高考数学二项式定理总结
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
高中数学二项式定理知识点总结(精选4篇)高中数学二项式定理知识点总结(精选4篇)每个人都可以通过不断学习、积累知识来提高自己的竞争力和创造力。
拥有广博的知识储备可以为人生带来更多的选择和机会。
下面就让小编给大家带来高中数学二项式定理知识点总结,希望大家喜欢!高中数学二项式定理知识点总结篇1空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
高中数学二项式定理知识点总结篇21、求函数的单调性:利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
二项式定理重点、难点解析:1.熟练掌握二项式定理和通项公式,掌握杨辉三角的结构规律:二项式定理:*222110,)(N n b C b a C b a C b aC a C b a nn nrrn r nn nn nnnn∈+⋅⋅⋅++⋅⋅⋅+++=+---,),,2,1,0(n r C r n⋅⋅⋅=叫二项式系数(0≤r≤n ).通项用1+r T 表示,为展开式的第r+1项,且1+r T =rrn r nb aC -, 注意项的系数和二项式系数的区别.2.掌握二项式系数的两条性质和几个常用的组合恒等式. ①②),,2,1,0(n r Cr n⋅⋅⋅=先增后减.n 为偶数时,中间一项的二项式系数最大,为2nn C ;n 为奇数时,中间两项的二项式系数相等且最大,为.③nn rn nnnnC C C C C +⋅⋅⋅++⋅⋅⋅+++=+210)11(.即各二项式系数的和为n2.131202-=⋅⋅⋅++=⋅⋅⋅++n nn n n C C C C 3.二项式从左到右使用为展开,从右到左使用为化简,从而可用来求和或证明.掌握“赋值法”这种利用恒等式解决问题的思想.一、求二项式展开式中指定项在二项展开式中,有时存在一些特殊的项,如常数项、有理项、整式项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式1r T +,然后依据条件先确定r 的值,进而求出指定的项。
1. 求常数项例1 (2006山东卷)已知(x x 12-)n的展开式中第三项与第五项的系数之比为143,则展开式中常数项是()(A )-1(B)1(C)-45(D)452. 求有理项例2 已知*41(),2n x n N x+∈的展开式中,前三项系数成等差数列,求展开式中所有的有理项。
3. 求幂指数为整数的项求幂指数为整数的项例3(2006年湖北卷)在2431()xx-的展开式中,x的幂的指数是整数的项共有(的幂的指数是整数的项共有( )A.3项B.4项C.5项D.6项4. 求系数最大的项求系数最大的项例4 已知*41(),2nx n Nx+∈的展开式中,只有第五项的二项式系数最大,求该展开式中系数最大的项。
二项式定理知识点总结1.二项式定理公式:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数rnC (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
用1r n r r r n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()n b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r rn n n n nn n x C C x C x C x C xn N*+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r rnnn n n nnnx C C x C x C x C x n N *-=-+-+++-∈ 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0,n n n C C =·1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnnn n n nn C C C C C ++++++=,变形式1221rnn nn n n C C C C +++++=-。
高中二项式定理知识点高中二项式定理知识点一、二项式定理的基本概念二项式定理是代数学中的一个重要定理,它描述了如何展开一个二项式的幂。
一个二项式指的是两个数之和或之差的表达式,如(a+b)^n就是一个二项式。
而二项式定理则给出了展开这样一个二项式的公式。
二、二项式定理的表达形式二项式定理有两种常见的表达形式:一是通用形式,即(a+b)^n;另一种是简化形式,即展开后的结果。
1. 通用形式通用形式表示了一个任意次数幂的二项式。
