三角形周长的和为.14.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.三.解答题(共6小题)15.如图,将三角形ABC水平向右平移得到三角形DEF,A,D两点的距离为1,CE=2,∠A=70°.根据题意完成下列各题:(1)AC和DF的数量关系为;AC和DF的位置关系为;(2)∠1=度(3)BF=.16.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出∠ADB;若不存在,请说明理由.17.如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6cm,则BE=cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.18.如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(3,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移3个单位长度,再向上平移1个单位长度,画出平移后的△A1B1C1;(3)求△ABC的面积.19.如图,在正方形网格中有一个△ABC,按要求进行下列作图(只借助网格,需要写出结论).(1)过点B画出AC的平行线;(2)画出三角形ABC向右平移5格,在向上平移2格后的△DEF;(3)若每一个网格的单位长度为a,求三角形ABC的面积.20.如图,凯瑞酒店准备进行装修,把楼梯铺上地毯.已知楼梯的宽度是2米,楼梯的总长度为8米,总高度为6米,已知这种地毯每平方米的售价是60元.请你帮老板算下,购买地毯多少钱?参考答案一.选择题(共8小题)1.B.2.C.3.D.4.C.5.D.6.A.7.C.8.C.二.填空题(共6小题)9.BF=BE+EC+CF=4.10.11.11.作法:(1)连接CC′,过点C作A′C′∥AC,且相等,再过点A′,作A′B′∥AB且相等,连接A′、B′、C′,△A′B′C′就是所画的三角形.12.144.13.3014.(ab﹣a﹣2b+2).三.解答题(共6小题)15.解:(1)AC和DF的关系式为AC=DF,AC∥DF.(2)∵三角形ABC水平向右平移得到三角形DEF,∴AB∥DE,∵∠A=70°,∴∠1=110(度);(3)BF=BE+CE+CF=2+1+1=4.故答案为:AC=DF,AC∥DF;110;4;16.解:(1)直线AD与BC互相平行,理由:∵AB∥CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD∥BC;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=∠ABF+∠CBF=∠ABC=40°;(3)存在.设∠ABD=∠DBF=∠BDC=x°.∵AB∥CD,∴∠BEC=∠ABE=x°+40°;∵AB∥CD,∴∠ADC=180°﹣∠A=80°,∴∠ADB=80°﹣x°.若∠BEC=∠ADB,则x°+40°=80°﹣x°,得x°=20°.∴存在∠BEC=∠ADB=60°.17.解:(1)∵将△ABC沿直线AB向右平移得到△BDE,∴△ABC≌△BDE,∴BE=AC=6cm,故答案为:6;(2)由(1)知△ABC≌△BDE,∴∠DBE=∠CAB=50°、∠BDE=∠ABC=100°,∴∠CBE=180°﹣∠ABC﹣∠DBE=30°.18.解:(1)点A的坐标是:(4,﹣1),点B的坐标是:(5,3);故答案为:(4,﹣1),(5,3);(2)如图所示:△A1B1C1,即为所求;(3).19.解:(1)如图,直线BP为所作.(2)如图,△DEF为所作;(3)三角形ABC的面积=×3a×2a=3a2.20.解:如图,利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为8米,6米,即可得地毯的长度为6+8=14(米),地毯的面积为14×2=28(平方米),故买地毯至少需要28×60=1680(元).购买地毯需要1680元.。
