电磁场与电磁波课后习题及答案六章习题解答
- 格式:doc
- 大小:468.50 KB
- 文档页数:15
第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:⑴矢量A 的单位矢量A a ; ⑵矢量A 和B 的夹角AB θ; ⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B )·C ;⑸A ⨯(B ⨯C )和(A ⨯B )⨯C解:⑴A a =A A=149A++=(x a +2y a -3z a )/14⑵cos AB θ=A ·B /A BAB θ=135.5o⑶A ·B =-11, A ⨯B =-10x a -y a -4z a ⑷A ·(B ⨯C )=-42(A ⨯B )·C =-42⑸A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z -x)⑵验证散度定理。
第六章时变电磁场有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场之中,如题图所示。
滑片的位置由确定,轨道终端接有电阻,试求电流i.解穿过导体回路abcda的磁通为故感应电流为一根半径为a的长圆柱形介质棒放入均匀磁场中与z轴平行。
设棒以角速度绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解介质棒内距轴线距离为r处的感应电场为故介质棒内的极化强度为极化电荷体密度为极化电荷面密度为则介质体积内和表面上同单位长度的极化电荷分别为平行双线传输线与一矩形回路共面,如题图所示。
设、、,求回路中的感应电动势。
解由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
故回路中的感应电动势为式中故则有一个环形线圈,导线的长度为l,分别通过以直流电源供应电压U0和时变电源供应电压U(t)。
讨论这两种情况下导线内的电场强度E。
解设导线材料的电导率为,横截面积为S,则导线的电阻为而环形线圈的电感为L,故电压方程为当U=U0时,电流i也为直流,。
故此时导线内的切向电场为当U=U(t)时,,故即求解此微分方程就可得到。
一圆柱形电容器,内导体半径为a,外导体内半径为b,长为l。
设外加电压为,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。
解当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即故电容器两极板间的位移电流密度为则式中,是长为l的圆柱形电容器的电容。
流过电容器的传导电流为可见由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。
解点电荷q产生的电场满足麦克斯韦方程和由得据散度定理,上式即为利用球对称性,得故得点电荷的电场表示式由于,可取,则得即得泊松方程试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。
解(1)在直角坐标中(2)在圆柱坐标中(3)在球坐标系中已知在空气中,求和。
第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题 6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰g g B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()(P r r r a e r σεεωε==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m=、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
解 由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
第一章习题解答1.2给定三个矢量A ,B ,C :A =x a +2y a -3z aB = -4y a +z aC =5x a -2za 求:⑴矢量A 的单位矢量A a ;⑵矢量A 和B 的夹角AB;⑶A ·B 和A B⑷A ·(B C )和(A B )·C ;⑸A (BC )和(AB )C解:⑴A a =A A=149A =(x a +2y a -3z a )/14⑵cosAB=A ·B /A BAB=135.5o⑶A ·B =11, A B =10x a y a 4za ⑷A ·(BC )=42 (A B )·C =42 ⑸A(B C )=55x a 44ya 11za (AB )C =2xa 40y a +5za 1.3有一个二维矢量场F(r)=x a (y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(y)=dy/x,得2x +2y =c 1.6求数量场=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由=xa x+ya y+za z=12x 3yx a +182x 2y y a +ze z a 得=24x a +72y a +za 1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S:⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为A =x a 32x +y a (3y+z )+z a (3z x)⑵验证散度定理。
解:⑴?s d A =A dS ?曲+A d S ?xoz+A dS ?yoz +A dS ?上+A dS?下A d S ?曲=232(3cos3sin sin )z d d 曲=156.4A dS ?xoz=(3)yz dxdz xoz= 6A dS ?yoz=23x dydz yoz=0A dS ?上+A dS ?下=(6cos )d d 上+cos d d 下=272?s d A =193⑵dV A V?=(66)Vx dV =6(cos1)Vd d dz =193即:ss d A =dVA V?1.13 求矢量A =x a x+y a x 2y 沿圆周2x +2y =2a 的线积分,再求A 对此圆周所包围的表面积分,验证斯托克斯定理。
第6章 均匀平面波的反射与透射(一)思考题6.1 试述反射系数和透射系数的定义,它们之间存在什么关系?答:(1)反射波电场振幅E rm与入射波电场振幅E im的比值为分界上的反射系数;透射波电场振幅E tm与入射波电场振幅E im的比值为分界面上的透射系数。
(2)反射系数Γ和透射系数τ之间的关系为:6.2 什么是驻波?它与行波有何区别?答:频率和振幅均相同,振动方向一致,传播方向相反的两列波叠加后形成的波叫驻波。
行波在介质中传播时,其波等相面随时间前移,而驻波的波形不向前推进。