它可以写成:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + ... +C(n,k)a^(n-k) b^k + ... + C(n,n)a^0 b^n其中C(n,k)表示从n个元素中选取k个元素组成组合数。
2. 简化形式简化形式表示了展开后的结果,它可以写成:(a+b)^n = a^n + n a^(n-1) b^1 + C(n,2)a^(n-2) b^2 + ... + n a b^(n-1) + b^n三、应用举例1. 平方展开当幂指数为2时,即(a+b)^2,根据二项式定理,可以展开为:(a+b)^2 = a^2 + 2ab + b^2这个结果可以通过直接相乘验证。
2. 立方展开当幂指数为3时,即(a+b)^3,根据二项式定理,可以展开为:(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3同样地,这个结果也可以通过直接相乘验证。
四、二项式系数的性质1. 对称性质在二项式定理中,对称性质是指系数C(n,k)满足C(n,k) = C(n,n-k),即从n个元素中选取k个元素的组合数等于从n个元素中选取n-k个元素的组合数。
这是因为在展开二项式时,每一项的幂指数和次数之和都是相等的。
2. 杨辉三角形杨辉三角形是一个由二项式系数构成的三角形。
它的第n行第k列的元素就是C(n,k)。
杨辉三角形具有很多有趣的性质和应用,在组合学、概率论等领域有广泛应用。
高中数学二项式定理知识点总结一、二项式定理的概念和公式二项式定理是指两个数的整数次幂之和在展开时,任意一个数都可以拆开成两个数相乘的形式。
根据二项式定理,可以得到以下的公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³对于一般情况下的二项式展开,可以根据组合数的知识得出下列公式:(a+b)ⁿ = C(n,0) * aⁿ+ C(n,1) * aⁿ⁻¹b + C(n,2) * aⁿ⁻²b² + ... + C(n,n) * bⁿ其中,C(n,m)表示从n个元素中取m个元素的组合数。
二、二项式定理的应用1. 计算二项式的展开式利用二项式定理,可以将任意形式的二项式展开成为多项式,从而方便进行计算。
例如,对于 (x+2)³的展开式,根据二项式定理可以得到:(x+2)³ = x³ + 3x²*2 + 3x*2² + 2³= x³ + 6x² + 12x + 82. 求解组合数在概率论、统计学等领域中,经常需要计算组合数。
而组合数实际上就是二项式展开中的系数。
因此,通过二项式定理可以方便地求解组合数。
3. 计算二项式的特定项有时候并不需要将整个二项式展开,只需求解其中的某一项。
例如,对于(x+2)⁵ 的展开式,如果只需要求解其中x⁴ 的系数,可以直接利用二项式定理计算得出,而无需展开整个式子。
4. 解决数学问题在数学建模、求解等问题中,二项式定理也可以被广泛应用。
通过利用二项式定理,可以简化问题的表达和计算,从而更加方便地求解问题。
二项式定理知识点总结一、概念:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n其中,C(n,k)表示组合数,即从n个元素中取出k个元素的组合方式数。
二、证明:可以用排列组合的方法证明二项式定理。
考虑对(a+b)^n展开式中每一项的系数,将(a+b)^n表示为n个相加的项,每一项由a和b组成。
可以把这n个项分成若干组,每组的项数k从0到n,且对于固定的k有k个a和n-k个b。
根据组合数的定义,对于每组项数k,其系数为C(n,k),因此可以得到二项式定理。
三、应用:1.计算组合数:二项式定理可以用来计算组合数。
当a=b=1时,二项式展开后的每一项系数即为对应的组合数。
例如,(1+1)^n=2^n,系数为1,n,n(n-1)/2,n(n-1)(n-2)/6,...,依次为组合数C(n,0),C(n,1),C(n,2),...2. 多项式展开:利用二项式定理,可以方便地展开多项式。
例如,(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^33.计算幂数:二项式定理可以用于计算幂,即对于任意整数m,可以使用二项式定理计算(a+b)^m的展开式,将其中的每一项进行计算,得到每一项的幂数。
4.计算二项式系数:二项式定理可以用来计算二项式系数,即对于给定的a,b和n,可以通过二项式定理展开式中的各项系数得到相应的二项式系数。
五、推广:1.负指数:二项式定理不仅适用于非负整数n,也适用于负指数n,即(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n。
这样可以扩展二项式定理的应用范围。
2. 多变量二项式定理:二项式定理不仅限于两个变量a和b,可以推广到多变量的情况。
完整版)二项式定理知识点及典型题型总结二项式定理一、基本知识点1、二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +。
