《电磁场与电磁波》习题参考答案
- 格式:doc
- 大小:758.00 KB
- 文档页数:11
第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
第一章矢量分析第一章 题 解1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。
解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B ()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zyz yx z y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zyz y x z y xC C C A A A e e e e e e e e e C A x x x x x452102321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。
1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为,位置矢量B 与X 轴的夹角为,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅cos B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。
《电磁场与电磁波》知识点及参考答案第1章矢量分析 1、如果矢量场得散度处处为0,即,则矢量场就是无散场,由旋涡源所产生,通过任何闭 合曲面得通量等于0。
2、如果矢量场得旋度处处为0,即,则矢量场就是无旋场,由散度源所产生,沿任何闭合 路径得环流等于0。
3、矢量分析中得两个重要立理分别就是散度宦理(高斯理)打斯托克斯立理,它们得表达 式分别就是: 散度(高斯)定理:与 斯托克斯定理:。
4、在有限空间V 中,矢量场得性质由英散度、旋度匚V 边界上所满足得条件唯一得确定。
(V ) 5、描绘物理状态空间分布得标量函数与矢量函数,在时间为一迫值得情况下,它们就是唯一 得。
(J )标量场得梯度运算与矢量场得旋度运算都就是矢量。
C J ) 6、 7、 8、 9、 梯度得方向就是等值而得切线方向。
(X ) 标量场梯度得旋度恒等于0。
( J ) 习题 1、12, 1、16。
第2章 电磁场得基木规律 (电场部分) 静止电荷所产生得电场,称之为静虫场;电场强度得方向与正电荷在电场中受力得方向 相同。
2、 在国际单位制中,电场强度得单位就是V/m (伏特/米)。
3、 静电系统在真空中得基本方程得积分形式就是:与。
4、 静电系统在真空中得基本方程得微分形式就是:与。
5、 电荷之间得相互作用力就是通过虫场发生得,电流与电流之间得柑互作用力就是通过 磁场发生得。
6、在两种媒质分界而得两侧,电场得切向分量E “一囱=2;而磁场得法向分量B|n~B2n —Oa7、在介电常数为得均匀各向同性介质中,电位函数为,则电场强度8、静电平衡状态下,导体内部电场强度、磁场强度等于零•导体表面为等位面;在导体表而只有电场得法向分崑9、电荷只能在分子或原子范帀内作微小位移得物质称为(D )。
A、导体C、液体B、固体D.电介质10、柑同得场源条件下•真空中得电场强度就是电介质中得(C )倍。
As e o£C、 5 B、1/ £ 0 £ rD. 1/e r11、导体电容得大小(C )。
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
电磁场与电磁波课后习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂,BE t ∂∇⨯=-∂,0B ∇=,D ρ∇=2静电场的基本方程积分形式为:CE dl =⎰S D ds ρ=⎰3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H 4线性且各向同性媒质的本构关系方程是: 4.D E ε=,B H μ=,J E σ= 5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂6电位满足的泊松方程为2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界 。
12ϕϕ= 1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E 的单位是V/m ,电位移D的单位是C/m2 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A ,并令B A =∇⨯的依据是( 0B ∇= )2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。
8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。
第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。
