线性代数 3-2 第3章2讲-向量组的线性关系(1)
- 格式:pptx
- 大小:762.84 KB
- 文档页数:18
【关键字】知识本章结构常用方法:1、矩阵化等价标准形,求出矩阵的秩,则标准形2、求矩阵的逆3、消元法求线性方程组的解增广矩阵行最简阶梯4、求矩阵的秩5、判断向量能否由向量组线性表示以为列向量的矩阵行最简阶梯6、求向量组的秩和一个极大无关组,并将其它向量用该极大无关组线性表示以为列向量的矩阵行最简阶梯7、用根底解系表示(非)齐次线性方程组的全部解增广矩阵行最简阶梯一、用消元法求解非齐次线性方程组1、,进而求出和2、观察和的关系:(1) ,方程组无解;(2) ,方程组有解:①、,方程组有唯一解;②、,方程组有无穷多个解.3、在有解的情况下,将阶梯形矩阵继续进行初等行变换,从最后一个非零首元开始将非零首元上面的元素消成零;4、写出相应的同解方程组,令自由未知量取任意常数,可得方程组的全部解。
定理3.1线性方程组有解,且当时方程组有唯一解;当,方程组有无穷多个解.二、用消元法求解齐次线性方程组:1、,进而求出;2、观察:(1) ,方程组有唯一解,即只有零解;(2) ,方程组有无穷多个解,即有非零解;3、在有解的情况下,将阶梯形矩阵继续进行初等行变换,从最后一个非零首元开始将非零首元上面的元素消成零;4、写出相应的同解方程组,令自由未知量取任意常数,可得方程组的全部解。
定理3.2齐次方程组有非零解推论当,即当方程个数小于未知元个数时,齐次线性方程组有非零解三、维向量的概念及线性运算(看作特殊的矩阵)书P121-123四、向量与向量组的线性组合(向量由向量组线性表示)对非齐次线性方程组,设,,则线性方程组可表示,从而.定义3.5 (P124)对于给定向量,如果存在一组数,使成立,则称向量是向量组的线性组合,或称向量可由向量组线性表示。
线性组合的判别定理设向量,向量,则五、向量组的线性相关性对齐次线性方程组,设,,则齐次线性方程组可表示为.它一定有零解,考虑其是否有非零解:定义3.7(P128)对于向量组,如果存在一组不全为零的数使成立,则称向量组线性相关;否则称向量组线性无关.注:(1)线性无关.(2)一个零向量线性相关;一个非零向量线性无关.(3)包含零向量的任何向量组都是线性相关的.(4)仅含两个向量的向量组线性相关的充分必要条件是这两个向量的分量对应成比例。
线性代数笔记第一章行列式 (1)第二章矩阵 (2)第三章向量空间 (8)For personal use only in study and research; not for commercial use第四章线性方程组 (11)第五章特征值与特征向量......................................................................... 错误!未定义书签。
第一章行列式1.3.1 行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。
性质1 转置的行列式与原行列式相等。
即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。
推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。
推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。
可以证明:任意一个奇数阶反对称行列式必为零。
性质3行列式的两行(列)互换,行列式的值改变符号。
以二阶为例推论3 若行列式某两行(列),完全相同,则行列式的值为零。
性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。
性质 5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,注意性质中是指某一行(列)而不是每一行。
性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。
范德蒙德行列式例10 范德蒙行列式…….=(x2-x1)(x3-x1)(x3-x2)1.4 克莱姆法则定理1.4.1 对于n阶行列式定理1.4.2 如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解:定理1.4.3 如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解。
推论如果齐次方程组有非零解,则必有系数行列式D=0。