6.3 均匀平面波垂直入射到两种理想媒质分界面时,在什么情况下,反射系数大于0?在什么情况下,反射系数小于0?答:均匀平面波垂直入射到两种理想媒质分界时,当时,反射系数Γ>0;当时,反射系数Γ<0。
6.4 均匀平面波向理想导体表面垂直入射时,理想导体外面的合成波具有什么特点?答:均匀平面波向理想导体表面入射时,理想导体外面的合成波具有特点如下:合成波电场和磁场的驻波在时间上有的相移,在空间上也错开了且在导体边界上,电场为零。
驻波的坡印廷矢量的平均值为零,不发生电磁能量的传输过程,仅在两个波节之间进行电场能量和磁场能量的交换。
6.5 均匀平面波垂直入射到两种理想媒质分界面时,在什么情况下,分界面上的合成波电场为最大值?在什么情况下,分界面上的合成波电场为最小值?答:当均匀平面波垂直入射到两种理想媒质分界面时,的位置时,分界面上的合成波电场为最大值。
的位置时,分界面上的合成波电场为最小值。
6.6 一个右旋圆极化波垂直入射到两种媒质分界面上,其反射波是什么极化波?答:右旋圆极化。
6.7 试述驻波比的定义,它与反射系数之间有什么关系?答:驻波比的定义是合成波的电场强度的最大值与最小值之比,即6.8 什么是波阻抗?在什么情况下波阻抗等于媒质的本征阻抗?答:在空间任意点,均匀平面波的电场与磁场强度的模值之比称为自由空间的波阻抗,在均匀无耗各向同性的无界媒质中,均匀平面波的电场与磁场的模值之比称为媒质中的阻波抗。
6.2 自由空间中一均匀平面波的磁场强度为)cos()(0x wt H a a H z y π-+= m A /求:(1)波的传播方向;(2)波长和频率;(3)电场强度; (4)瞬时坡印廷矢量。
解:)cos()(0x wt H a a H z y π-+= m A /(1) 波沿+x 方向传播(2) 由题意得:k=π rad/m , 波长m k 22==πλ , 频率Hz c f 8105.1⨯==λ (3))cos(120)(0x wt H a a a H E z y x ππη--=⨯= m v /(4))(cos 24020x wt H a H E S x ππ-=⨯= 2/m w 6.3无耗媒质的相对介电常数4=r ε,相对磁导率1=r μ,一平面电磁波沿+z 方向传播,其电场强度的表达式为)106cos(80z t E a E y β-⨯=求:(1)电磁波的相速;(2)波阻抗和β;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。
解:(1)s m cv r r p /105.118⨯===εμμε(2))(6000Ω===πεεμμεμηrr , m r a d c w w r r /4===εμμεβ (3))4106cos(60180z t E a E a H x z -⨯-=⨯=πηm A / (4)π120]Re[2120*E a H E S z av =⨯= 2/m w6.4一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。
在x=0处,电场强度为m v t a E y /)10cos(1007π =,若海水的80=r ε,1=r μ,m s /4=γ。
求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度;(2)写出海水中的电场强度表达式;(3)电场强度的振幅衰减到表面值的1%时,波传播的距离;(4)当x=0.8m 时,电场和磁场得表达式;(5)如果电磁波的频率变为f=50kHz ,重复(3)的计算。
6-1.解:E矢量为y 方向,电磁波沿-z 方向传播,)2106cos(7.37)2(8222z t z E y πππ+⨯⨯-=∂∂)2106cos(7.37)106(82822z t tE y πππ+⨯⨯⨯-=∂∂又π2=k ,μεω22=k ,8106⨯=πω 2222222228222)106()2(tE t E k t E z E y y y y ∂∂=∂∂=∂∂⋅⨯=∂∂∴μεωππ )2106cos(7.378z t E y ππ+⨯=∴符合均匀平面波的一维波动方程,所以它属于均匀平面波。
6-2.解:;10328Hz f ⨯==πω π2=k ;m k 12==πλ;s m kv P /1038⨯==ω;m uE H 1.0/77.3/===εη 波沿-z 轴传播;由右手螺旋法则,H 在x 方向上振动。
6-3. 解: (1)Hz vf 881092.461.0103⨯=⨯==λ (2)91003.2/1⨯==f T s (3)3.1061.022===πλπk (4)12.2377/800/===ηE HA/m 方向为y aˆ 6-4.解:由E 和 H的关系可知:y m x m a az t H aaz t H H ˆ)sin(ˆ)sin(-+--=ωωy m x m a az t E aaz t E ˆ)sin(/ˆ)sin(/00-⋅+-⋅-=ωηωη H E S⨯=z m m z m m a az t E az t E aaz t E az t E ˆ)sin(/)sin(ˆ)sin(/)sin(00-⋅⋅-+-⋅⋅-=ωηωωηω z m a az t E ⋅-=022/)(sin 2ηω6-5 解:Hz U f 98000105.212.0103⨯=⨯==λ5001.050111===H E η 又rrrru u u επεεη120001==πε120500=rru(1)在均匀媒质中有:11v v P = rr u Cf ελ=1 2981108105.2103-⨯⨯⨯⨯==∴λεf C u r r (2)由式(1)、(2)得 99.1=r u 13.1=r ε6-6 解:m V a a aE z y x 310)ˆ2ˆˆ4(⨯+-=1)333310)ˆ78ˆ24ˆ33(3186********ˆˆˆ⨯++-=-⨯-⨯=⨯z y x z y x a a aaaaH E322231078243310)ˆ78ˆ24ˆ33(ˆ⨯++⨯++-=z y x a a aaz y x a a a ˆ89.0ˆ27.0ˆ37.0++= 2)3ˆˆˆ(42)10jkr x y z E aa a e -=-+⨯ˆˆˆ(6183)jkr x y z H aa a e -=+-*311ˆˆˆRe[](332478)1022av x y z S E H aa a =⨯=-++⨯3)HE ur r ==επη1201 5.2=∴r ε6-7解: 1)不失一般性,可假设两圆极化波左旋:)ˆˆ(101y x jkz a j ae E E +=-右旋:)ˆˆ(202y x jkz a j ae E E -=-合成波:21E E E+==y jkz x jkz a e j E E a e E E ˆ)(ˆ)(20102010---++ =y jkz jx jkzae e E E aeE E ˆ)(ˆ)(220102010---++πy x E E+=y x E E ≠ 2πϕϕ-=-y xx E 与y E 振幅不等,相位相差2π为一个椭圆极化波故椭圆极化波可分解为一个左旋圆极化波和一个右旋圆极化波。