向量组的线性相关性
- 格式:ppt
- 大小:946.50 KB
- 文档页数:31
向量组线性相关性
向量组线性相关性是指向量组之间的关系,它可以用来度量两个
或多个随机向量之间的相似程度。
它是将某种矩阵投射到更高维空间
中进行分析所必需的一种工具。
对于定量分析,它是一种快速而有效
的方法,可以帮助研究人员快速识别观察值之间的特征,如:相关性、回归和分类等。
此外,线性相关性也与潜在因素有关。
线性相关性可用于发现隐
藏的潜在变量,同时,当没有显式的潜在变量可以使用时,它也可以
用作预测。
例如,如果一个研究者想要预测一组观察值的趋势或变化,他/她可以使用线性相关性来找出隐藏的关系,从而建立一个有效的模
型来描述观察值之间的关系。
由于它可以用于识别数据之间的关系,因此,线性相关性在机器
学习任务中也是一种有用的工具,它可以帮助研究人员构建有效的模型,并用于预测新的数据。
例如,在机器学习领域中,线性回归就是
一种线性相关性模型,可以用于分析和预测数据集中观察值之间的关系。
因此,线性相关性是一个非常有用的工具,可用于大量因素和研
究设计中,从而帮助研究人员发现观察值之间的关系,有助于他们建
立有效的模型,并可以用于预测分析和推断。
第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。
§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。
向量组的线性相关性1.1向量组的线性相关性的概念与判定1.1.1向量组的线性相关性概念定义1: 给定向量组12(,,)m A ααα=⋅⋅⋅,如果存在不全为零的数 12,,,m k k k ⋅⋅⋅,使11220m m k k k ααα++⋅⋅⋅+=则称向量组A 是线性相关的, 否则称它是线性无关的.定义2:若向量组A 中每一个向量(1,2,,)i i t α= 都可由向量组{}1,,s B ββ= 线性表示,则称A 可由B 线性表示。
若两个向量组可互相线性表示,则称这两个向量组等价.性质:向量组的等价具有1)反射性;2)对称性;3)传递性.定义3: 向量组{}s αα,,1 称为线性无关,若它不线性相关,或:由11220s s k k k ααα+++= ,则必021====s k k k 。
即:11220s s x x x ααα+++= 只有唯一零解.定义6:一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且从这向量组中任意添一个向量(如果还有的话).所得的部分向量组都线性相关.定义7:一个向量组的极大线性无关组所含向量个数称为这个向量组的秩数.性质:1.向量组{}r αα,,1 线性无关⇔{}r αα,,1 秩r =. 向量组{}r αα,,1 线性相关⇔{}r αα,,1 秩r <. 2.等价向量组的秩数相同.n P 中向量组的极大线性无关组的求法. 注意1: 对于任一向量组而言, 不是线性无关的就是线性相关的. 注意2: 若12,,m ααα⋅⋅⋅线性无关, 则只有当120m λλλ==== 时, 才有11220m m λαλαλα++⋅⋅⋅+=成立.注意3: 向量组只包含一个向量α 时,若0α=则说α线性相关; 若0α≠, 则说α 线性无关.注意4: 包含零向量的任何向量组是线性相关的.注意5: 对于含有两个向量的向量组, 它线性相关的充要条件是两向量的分量对应成比例, 几何意义是两向量共线; 三个向量线性相关的几何意义是三向量共面.1.1.2线性相关性的判定向量组12,,m ααα⋅⋅⋅ (当m 2≥时)线性相关的充分必要条件是12,,m ααα⋅⋅⋅中至少有一个向量可由其余1m -个向量线性表示.证明: 充分性. 设12,,m ααα⋅⋅⋅中有一个向量(比如m α)能由其余向量线性表示,即有112211m m m αλαλαλα--=++⋅⋅⋅+也就是112211(1)0m m m λαλαλαα--++⋅⋅⋅++-=因121,,,m λλλ-⋅⋅⋅,(-1)这m 个数不全为0,故12,,m ααα⋅⋅⋅线性相关.必要性. 设12,,m ααα⋅⋅⋅线性相关. 则有不全为0的数12,,,m k k k ⋅⋅⋅,使11220m m k k k ααα++⋅⋅⋅+=不妨设10k ≠, 则有32123111()()().m m k k k k k k αααα=-+-++- 即1α能由其余向量线性表示. 证毕1.2 向量组线性相关性的性质和应用1.2.1向量组线性相关性的性质:1.含零向量的向量组必线性相关,即{}s ααθ,,,1 线性相关.θααθ=⋅++⋅+⋅s 00112.一个向量组若有部分向量线性相关,则此向量组线性相关。