大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变;转置行列式T D D = ②行列式中某两行列互换,行列式变号;推论:若行列式中某两行列对应元素相等,则行列式等于零; ③常数k 乘以行列式的某一行列,等于k 乘以此行列式; 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零; ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零; 克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,;;化为三角形行列式 ⑤上下三角形行列式:行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵 矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TT T B A B A +=+)( TTkA kA =)( TTTA B AB =)(反序定理 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的;矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵; 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==**4、1*-=A A A A 可逆5、1*-=n AA 6、()()A AA A1*11*==--A 可逆 7、()()**T TA A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组;希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P 向量组的秩:极大无关组定义P188定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出;秩:极大无关组中所含的向量个数;定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r;现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r T n T T<⇒)....(21ααα线性无关充要n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关;定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关;极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的; 不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的; 齐次线性方程组I 解的结构:解为...,21ααI 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数; 非齐次线性方程组II 解的结构:解为...,21μμ II 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解; 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解;第四章 向量空间向量的内积 实向量定义:α,β=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ; ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵; 2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量; |A|=n λλλ...**21注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值 则1-A --------λ1 则m A --------mλ 则kA --------λk若2A =A 则-----------λ=0或1 若2A =I 则-----------λ=-1或1 若k A =O 则----------λ=0 迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281 相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BPP =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212- --C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P 6、若A~B,则它们有相同的特征值; 特征值相同的矩阵不一定相似 7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩 例子:B AP P =-1则1100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1 