人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案)一、单选题1.ABC 三个顶点的坐标分别为(2,1)A ,(4,3)B ,(0,2)C ,将ABC 平移到了A B C ''',其中(1,3)A '-,则C '点的坐标为( )A .(3,6)-B .(2,1)-C .()3,4-D .(2,5)【答案】C【解析】【分析】根据直角坐标系中,图形的平移和点的坐标的关系,即可得到答案.【详解】∵(2,1)A ,(1,3)A '-∴将ABC 向左平移3个单位,再向上平移2个单位,得到了A B C ''', ∵(0,2)C ,∴C '()3,4-,故选C .【点睛】本题主要考查直角坐标系中,图形的平移和点的坐标的关系,理解平移前后对应点坐标的变化规律,是解题的关键.2.在平面直角坐标系中,将一张透明纸片覆盖在直线31y x =-上,并在纸片上描出直线上一点A ,现将纸片沿x 轴正方向平移2个单位,要使点A 重新落在直线上,则可将纸片( )A .沿y 轴正方向平移2个单位B .沿y 轴负方向平移了2个单位C .沿y 轴正方向平移6个单位D .沿y 轴负方向平移了6个单位【答案】C【解析】【分析】根据平移规律:左加右减,上加下减,即可得解.【详解】由题意,得平移后的A 在直线()32137y x x =--=-,若要重新落在直线31y x =-上,则可将纸片沿y 轴正方向平移6个单位, 故选:C.【点睛】此题主要考查直线的平移规律,熟练掌握,即可解题.3.在平面直角坐标系内,将(5,2)M 先向上平移3个单位,再向左平移2个单位,则称动后的点的坐标是( )A .(2,0)B .(3,5)C .(8,4)D .(2,3) 【答案】B【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点(5,2)M∴先向上平移3个单位,再向左平移2个单位后得到的点的坐标是(5−2,2+3),即(3,5),故选:B .【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.4.点P (x,y )平移后得到点P ’(x+1,y-2);其平移的方式是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位;C .先向右平移1个单位,再向上平移2个单位D . 先向右平移1个单位,再向下平移2个单位【答案】D【解析】【分析】根据坐标轴中点平移遵循左减右加,上加下减,即可得出答案.【详解】解:点(,)P x y 平移后得到点(1,2)P x y '+-,遵循左减右加,上加下减, ∴先向右平移1个单位,再向下平移2个单位. 故答案为:D.【点睛】本题考查的是坐标轴中点平移的知识点,解题关键在于对点平移的理解:左减右加,上加下减.5.将平面直角坐标系中的点P (32)a b -+平移到点Q (a ,b )的位置,那么下列说法正确的是( )A .向左平移3个单位,再向上平移2个单位B .向下平移3个单位,再向左平移2个单位C .向右平移3个单位,再向下平移2个单位D .向下平移3个单位,再向右平移2个单位【答案】C【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:∵平面直角坐标系中的点P (32)a b -+平移到点(a ,b )的位置, ∴向右平移3个单位长度,再向下平移2个单位长度得到的,故选:C .【点睛】本题考查了坐标与图形变化的平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.点()2,3--向左平移3个单位后所得点的坐标为( )A .()2,0-B .()2,6--C .()5,3--D .()1,3-【答案】C【解析】【分析】根据“横坐标右移加,左移减”解答即可.【详解】点()2,3--向左平移3个单位后所得点的坐标为()5,3--.故选C.【点睛】本题考查了平面直角坐标系中图形的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.在平面直角坐标系中,将点P 先向左平移5个单位,再向上平移3个单位得到点()2,1,Q -则点P 的坐标是( )A .(32)-,B .()3,4C .()7,4-D .(72)--,【答案】A【解析】【分析】根据向左平移横坐标减,向上平移纵坐标加即可求解,注意始点和终点的区别.【详解】解:由题意可知点P 的坐标为()25,13-+-,即P ()3,2-;故选:A .【点睛】本题考查了平移,熟记平移中点的变化规律:横坐标右移加,坐移减;纵坐标上移加,下移减是解题的关键.8.点(5,6)Q 向左平移2个单位后的坐标是( )A .(5,4)B .(5,8)C .(7,6)D .(3,6)【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.【详解】∵点(5,6)Q 向左平移2个单位,∴平移后的横坐标为5-2=3,∴平移后的坐标为(3,6),故选D.【点睛】本题是对点平移的考查,熟练掌握点平移的规律是解决本题的关键.9.将点() 1,5P -向左平移 3个单位,再向上平移6个单位,得到点Q ,点Q 的坐标为( )A .