解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H满足的方程为:。
2.设线性各向同性的均匀媒质中,02=∇φ称为方程。
3.时变电磁场中,数学表达式H E S ⨯=称为。
4.在理想导体的表面,的切向分量等于零。
5.矢量场)(r A穿过闭合曲面S 的通量的表达式为:。
6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。
8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。
二、简述题(每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题(每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz ey B ˆˆ2+-=是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量z y x e e eA ˆ3ˆˆ2-+=,z y x e e eB ˆˆ3ˆ5--=,求(1)B A+ (2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E eE --=004ˆ3ˆ(1) 试写出其时间表达式; (2)说明电磁波的传播方向;四、应用题(每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求 (1) 球内任一点的电场强度 (2)球外任一点的电位移矢量。
19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
电磁场与电磁波课后习题及答案14exeyez1,R23r3r22exey4ez8,R31r1r36exeyez3,由于R12R23411)21430,R 23R31214)61384,R31R12613)41136,故PP 2不是一直角三角形。
2)三角形的面积可以用矢量积求得:S12R12R23的模长,即S122411)214214613)411411613)21461332begin{n}1)三个顶点P、$P_2$(4,1,-3)和$P_3$(0,1,-2)的位置矢量分别为$r_1=e_y-e_z$,$r_2=e_x+4e_y-e_z$,$r_3=e_x+6e_y+2e_z$,则$R_{12}=r_2-r_1=4e_x+e_y+e_z$,$R_{23}=r_3-r_2=2e_x+e_y+4e_z$,$R_{31}=r_1-r_3=-6e_x+e_y-e_z$,由于$R_{12}\cdotR_{23}=(4+1+1)(2+1+4)=30$,$R_{23}\cdotR_{31}=(2+1+4)(6+1+3)=84$,$R_{31}\cdot R_{12}=(-6+1-3)(4+1+1)=-36$,故$\triangle PP_2P_3$不是一直角三角形。
2)三角形的面积可以用矢量积求得:$S=\frac{1}{2}|R_{12}\times R_{23}|$的模长,即$S=\frac{1}{2}\sqrt{(4+1+1)(2+1+4)(2+1+4)-(-6+1-3)(4+1+1)(4+1+1)-(-6+1-3)(2+1+4)(6+1+3)}=\frac{3\sqrt{2}}{2}$。
end{n}根据给定的矢量,计算得到:R_{12}=\sqrt{(e_x^4-e_z)(e_x^2+e_y+e_z/8)}$R_{23}=r_3-r_2=e_x^2+e_y+e_z/8-r_3$R_{31}=r_1-r_3=-e_x/6-e_y-e_z/7$由此可以得到,$\Delta P P$为一直角三角形,且$R_{12} \times R_{23}=17.13$。
习题1.1 已知z y x B z y x A ˆ2ˆˆ;ˆˆ3ˆ2-+=-+=,求:(a) A 和B 的大小(模); (b) A 和B 的单位矢量;(c)B A⋅;(d)B A⨯;(e)A 和B 之间的夹角;(f) A 在B 上的投影。
解:(a) A 和B 的大小74.314132222222==++=++==z y x A A A A A45.26211222222==++=++==z y x B B B B B(b) A 和B 的单位矢量z y x z y x A A aˆ267.0ˆ802.0ˆ535.0)ˆˆ3ˆ2(74.31ˆ-+=-+==z y x z y x B B bˆ816.0ˆ408.0ˆ408.0)ˆ2ˆˆ(45.21ˆ-+=-+==(c)A B ⋅7232=++=++=⋅z z y y x x B A B A B A B A(d) B A ⨯ z y x zyxB B B A A A z y xB A zyxz y xˆˆ3ˆ5211132ˆˆˆˆˆˆ-+-=--==⨯(e)A 和B 之间的夹角α根据αcos AB B A =⋅得764.0163.97cos ==⋅=AB B A α 019.40=α (f) A 在B 上的投影86.245.27ˆ==⋅=⋅B B A bA1.2如果矢量A 、B 和C 在同一平面,证明A ·(B ⨯C )=0。