A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ 注:三角形矩阵、数量矩阵I λ的特征值为主对角线;约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵;定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1;第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型; 标准型:形如 的二次型,称为标准型; 规范型:形如 的二次型,称为规范型; 线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B;合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
学习指南《线性代数》是理工科及经济管理各学科专业的一门重要数学基础课程。
它的课程目标是通过各个教学环节,充分利用数学软件工具,运用各种教学手段和方法,系统地向学生阐述矩阵、向量、线性方程组的基本理论与基本方法,使学生掌握线性代数的基本概念、基本原理与基本计算方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,培养学生逻辑思维能力、抽象思维能力、分析问题与解决问题的能力、运用计算机解决与线性代数相关的实际问题的能力,为学习后继课程的学习,从事工程技术、经济管理工作,科学研究以及开拓新技术领域打下坚实的基础 。
第一章 矩阵矩阵是研究线性方程组和其他相关问题的有力工具,也是线性代数的主要研究对象之一。
矩阵作为一种抽象数学结构的具体表现,其理论与方法在自然科学、工程技术、经济管理、社会领域都具有广泛的应用。
本章从实际问题出发,引出矩阵的概念,讨论矩阵的运算及其性质,逆矩阵及其求法,矩阵的分块,矩阵的初等变换与初等矩阵的概念与性质。
重点是矩阵的运算,特别是矩阵的乘法运算,逆矩阵及其性质,初等变换、初等矩阵的概念与性质,用初等变换化矩阵为阶梯形与最简形,用初等变换和定义法求逆矩阵的方法。
1. 矩阵是初学线性代数认识的第一个概念。
矩阵不仅是线性代数主要讨论的对象之一,而且是非常重要的数学工具,它的理论和方法贯穿于本课程始终。
本章的重点之一是矩阵的各种运算,其中又以矩阵的乘法最为重要,它也是难点之一。
两个矩阵的乘积是有条件的,不是任何两个矩阵都能相乘的。
AB 有意义,必须是A 的列数等于B 的行数,而积矩阵AB 的行数等于A 的行数,列数等于B 的列数。
积矩阵AB 的第i 行第j 列元素等于左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积之和。
读者务必掌握矩阵乘法的实质。
矩阵的乘法与数的乘法不同。
尤其要注意以下三点:(1)矩阵乘法不满足交换律。
当乘积AB 有意义时,BA 不一定有意义,即使BA 有意义,也不一定有AB BA =。
郑州航空工业管理学院毕业论文设计2011届数学与应用数学专业0711061 班题目向量组线性相关的几种证明方法姓名王守玉学号071106128 指导教师刘燕职称讲师2011 年 4 月19 日内容提要向量组的线性相关性在线性代数中是一块基石在它的基础上我们可以推导和衍生出其他许多理论.所以熟练地掌握向量组线性相关性的判定方法可以帮助我们更好的理解其他理论知识.本文从介绍向量组线性相关性的定义着手论述了若干种判定证明向量组线性相关的方法例如利用线性相关的定义、行列式的值、矩阵的秩、齐次线性方程组的解等知识运用于向量组的线性相关性的判定并比较了不同判定方法的适用条件及范围. 向量组线性相关性的证明理论作为数学知识中的基础理论在现实世界中有着深入的广泛应用.所以熟练地掌握向量组线性相关性的证明方法是很重要的. 关键词向量组线性相关行列式判定方法矩阵线性方程组等. Several Methods for Judging the Related Linearity of Vectors Group AuthorWang shou yu The guidance of teachersLiu yan Abstract The Related Linearity of Vectors Group in Linear Algebra is one cornstonethe basis of its derivation and derived from our many other theories.So skilled master linear vector to determine the relevance of the method helps us to better understand the other theories.This article from the Vector Groupintroduced the definition of a linear correlation to