+ C(n,n)b^n (n∈N*)2、几个基本概念1)二项展开式:右边的多项式叫做(a+b)^n的二项展开式2)项数:二项展开式中共有n+1项3)二项式系数:C(n,r) = n!/r!(n-r)!4)通项:展开式的第r+1项,即T(r+1) = C(n,r) * a^(n-r) * b^r3、展开式的特点1)系数都是组合数,依次为C(n,1)。
C(n,2)。
…。
C(n,n)2)指数的特点①a的指数由n到0(降幂)。
②b的指数由0到n(升幂)。
XXX和b的指数和为n。
3)展开式是一个恒等式,a,b可取任意的复数,n为任意的自然数。
4、二项式系数的性质:1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.2)增减性与最值: 二项式系数先增后减且在中间取得最大值当n是偶数时,中间一项取得最大值C(n,n/2)当n是奇数时,中间两项相等且同时取得最大值C(n,(n-1)/2)C(n-1.m) = C(n。
m) + C(n。
m-1)C(n,0) + C(n,1) +。
+ C(n,n) = 2^n3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即 C(n,0) - C(n,2) + C(n,4) -。
= 2^(n-1)二项式定理的常见题型一、求二项展开式1.“(a+b)^n”型的展开式例1.求(3x+2y)^42.“(a-b)^n”型的展开式例2.求(3x-2y)^43.二项式展开式的“逆用”例3.计算1-3C(n,1) + 9C(n,2) - 27C(n,3) +。
+(-1)^n*3nC(n,n)二、通项公式的应用1.确定二项式中的有关元素例4.已知((-ax)/(9x^2+1))^9的展开式中x^3的系数为9,常数a的值为1/32.确定二项展开式的常数项例5.(x-3/x)^10展开式中的常数项是2433.求单一二项式指定幂的系数例6.(x^2-3y)^6中x^3y^3的系数为-540三、求几个二项式的和(积)的展开式中的条件项的系数例7.(x-1)^-1(x-1)^2(x-1)^3(x-1)^4(x-1)^5的展开式中,x^2的系数等于-101.展开式中,求(x-2)(x^2+1)^7展开式中x^3的系数。
高中数学知识点总结---二项式定理5篇第一篇:高中数学知识点总结---二项式定理高中数学知识点总结---二项式定理0n01n-1rn-rrn0n1.⑴二项式定理:(a+b)n=Cnab+Cnab+Λ+Cnab+Λ+Cnab.展开式具有以下特点:① 项数:共有n+1项;012rn② 系数:依次为组合数Cn,Cn,Cn,Λ,Cn,Λ,Cn;③ 每一项的次数是一样的,即为n次,展开式依a的降幕排列,b的升幕排列展开.⑵二项展开式的通项.(a+b)n展开式中的第r+1项为:Trn-rrbr+1=Cna(0≤r≤n,r∈Z).⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大......I.当n是偶数时,中间项是第n2n+1项,它的二项式系数C2n最大;II.当n是奇数时,中间项为两项,即第最大.③系数和:Cn+Cn+Λ+Cn=2C024n+Cn+Cn+01nn13n+Cn+n+12项和第n+12n-1n+12n+1项,它们的二项式系数C2n=CΛ=CΛ=2n-1 附:一般来说(ax+by)n(a,b为常数)在求系数最大的项或最小的项时均可直接根据性质二求...........⎧Ak≥Ak+1,⎩Ak≥Ak-1⎧Ak≤Ak+1或⎨(Ak为TA≤Ak-1⎩k解.当a≠1或b≠1时,一般采用解不等式组⎨的绝对值)的办法来求解.k+1的系数或系数⑷如何来求(a+b+c)n展开式中含apbqcr的系数呢?其中(a+b+c)=[(a+b)+c]n-rnnp,q,r∈N,且p+q+r=n把rn-rr(a+b)C,另一方面在视为二项式,先找出含有Cr的项Cn(a+b)中含有bq的项为pqrCn-raqn-r-qb=Cn-rabqqpq,故在(a+b+c)n中含apbqcr的项为(n-r)!n!r!q!p!pqrn-pCrCnCn-rabc.其系数为CnCn-r=rqrqn!r!(n-r)!q!(n-r-q)!⋅==CnC.2.近似计算的处理方法.当a 的绝对值与1相比很小且n不大时,常用近似公式(1+a)n≈1+na,因为这时展开式的后面部分Cn2a2+Cn3a3+Λ+Cnnan很小,可以忽略不计。
高中数学二项式定理知识点总结一、二项式定理的定义二项式定理是代数学中的一个重要定理,它描述了一个二项式的整数次幂可以被展开为一系列项的和。
这个定理可以表示为:\( (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)其中,\( a \) 和 \( b \) 是任意实数或复数,\( n \) 是非负整数,\( \binom{n}{k} \) 是组合数,表示从 \( n \) 个不同元素中取出\( k \) 个元素的组合数。
