第4章热力学一般关系式1要点
- 格式:ppt
- 大小:516.00 KB
- 文档页数:26
第1章第零定律与物态方程一、基本要点公式及其适用条件1.系统的状态和状态函数及其性质系统的状态—就是系统物理性质和化学性质的综合表现,它采用系统的宏观性质来描述系统的状态,系统的宏观性质,也称为系统的"状态函数"。
系统的宏观性质(状态函数)—就是由大量(摩尔级)的分子、原子、离子等微观粒子组成的宏观集合体所表现出的集团行为,简称"热力学性质"或“热力学函数”如p、V、T、U、H、S、A、G 等。
Z=f(x,y)表示一定量、组成不变的均相系统,其任意宏观性质(Z)是另两个独立宏观性质(x,y)的函数。
状态函数Z具有五个数学特征:(1),状态函数改变量只决定于始终态,与变化过程途径无关。
(2),状态函数循环积分为零,这是判断Z是否状态函数的准则之一。
(3),系Z的全微分表达式(4),系Z的Euler 规则,即微分次序不影响微分结果。
(5),系Z、x、y满足循环式,亦称循环规则。
2.热力学第零定律即热平衡定律:当两个物态A和B分别与第三个物体C处于热平衡,则A和B之间也必定彼此处于热平衡。
T =t+273.15,T是理想气体绝对温标,以"K"为单位。
t是理想气体摄氏温标,以"℃"为单位。
绝对温标与摄氏温标在每一度大小是一样的,只是绝对温标的零度取在摄氏温标的-273.15℃处,可以看出,有了绝对温标的概念后,只需确定一个固定参考点(pV)0p=0,依国际计量大会决定,这个参考点选取在纯水三相点,并人为规定其温度正好等于273.16K。
3.理想气态方程及其衍生式为:;式中p、V、T、n单位分别为Pa、m3、K、mol;R=8.314J〃mol-1〃K-1,V m为气体摩尔体积,单位为m3〃mol-1,ρ 为密度单位kg〃m-3,M 为分子量。
此式适用于理想气或近似地适用于低压气。
4.理想混合气基本公式(1)平均摩尔质量;式中M B和y B分别为混合气中任一组份B 的摩尔质量与摩尔分数。
第一章概念1.系统:孤立系统、闭系、开系与其他物体既没有物质交换也没有能量交换的系统称为孤立系;与外界没有物质交换,但有能量交换的系统称为闭系;与外界既有物质交换,又有能量交换的系统称为开系;2.平衡态平衡态的特点:1.系统的各种宏观性质都不随时间变化;2。
热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态.3.准静态过程和非准静态过程准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。
非准静态过程,系统的平衡态受到破坏4.内能、焓和熵内能是状态函数.当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关;表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。
这是态函数焓的重要特性克劳修斯引进态函数熵.定义:5.热容量:等容热容量和等压热容量及比值定容热容量:定压热容量:6.循环过程和卡诺循环循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。
系统经历一个循环后,其内能不变。
理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。
7.可逆过程和不可逆过程不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。
可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状.8.自由能:F和G定义态函数:自由能F,F=U-TS定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1定律及推论1.热力学第零定律-温标如果物体A和物体B各自与外在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡.三要素:(1)选择测温质;(2)选取固定点;(3)测温质的性质与温度的关系。