proceedand discussed a number of Vector Group to determine the method of linear correlation.For examplethe definition of the use of linear correlationthe value of the determinantrank of matrixhomogeneous solution of linear equations applied to vector groupssuch as knowledge of the linear correlation found.And compare different methods to determine the conditions and scope of the application. Vector Group to determine the linear correlation of theoretical knowledge as the basis of mathematical theoryin the real world with extensive use of depth.So it is very important to hold the methods for judging the related linearity of vectors group masterly. Key wordsVectors group Related dependence Determinant Judging method Matrix Solution of system of linear equations 目录第一章绪论……………………………………………………………1 第二章向量组线性相关性的定义及性质.…………………………2 第三章向量组线性相关性的证明方法…….……….………………6 3.1 利用定义法证明..………….……….…….……………….…6 3.2 利用向量组内向量之间的线性关系证明………….……………6 3.3 利用齐次线性方程组的解证明……………….………………7 3.4 利用矩阵的秩证明向量组线性相关性…………………………7 3.5 利用行列式的值来证明向量组线性相关性……………………9 3.6 方程组法………………………………………….…………11 3.7反正法…………………………………………….………12 第四章向量组线性相关的具体应用…………………………….……….13 结论与展望…………………………………………………..………16 致谢………………………………………………………………….…17 参考文献………………………………………………………………18 1 向量组线性相关的几种证明方法作者071106128 王守玉指导教师刘燕讲师第1章绪论线性相关性这个概念在数学专业许多课程中都有体现如解析几何、高等代数和常微分方程中等等.它是线性代数理论的基本概念它与向量空间包括基、微数、子空间等概念有密切关系同时在解析几何以及常微分方程中都有广泛的应用.因此掌握线性相关性这个概念有着非常重要的意义也是解决问题的重要的理论根据.向量组的线性相关与线性无关实际上可以推广到函数组的线性相关与线性无关. 在线性代数中向量组的线性相关性占到了举足轻重的作用.它可以将线性代数中的行列式、矩阵、二次型等知识联系在一起.若能熟练地掌握向量组的线性相关性则能更好的理解线性代数的各部分知识理清线性代数的框架做到融会贯通. 本文主要研究的是向量组线性相关性的判定方法从定义及性质下手熟悉了一些重要理论从而能在各领域中得到更好的运用.本文的第二章就是介绍了向量组线性相关的定义以及相关理论熟悉定义就能更清晰的掌握向量组线性相关性的本质.而本文的第三章主要给出了向量组线性相关的若干种判定方法比较了不同判定方法的优劣及适用范围并给出了一些详细证明附带了一些证明题和例题2 从而能更深刻地熟悉这些理论知识.第四章主要给出了向量组线性相关性的具体应用.而后面的就是结论与展望及一些参考文献还有一些附录关于引用的具体文献. 第2章向量组线性相关性的定义及性质定义2.1 给定向量组12:mAaaa如果存在不全为零的数12mkkk使1122mmkakaka0 则称向量组是线性相关的否则称它为线性无关. 注1说向量组12maaa线性相关通常是指2m的情形.但上述定义也适用于1m的情形.当1m时向量组只含有一个向量对于只含一个向量a的向量组当a0时是线性相关的当a0时是线性无关的.对于含2个向量12aa的向量组它线性相关的充分必要条件是12aa的分量对应成比例其几何意义是两向量共线.3个向量线性相关的几何意义是三向量共面. 注2向量组12:2mAaaam线性相关也就是在向量组A中至少有一个能由其他1m个向量线性表示.这是因为如果向量组A线性相关则有不全为0的数12mkkk使2-1式成立.