证明:设矢量A 、B 和C 所在平面为xy 平面y A x A A y x ˆˆ+=y B xB B y x ˆˆ+=y C xC C y x ˆˆ+=z C B C B y C B C B x C B C B C C C B B B zy xC B x y y x z x x z y z z y zyxz y xˆ)(ˆ)(ˆ)(ˆˆˆ-+-+-==⨯zC B C B x y y x ˆ)(-= 0ˆˆ)(0)(=⋅-⨯=⨯⋅z zC B C B C B A x y y x1.3已知A =ααsin ˆcos ˆy x+、B ββsin ˆcos ˆy x -=和C ββsin ˆcos ˆy x +=,证明这三个矢量都是单位矢量,且三个矢量是共面的。
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题, 。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。
A.导体B.固体C.液体D.电介质10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。
A.ε0εrB. 1/ε0εrC. εrD. 1/εr11、导体电容的大小( C )。
A.与导体的电势有关B.与导体所带电荷有关C.与导体的电势无关D.与导体间电位差有关12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。
若空气中的静电场为128x z E e e =+,则电介质中的静电场为( B )。
222.6.24.28.x z x z x zA E e eB E e eC E e eD =+=+=+不能确定13、介电常数为ε的各向同性介质区域V 中,自由电荷的体密度为ρ,已知这些电荷产生的电场为E =E (x ,y ,z ),下面表达式中始终成立的是( C )。
.0./..,A D B E C D D B C ρερ∇⋅=∇⋅=∇⋅=同时选择14、在静电场中电力线不是闭合的曲线,所以在交变场中电力线也是非闭合的曲线。
(× ) 15、根据φ-∇=E ,Φ>0处,E<0; Φ<0处,E>0; Φ=0处,E=0。
( × )16、恒定电场中,电源内部存在库仑场E 和非库仑场E ‘,两者的作用方向总是相反。
(√ ) 17、电介质在静电场中发生极化后,在介质的表面必定会出现束缚电荷。
( √ )18、在理想导体与理想介质的分界面上,电场强度E的切向分量是不连续的。
( × )19、一个有两层介质(1ε,2ε)的平行板电容器,两种介质的电导率分别为1σ和2σ,电容器极板的面积为S ,如右图。
当外加压力为U 时,求: ⑴电容器的电场强度;⑵两种介质分界面上表面的自由电荷密度; ⑶电容器的漏电导;⑷当满足参数是1221σεσε=,问G/C=( C 为电容器电容)解: ⑴由11221n 2n E D E D ,J J U +==,得212112U E d d σσσ=+,122112UE d d σσσ=+⑵两介质分界面的法线由1指向2由2211s E E εερ-=,得s ρ=212112U d d εσσσ+122112Ud d εσσσ-+⑶由11IJ E Sσ==,知U 01I S σ=22112Ud d σσσ+G=I U =122112S d d σσσσ+⑷1D S Q C U U ===122112S d d εσσσ+ G/C=11σε(磁场部分)1、位移电流与传导电流不同,它与电荷运动无关,只要电场随时间变化,就会有位移电流;而且频率越高,位移电流密度越大。
2、法拉弟电磁感应定律的方程式为d E dtψ=-,当d ψ/dt>0时,其感应电流产生的磁场将阻止原磁场增加; 磁场强度的单位是A/m(安培/米)。
3、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
4、微分形式的安培环路定律表达式为H J ∇⨯=,其中的J ( A )。
A .是自由电流密度 B .是束缚电流密度C .是自由电流和束缚电流密度D .若在真空中则是自由电流密度;在介质中则为束缚电流密度 5、两个载流线圈之间存在互感,对互感没有影响的是( A )。
A .线圈上的电流 B .两个线圈的相对位置 C .线圈的尺寸 D .线圈所在空间的介质6、一导体回路位于与磁场力线垂直的平面内,欲使回路中产生感应电动势,应使( B )。
A.回路运动 B.磁场随时间变化C.磁场分布不均匀 D.同时选择A和B7、在两种媒质的分界面上,若分界面上存在传导电流,则边界条件为( B)。
A. H t不连续,B n不连续B. H t不连续,B n连续C. H t连续,B n不连续D. H t连续,B n连续8、磁感应强度在某磁媒质中比无界真空中小,称这种磁媒质是(B)。
A.顺磁物质B.逆磁物质C.永磁物质D.软磁物质9、相同尺寸和匝数的空心线圈的电感系数( C)铁心线圈的电感系数。