物理化学---知识点总结《物理化学学习要点》热⼒学第⼀定律⼀、本章框架⼆、本章要求1、了解热⼒学基本概念:系统、环境、功、热、平衡状态、状态函数、可逆过程等;2、明确热⼒学第⼀定律和热⼒学能的概念;3、明确焓、标准摩尔反应焓、标准摩尔⽣成焓和燃烧焓的定义;4、熟练掌握在理想⽓体单纯pVT 变化、相变化及化学变化过程中计算热、功、△U 、△H 的原理和⽅法;三、考核要求:1.热⼒学概论1.1 热⼒学的⽬的、内容和⽅法(了解) 1.2 热⼒学的⼀些基本概念1.2.1 体系与环境,体系的性质(理解)温过程压过程容过程 pVT都变化过程热过程逆相变过程可逆相变过程准摩尔反应焓准摩尔燃烧焓准摩尔⽣成焓等温反应流膨胀1.2.2 热⼒学平衡态和状态函数(理解)2.热⼒学第⼀定律2.1 热和功(掌握)2.2 热⼒学能(掌握)2.3 热⼒学第⼀定律的表述与数学表达式(应⽤)3.体积功与可逆过程3.1 等温过程的体积功(应⽤)3.2 可逆过程与最⼤功(理解)4.焓与热容4.1 焓的定义(了解)4.2 焓变与等压热的关系(应⽤)4.3 等压热容和等容热容(理解)5.热⼒学第⼀定律对理想⽓体的应⽤5.1 理想⽓体的热⼒学能和焓(掌握)5.2 理想⽓体的C p与C v之差(理解)5.3 理想⽓体的绝热过程(掌握)6.热⼒学第⼀定律对实际⽓体的应⽤6.1 节流膨胀与焦⽿-汤姆逊效应(了解)7.热⼒学第⼀定律对相变过程的应⽤(掌握)8.化学热⼒学8.1 化学反应热效应8.1.1 等压热效应与等容热效应(掌握)8.1.2 反应进度(了解)8.2 赫斯定律与常温下反应热效应的计算8.2.1 赫斯定律(应⽤)8.2.2 标准摩尔⽣成焓与标准摩尔燃烧焓(掌握)8.3 标准反应焓变与温度的关系—基尔霍夫定律(应⽤)四、重要概念1、系统与环境;2、隔离系统、封闭系统、敞开系统;注意:隔离系统Q=0,W=03、⼴度性质(加和性:V ,U ,H ,S ,A ,G )强度性质(物质的量,T ,p ); 4、功W 和热Q ;注意W 与Q 的符号;W 与Q 均为途径函数(⾮状态函数) 5、热⼒学能; 6、焓; 7、热容;8、状态与状态函数; 9、平衡态; 10、可逆过程;11、节流过程; 12、真空膨胀过程; 13、标准态;14、标准摩尔反应焓,标准摩尔⽣成焓,标准摩尔燃烧焓五、重要公式与适⽤条件1. 体积功:W = -p 外dV (封闭系统,计算体积功)2. 热⼒学第⼀定律:? U = Q +W , d U =Q +W (封闭系统) 3.焓的定义: H =U + pV4.热容:定容摩尔热容 C V ,m =Q V /dT =(? U m /? T )V 定压摩尔热容 C p ,m = Q p /dT =(? H m /? T )P 理想⽓体:C p ,m - C V ,m =R ;凝聚态:C p ,m - C V ,m ≈0理想单原⼦⽓体C V ,m =3R /2,C p ,m = C V ,m +R =5R /2 5. 标准摩尔反应焓:由标准摩尔⽣成焓?f H B (T )或标准摩尔燃烧焓?c H B (T )计算 ? r H m = ∑ v B ? f H B (T )= -∑ v B ? c H B (T )6. 基希霍夫公式(适⽤于相变和化学反应过程)r H m(T 2)= ? r H m(T 1)+21T r pm T C dT7. 等压摩尔反应热与等容摩尔反应热的关系式Q p -Q V = ? r H m (T )-? r U m (T )=∑ v B (g )RT 8. 理想⽓体的可逆绝热过程⽅程:γγ2211V P V P = 122111--=γγV T V T γγγγ/)1(22/)1(11-=-P T P Tγ=Cvm Cpm /六、各种过程Q 、W 、? U 、? H 的计算1、理想⽓体:等温过程dT =0, ? U =? H =0, Q =W ;⾮等温过程,? U = n C V ,m ? T , ? H = n C p ,m ? T ,单原⼦⽓体C V ,m =3R /2,C p ,m = C V ,m +R = 5R /2 2、对于凝聚相,状态函数通常近似认为与温度有关,⽽与压⼒或体积⽆关,即 ? U ≈? H = n C p ,m ? T3.等压过程:p 外=p =常数,⾮体积功为零W '=0 (1) W = -p 外(V 2-V 1), ? H = Q p =dTnC T Tm p ?2,, ? U =? H -?(pV ),Q =? U -W(2)真空膨胀过程p 外=0,W =0,Q =? U理想⽓体结果:d T =0,W =0,Q =? U =0,? H =0 (3)等外压过程:W = -p 外(V 2-V 1) 4. 等容过程:d V =0 W =0,Q V =? U =dTnC T Tm v ?2,, ? H =? U +V ? p5.绝热过程:Q =0 (1)绝热可逆过程 W =dVp T T ?2= ? U =dTnC T Tm v ?2,,? H =? U +? pV理想⽓体:γγ2211V P V P = 122111--=γγV T V T γγγγ/)1(22/)1(11-=-P T P T(2)绝热⼀般过程:由⽅程WdVp T T外2= ? U = dTnC T Tm v ?2, 建⽴⽅程求解。