二、组合数的计算组合数 \( \binom{n}{k} \) 可以通过以下公式计算:\( \binom{n}{k} = \frac{n!}{k!(n-k)!} \)其中,\( n! \) 表示 \( n \) 的阶乘,即 \( n \) 乘以所有小于\( n \) 的正整数的乘积。
三、二项式展开式的通项公式二项式定理中的第 \( k+1 \) 项(从 0 开始计数)可以表示为:\( T_{k+1} = \binom{n}{k} a^{n-k} b^k \)这个公式用于直接计算二项式展开式中的特定项。
四、二项式定理的性质1. 二项式定理适用于所有实数和复数的二项式。
2. 当 \( a = b = 1 \) 时,二项式定理可以用来计算 \( 2^n \)。
3. 二项式定理中的项数总是等于指数 \( n+1 \)。
4. 当 \( n \) 为奇数时,展开式中的中间项的系数是最大的。
五、二项式定理的应用1. 计算概率论中的概率组合问题。
2. 解决物理学中的组合问题,如碰撞问题。
3. 在代数中,用于简化多项式的乘法和开方运算。
4. 在几何学中,用于计算多边形的对称性质。
六、特殊情形1. 当 \( n = 0 \) 时,二项式定理简化为 \( (a + b)^0 = 1 \)。
2. 当 \( a = 1 \) 时,二项式定理可以用来计算 \( (1 + b)^n \)的值。
二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。
具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。
+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。
右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。
二项式定理的理解:1)二项展开式有n+1项。
2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。
3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。
通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。
+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。
二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。
具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。
通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。
它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。
三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。
二项式定理知识点归纳总结一、二项式定理公式。
1. 二项式定理。
- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中n∈ N^*。
- 这里C_n^k=(n!)/(k!(n - k)!),叫做二项式系数。
例如(a + b)^2=a^2 +2ab+b^2,这里n = 2,当k = 0时,C_2^0a^2-0b^0=a^2;当k = 1时,C_2^1a^2 -1b^1=2ab;当k = 2时,C_2^2a^2-2b^2=b^2。
2. 二项展开式的通项公式。
- 二项式(a + b)^n展开式的第k + 1项T_k+1=C_n^ka^n - kb^k(k = 0,1,·s,n)。
例如在(x+2)^5中,其通项公式为T_k + 1=C_5^kx^5 - k2^k。
当k = 2时,T_3=C_5^2x^5-22^2=10× x^3×4 = 40x^3。
二、二项式系数的性质。
1. 对称性。
- 与首末两端“等距离”的两个二项式系数相等,即C_n^k=C_n^n - k。
例如在(a + b)^6中,C_6^2=(6!)/(2!(6 - 2)!)=(6×5)/(2×1)=15,C_6^4=(6!)/(4!(6 -4)!)=(6×5)/(2×1)=15,所以C_6^2 = C_6^4。
2. 增减性与最大值。
- 当n是偶数时,中间一项(第(n)/(2)+1项)的二项式系数C_n^(n)/(2)取得最大值;当n是奇数时,中间两项(第(n + 1)/(2)项和第(n+3)/(2)项)的二项式系数C_n^(n - 1)/(2)=C_n^(n+1)/(2)相等且取得最大值。