()2,1-B .()4,1C .()4,11-D .()2,11--【答案】A【解析】【分析】在直角坐标系中,横坐标,右移加,左移减;纵坐标,上移加,下移减,据此求解即可.【详解】∵点()1,5P -向左平移 3个单位,再向上平移6个单位,得到点Q ∴点Q 的横坐标为1-3=-2,纵坐标为-5+6=1即Q 的坐标为()2,1-故选:A【点睛】本题考查坐标与图形变化—平移,横坐标,右移加,左移减;纵坐标,上移加,下移减.10.在平面直角坐标系中,将三角形各点的横坐标保持不变,纵坐标都减去2,则所得图形与原图形的关系是:将原图形( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减;【详解】解:纵坐标都减去2,即坐标系中的图形向下平移2个单位长度.【点睛】本题考查图形的平移问题,用到的知识点为:纵坐标改变,图形是上下平移,向下平移纵坐标减小,向上平移纵坐标增加,是中考常考的内容.。
1 / 3
人教版七年级数学下册平移检测题2 一﹨选择题
1﹨在以下现象中:①温度计中液面上升或下降,②用打气筒打气时活塞的移动,③钟摆的摆动,④传送带带着瓶装饮料的移动。
其中平移的有( )
A ﹨①②④
B ﹨①③
C ﹨②③
D ﹨②④
2﹨如图所示ABC ∆平移到C B A '''∆, 则图中平行相等的线段有_____对( )
A ﹨3对
B ﹨4对
C ﹨5对
D ﹨6对 3﹨在平移过程中,对应线段( ) A ﹨互相平行且相等 B ﹨互相垂直且相等 C ﹨互相平行(或在同一条直线上)且相等 D ﹨相交且相等 4﹨如图,ABC ∆平移后得到FD
E ∆,则和BD 对应的线段是( )
A ﹨DC
B ﹨DE
C ﹨CE
D ﹨以上都不对
(4题图) (5题图)
5﹨DEF ∆经过平移后得到ABC ∆,则C ∠的对应角和ED 的对应边分别是( ) A ﹨F ∠﹨AC B ﹨BOD ∠﹨BA C ﹨F ∠﹨BA D ﹨BOD ∠﹨AC
二﹨填空题
1﹨平移后,对应线段________________________________,对应角__________
2﹨如图DEF ∆,ABC ∆是沿BC 方向平移后的图形,试判断FCGD 四边形S 与GAB S E 四边形的面积关系是______________
(2题图) (3题图)
3﹨如图,直角ABO ∆的周长为100,在其内部有4个小直角三角形,则这4个小直角三角形周长之和为( )
A ﹨90
B ﹨100
C ﹨110
D ﹨120
4﹨在长为a m ,宽为b m 的一块草坪上修了一条1m 宽的笔直小路,则余下草坪的面积可表示为__________m 2,现为增加美感,把这条小路改为竖直方向的宽恒为1m 的弯曲小路,则
B A
C C 'B 'A 'B E C A F
D A B
E C F
D O A B G
E C
F D
2 / 3
此时余下草坪的面积为__________ m 2
5﹨如图,平移ABC ∆可得到DEF ∆,若A ∠=50°,C ∠=60°,则E ∠=__________,EDF ∠=__________,F ∠=__________,DOB ∠=__________
(4题图) (5题图) (6题图)
6﹨如图,是一块钜形ABCD 的场地,长AB =101米,宽AD =52米,从A ﹨B 两处入口的中路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为__________米2 三﹨解答题
1﹨如图,将Rt ABC ∆沿AB 方向平移AD 距离得到Rt DEF ∆,已知BE =5,EF =8,CG =3,求图中阴影部分面积。
2﹨某商场重新装修后,准备在大厅的主楼梯上铺设一种红色的地毯,已知地毯每平方米40元,主楼梯道的宽为3米,问买地毯至少需要多少元?
3﹨如图,若要在长32m ,宽20m 的长方形地面上修筑同样宽2米的两条道路,余下的部分修草坪,草坪的面积是多少?
4﹨如图,把直角梯形ABCD 沿BA 方向平移得到梯形A B C D '''',CD 与B C ''相交于点E ,BC =20cm ,EC =5cm ,E C '=4cm ,图中阴影部分的面积与哪个四边形的面积相等,并求出阴影部分的面积。
A D B E F C O
3 / 3
答案:
一.1.A 2.D 3.C 4.C 5.C
二.1.平行(或在同一条直线上)且相等,相等 2.相等 3.B 4.(ab-a ) (ab-a )
5.70º, 50º, 60º 60º
6.5000
三.解答题1.S 阴= S 梯形BGFE =2
1 (5+8)×5=2
65 2. 1008元
3. 540m 2
4. 90cm 2。