因12mkkk不全为0不妨设10k于是便有12211mmakakak 即1a能由2maa线性表示. 如果向量组中有某个向量能由其余1m个向量线性表示不妨3 设ma能由11maa线性表示即有11m使112211mmmaaaa于是11111mmmaaa0 因为111m这m个数不全为0至少10所以向量组是线性相关的. 注3向量组的线性相关与线性无关的概念也可用于线性方程组.当方程组中有某个方程是其余方程的线性组合时这个方程就是多余的这时称方程组是线性相关的当方程组中没有多余方程就称该方程组线性无关. 向量组12:mAaaa构成矩阵12mAaaa向量组A 线性相关就是齐次线性方程组1122mmxaxaxa0即Ax0有非零解. 只有充分理解了向量组线性相关的定义我们才能找到不同的判定方法来判定某组向量是否是线性相关的并比较不同的判定方法的适用条件. 向量组线性相关的性质特征性质1向量组12:mAaaa线性相关的充要条件是向量组中至少有一个向量可以由其余1m个向量线性表示. 性质2对于各分量都给出的向量组12:mAaaa若以123mAaaaa为系数矩阵的齐次线性方程组Ax0有非零解向量则此向量组12:mAaaa是线性相关的.若以123mAaaaa为系数矩阵的齐次线性方程组Ax0只有零解向量则此向量组12:mAaaa 4 是线性无关的. 设向量组12:mAaaa是由m个n维列向量所组成的向量组则向量组的线性相关性可由向量组所构成的矩阵123mAaaaa的秩的大小来判定.即 1 当RAm时则向量组12:mAaaa是线性无关的. 2 当RAm时则向量组12:mAaaa是线性相关的. 这是经常用到的一种判定相关性的方法. 我们将向量12naaa几行排成矩阵12...TTTTnaaABa 为阶梯型矩阵则有定理2.1 向量组12naaa线性相关的充分必要条件是矩阵中出现零行. 证明阶梯型矩阵中出现零行矩阵TA的秩TRAnTRARAn齐次线性方程组1122nnaxaxax0有非零解向量组12naaa线性相关. 推论2.1 向量组12naaa线性无关的充分必要条件是矩阵B中不出现零行. 对矩阵TA进行初等行变换化为阶梯型矩阵B的过程其实就是对12naaa进行向量的线性运算.如果中出现零行则向量组12naaa中一定有某个向量能被其余的1n个向量线性表示从而知向量组12naaa 是线性相关的反之如果B中没有零行则向量组5 12naaa中没有任何一个向量能被其他的1n向量线性表示从而知12naaa是线性无关的. 推论2.2 如果向量组12naaa中含有零向量则向量组12naaa是线性相关的. 推论2.3 如果向量组12naaa中有个部分组12mkkkaaa其中1212iknimmn线性相关则向量组12naaa也一定线性相关. 性质3若向量组12:mAaaa是由m个n维列向量所组成的向量组且向量组A所构成的矩阵123mAaaaa即A为m阶方阵则1当0A时则向量组12:mAaaa是线性相关的. 2当0A时则向量组12:mAaaa是线性无关的. 若向量组12:mAaaa的个数m与维数n不同时则1当mn时则向量组12:mAaaa是线性相关的. 2当mn时转化为上述来进行判定即选取m个向量组成的m维向量组若此m维向量组是线性相关的则添加分量后得到的向量组也是线性相关的. 性质4对于各分量都给出的向量组12s线性相关的充要条件是以12s 的列向量为系数矩阵的齐次线性方程组有非零解若齐次线性方程组只有零解则向量组线性无关. 第三章向量组线性相关性的证明方法6 3.1 利用定义法证明这是证明向量组的线性相关性的基本方法.定义法既适用于分量没有具体给出的抽象向量组也适用于分量已经给出的具体向量组. 例3.1设112223334baabaabaa441baa证明向量组1234bbbb线性相关. 证明设存在4个数1234kkkk使得11223344kbkbkbkb0 将112223334441baabaabaabaa代入上式有112223334441kaakaakaakaa0 141122233344kkakkakkakka0取132411kkkk则有11223344kbkbkbkb0 由向量组线性相关的定义可知向量组1234bbbb线性相关. 3.2 利用向量组内向量之间的线性关系证明根据上一章讲到的性质1我们带入上一例题中比如取132411kkkk则1234bbbb即1b可由234bbb三个向量线性表示所以向量组1234bbbb线性相关.这种证明方法就是利用向量组内向量之间的线性关系进行证明的. 3.3 利用齐次线性方程组的解证明在应用定义法解一个齐次线性方程组需由该方程组是否有非零7 解来证明向量组的线性相关性.即应用定义法的同时就应用了齐次线性方程组的解进行了判定. 例3.2证明向量组1232105754137411aaa线性相关. 证明以123aaa为系数向量的齐次线性方程组是112233xaxaxa0即1231232312327305704405110xxxxxxxxxxx 利用矩阵的谐醯缺浠唤 匠套榈南凳 卣驛化为行阶梯型矩阵即1212122527315715727304404451115111rrrrrrA23324421171412415715715701717011 01104401100002424011000rrrrrrr 由行阶梯型矩阵可知23RA即齐次线性方程组有非零解所以向量组123aaa线性相关. 