A.大于B.等于C.小于D.不确定于10、恒定电流场是一个无散度场。
(√)11、一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。
(√)12、静电场和恒定磁场都是矢量场,在本质上也是相同的。
(×)13、静电场是有源无旋场,恒定磁场是有旋无源场。
(√)14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。
(×)15、法拉第电磁感应定律tBE∂∂-=⨯∇反映了变化的磁场可以产生变化的电场。
(√)16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。
(×)17、圆形载流线圈在远处一点的磁场相当于一个磁偶极子的磁场。
(√)18、若半径为a、电流为I的无线长圆柱导体置于空气中,已知导体的磁导率为μ0,求导体内、外的磁场强度H和磁通密度B。
解:(1)导体内:0≤ρ<a由安培环路定理,⎰•ll dH='I'I=22.Iaπρπ=22Iaρ所以,21.22I H a ρπρ=,122I H a ρπ= ,122I H e a ϕρπ→→= , 011022I B H e a ϕμρμπ→→→==(2)导体外:a ≤ρ<+∞⎰•ll d H=I, 所以2.2H I πρ=,22IH e ϕπρ→→=,022I B e ϕμπρ→→=(麦克斯韦方程组部分)1、已知麦克斯韦第二方程为S d t B l d E S C⋅∂∂-=⋅⎰⎰,试说明其物理意义,并写出方程的微分形式。
答:其物理意义:随时间变化的磁场可以产生电场。
方程的微分形式:t B E ∂∂-=⨯∇ 2、简述恒定磁场的性质,并写出其两个基本方程。
答:恒定磁场是连续的场或无散场,即磁感应强度沿任一闭合曲面的积分等于零。
产生恒定磁场的源是矢量源。
两个基本方程:⎰=⋅SS d B 0Il d H C=⋅⎰3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:麦克斯韦方程组的微分形式:S d t D J l d H s l⋅⎪⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰⎰⎰⋅∂∂-=⋅l sS d t B l d E⎰=⋅SS d B 0 ⎰=⋅SqS d Dt ∂∇⨯=+∂D H J t ∂∇⨯-∂BE = 0∇=B ρ∇=D每个方程的物理意义:(a) 安培环路定理,其物理意义为分布电流和时变电场均为磁场的源。
(b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动磁生电。
(c) 磁场高斯定理,表明磁场的无散性和磁通连续性。
(d)高斯定理,表示电荷为激发电场的源。
本章习题: P84—88 、、、、.第3章 静态电磁场及边值问题的解法1、镜象法的理论依据是静电场的唯一性定理。
基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的感应电荷或极化电荷。
2、在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布( C )。
A .一定相同B .一定不相同C .不能断定相同或不相同 3、两相交并接地导体平板夹角为α,则两板之间区域的静电场( C )。
A .总可用镜象法求出。
B .不能用镜象法求出。
C .当/n απ= 且n 为正整数时,可以用镜象法求出。
D .当2/n απ= 且n 为正整数时,可以用镜象法求出。
4、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( D )。
A .镜像电荷是否对称 B .电位所满足的方程是否未改变 C .边界条件是否保持不变 D .同时选择B 和CorQ (1,π/6)Q 3Q 1Q 25、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法B.圆柱坐标中的分离变量法C.球坐标中的分离变量法D.有限差分法6、对于静电场问题,仅满足给定的泊松方程和边界条件,而形式上不同的两个解是不等价的。
( × )7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。
( √ ) 8、泊松方程和拉普拉斯方程都适用于有源区域。
( × )9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。
( √ )10、将一无穷大导体平板折成如图的90°角,一点电荷Q 位于图中(1, π/6)点处,求所有镜像电荷的大小和位置并在图中标出。
解:在如图的极坐标系中,三个镜像 电荷的大小和位置分别为: Q 1 = -Q ,位置:(1, 5π/6) Q 2 = Q ,位置:(1, -5π/6) Q 3 = -Q ,位置:(1, -π/6)11、将一无穷大导体平板折成90°角并接地,两点电荷Q 1=Q 2=5C 位于角平分线上距离顶点1m 和2m 处,现欲运用镜像法求两点电荷所在区域内的场。