3.4 利用矩阵的秩证明向量组线性相关性上一章讲到的定理2.1和推论2.1推论2.2推论2.3充分的告诉了我们如何根据矩阵的秩证明向量组的线性相关性. 例3.3证明向量组123134752453246753aaa的线性无关. 证明将123aaa以行排成矩阵8 1231347513475245320231184675300001aAaa 矩阵A化为阶梯型矩阵后没有出现零行则123aaa中每个向量都不能被剩下的向量线性表示故由推论知向量组123aaa是线性无关的. 我们注意到定理中的矩阵TA 在初等行变换的过程中不论是否化成了阶梯型矩阵一旦出现零行就可以断定12naaa中必有一个向量能被其余剩下的n-1个向量线性表示从而知向量组12naaa线性相关. 例3.4证明向量组123413215224691127413595aaaa的线性相关. 证明将1234aaaa以行排成矩阵12341321513215224690408111274000001359513595aaAaa 所以矩阵A经过初等行变换后出现了零行则1234aaaa中必有一向量可以由其余的向量线性表示氏蛄孔?234aaaa是线性相关的. 例3.5设12311112313TTTaaat问当t为何值时向量组123aaa 线性相关并将3a表示为1a和2a的线性组合. 解利用矩阵的秩有123Aaaa11111111112301201213021005ttt 可见当5t时向量组123aaa线性相关并且有9 111101012012000000A所以3122aaa 利用矩阵的秩与利用齐次线性方程组的解进行判定的出发点不同但实质上是一样的都是要利用矩阵的初等行变换将相应的系数矩阵化简为行阶梯形矩阵从而求出向量组的秩即系数矩阵的秩然后再作出判定. 3.5 利用行列式的值来证明向量组线性相关性例3.6已知123111025247TTTaaa试讨论123aaa的线性相关性. 证明令123Aaaa则1021240157A所以123aaa线性相关. 行列式值的判定实质上是根据克莱姆法则判定以向量组作为系数向量的齐次线性方程组是否有非零解然后再对向量组的线性相关性作出判定所以能应用行列式值进行判定的向量组也可以应用矩阵的秩和齐次线性方程组是否有非零解的方法来进行判定. 例3.7已知向量组123:Aaaa是线性无关的且有112223331baabaabaa证明向量组123bbb线性无关. 证明一设有123xxx使得112233bxbxbx0即112223331xaaxaaxaa0整理为131122233xxaxxaxxa0 10 因为123aaa是线性无关的所以131223000xxxxxx由于此方程组的系数行列式10111020011故方程组只有零解1230xxx所以向量组123bbb线性无关. 证明二将已知的三个向量等式写成一个矩阵等式123123*********bbbaaa 记作BAK.设Bx0以BAK代入AKx0.因为矩阵A的列向量组线性无关所以可推知Kx0.又因为20K知方程Kx0只有零解0x所以矩阵B的列向量组123bbb线性无关. 证明三将已知条件可以写为123123*********bbbaaa 记做BAK因为0k所以k可逆由矩阵的秩的性质可知RARB且3RA由此3RB所以B的三个列向量线性无关. 例3.8已知3阶矩阵与三维列向量x满足323xxx且向量组2xxx线性无关. 1记2xxx求三阶矩阵使. 2求的值. 解1因为23223xxxxxxx 2000103011xxx然后可以得到000103011使得11 . 2因为得到了且2xxx而向量组2xxx是线性无关的.故P是可逆的.1所以10 3.6方程组法方程组法就是将向量组的线性相关性问题转化为齐次线性方程组的有无非零解的问题. 例3.11 证明向量组123211103202431的线性相关. 证明以123为系数的齐次线性方程组13123123132203402300kkkkkkkkkk 解得之1323kkkk即12311kkk是方程组的一组非零解故123线性相关. 例3.12 讨论12311112313t. 1 当t为何值时向量组123线性无关2 当t为何值时向量组123 线性相关3 当向量组123线性相关性将3表示为1和2的线性组合. 解设有实数123xxx使112233xxx0则得方程组123123123023030xxxxxxxxtx 其系数行列式111123513Dtt 1当5t时0D方程组只有零解1230xxx这时向量组123线性无关. 12 2当5t时0D方程组有非零解即存在不全为0的数123xxx使112233xxx0此时123线性相关. 3当5t时由111101123012135000有1323020xxxx 令31x得11x22x因此有12320从而3122. 3.7 反证法在有些题目中直接证明结论常常比较困难而从结论的反面入手却很容易推出一些与已知条件或已知的定义定理公理相悖的结果从而结论的反面不成立即结论成立.此方法是数学中常用的证明方法欲证命题真先假设命题假导出矛盾从而原命题得证. 例3.9设向量组12:mAaaa中任一向量ia不是它前面1i个向量的线性组合且0ia证明向量组12:mAaaa是线性无关的. 证明反证法假设向量组12:mAaaa线性相关则存在不全为零的m个数123mkkkk使得1122mmkakaka0 由此可知0mk否则由上式可得112121mmmmmmkkkaaaakkk 即ma可由它前面1m个向量线性表示这与题设矛盾因此0mk 112211mmkakaka0. 类似于上面的证明同理可得12320mmkkkk最后得到11ka0 因为ia0所以10k但这又与123mkkkk不全为0相矛盾. 因此向量组12:mAaaa是线性无关的. 13 第四章向量组线性相关的具体应用曲面造型是CAD/CAM、CG、计算机动画、计算机仿真、计算机可视化等众多领域的一项重要内容主要研究在计算机图像系统环境下对曲面的表示、设计、显示和分析.经过30多年的发展它已形成了以有理B样条曲面参数化特征设计和隐式代数曲面表示这两类方法为主体以插值、拟合、逼近这三种手段为骨架的几何理论体系. 在80年代后期参数曲面是CAD/CAM 曲面的主要表示方法尤其形成了NURBS 理论使它成为工业产品几何形状定义的唯一数学描述方法.但随着计算机设计的几何对象不断朝着多样化、特殊化、拓扑结构复杂化方向的发展参数曲面的局限性也越来越明显. 通常用参数曲面构造复杂拓扑结构的物体表面时需要对曲面片进行剪裁或直接在非规则的四边形网格上构造曲面片无论哪种情况都要考虑片与片之间的光滑拼接这是很困难的.对于影视动画领域的活动模型需要采用更加简便的方法来构造任意拓扑结构曲面. 细分方法正是在这种情况下迅速发展起来其基本思想是采用一定的细分规则在给定的初始网格中渐进地插入新的顶点从而不断细化出新的网格.重复运用细分规则在极限时该网格收敛于一个光滑曲面.细分曲面就是由初始控制网格按照一定的细分规则反复迭代而得到的极限曲面它具有以下优点适应任意拓扑结构、仿射不变、算法简洁通用高效、应用规模可大可小. 正是由于细分曲面有着传统参数曲面所不具备的优点现已广泛14 应用于计算机辅助几何设计、计算机动画造型及商业造型软件等领域.Loop细分网格具有局部性质.。
第3章n维向量和线性方程组向量是线性代数的重点内容之一,也是难点,对逻辑推理有较高的要求。
本章从研究向量的线性关系(线性组合、线性相关与线性无关)出发,然后讨论向量组含最多的线性无关向量的个数,即引出向量组的秩和最大无关组,最后,应用向量空间的理论研究线性方程组的解的结构。
无论是证明、判断、还是计算,关键在于深刻理解本章的基本概念,搞清楚其相互关系,并会灵活应用。
3. 1 n维向量及其运算定义(n维向量)由数域F中的n个数a-i,a2/ , a n组成的有序数组-■ - ( a i, a2, , a n)a2耳一称为数域F上的一个n维向量,前者称为行向量,后者称为列向量,其中a1, a2 / ,a n称为向量的分量(或坐标)。
分量是实(复)数的向量称为实(复)向量。
如果没有特殊的声明,以下所讨论指数域F上的向量。
行向量可以看成行矩阵,列向量看成列矩阵,向量的运算规定按矩阵的运算法则进行。
以下讨论的向量,再没有指明是行向量还是列向量时,都当作列向量。
设有向量■■ = (a i,a2,…,a n),- - (b1 ,b2 / , b n )则向量相等的定义为- a i = b i (i=1,2,…,n)向量的加法定义为a + P =(a i +b i a? +b2 …a* +b n T数乘向量的定义为k:(「k)二(ka i,ka2, ,ka n)T向量的加法以及数乘运算统称为向量的线性运算,它满足下列8条运算规律(其中:■,'-,为n维向量,k,l为常数):(1)二:+:= :+=;)( :• - ) ( - );(3)存在零向量0= ( 0,0,…,0 ) T,使得〉+0= ;(4)存在:-的负向量-二=(_a i,_a2,…,-a n)T,使得〉+ (-二)=0;(5)仁• = :•;(6)k(l : )=(kl):-;(7)k(: + 1 )=k +k :;(8)(k+l)用=k : +1 :;如果记矩阵A = (a j )m n的第j列向量为:a i ja2jQ j = : , (j=1,2,…,n)貝一则由向量的线性运算,可将方程组Ax=b写成下列形式:论一:* - X2J2…'x n J n二 b而齐次线性方程组A X=0则可写成向量形式:Xv 1 ■ X2: 2 …• X n: n = 03. 2向量组的线性相关性定义(线性组合)设宀,:^,…,〉m是一组n维向量,k1, k2/ ,k m是一组常数,则称向量kr 1 k2: 2 k m: m为向量〉1,〉2,i,〉m的一个线性组合,并称k1,k2 / , k m为该线性组合的系数。