- 二项式系数先增大后减小,其增减性由frac{C_n^k}{C_n^k - 1}=(n - k+1)/(k)来判断。
当(n - k + 1)/(k)>1,即k<(n + 1)/(2)时,二项式系数逐渐增大;当(n -k+1)/(k)<1,即k>(n + 1)/(2)时,二项式系数逐渐减小。
高考数学二项式定理总结佚名【考纲要求】1.能用计数原理证明二项式定理;2.把握二项展开式系数的性质及运算的问题;3.会用二项式定明白得决与二项展开式有关的简单问题.【知识网络】【考点梳理】要点一、二项式定理公式叫做二项式定理。
其中叫做二项式系数。
叫做二项展开式的通项,它表示第项。
其中:①公式右边的多项式叫做的二项展开式;②展开式中各项的系数叫做二项式系数;③式中的第r+1项叫做二项展开式的通项,用表示;二项展开式的通项公式为.要点诠释:二项展开式的通项公式集中表达了二项展开式中的指数、项数、系数的变化,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数以及数、式的整除等方面有着广泛的应用。
使用时要注意:(1)通项公式表示的是第“r+1”项,而不是第“r”项;(2)通项公式中a和b的位置不能颠倒;(3)展开式中第r+1项的二项式系数与第r+1项的系数,在一样情形下是不相同的,在具体求各项的系数时,一样先处理符号,对根式和指数的运算要细心以防出差错;(4)在通项公式中共含有a,b,n,r,这5个元素,在有关二项式定理的问题中,常常会遇到:明白5个元素中的若干个(或它们之间的关系),求另外几个元素的问题。
这类问题一样是利用通项公式,把问题归结为解方程(组)或不等式(组),那个地点要注意n为正整数,r为非负数,且r≤n。
要点二、二项展开式的特性①项数:有n+1项;②次数:每一项的次数差不多上n次,即二项展开式为齐次式;③各项组成:从左到右,字母a降幂排列,从n到0;字母b升幂排列,从0到n;④系数:依次为.“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
二项式定理一、二项式定理:()nn n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做()n b a +的二项展开式,其中各项的系数kn C )3,2,1,0(n k ⋅⋅⋅=叫做二项式系数。
对二项式定理的理解: (1)二项展开式有1+n 项(2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。
在定理中假设x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n )(4)要注意二项式定理的双向功能:一方面可将二项式()nb a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()nb a +二、二项展开式的通项:kk n k nk b a C T -+=1 二项展开式的通项kk n k n k b a C T -+=1)3,2,1,0(n k ⋅⋅⋅=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项kk n k n k b a C T -+=1)3,2,1,0(n k ⋅⋅⋅=的理解:(1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n(3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素例1.nnn n n n C C C C 1321393-++++ 等于 ( ) A .n4 B 。
高中数学二项式定理知识点总结1. 二项式定理的定义二项式定理是指对于任意实数a和b以及非负整数n,有如下公式成立:(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + C(n, 2) * a^(n-2) * b^2 + … + C(n, n-1) * a * b^(n-1) + C(n, n) * a^0 * b^n其中,C(n, k)表示从n个元素中选择k个的组合数,也叫做二项系数。
公式中的每一项称为二项式展开式的项。
2. 二项式系数的计算二项系数C(n, k)的计算可以使用组合数公式表示,即:C(n, k) = n! / (k! * (n-k)!)其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * … * 2 * 1。
我们可以通过简化计算以及利用性质来计算二项系数。
例如,根据性质C(n, k) = C(n, n-k),我们可以利用对称性简化计算。
3. 二项式定理的应用3.1. 求幂和根的近似值通过二项式定理,我们可以近似地计算某些幂和根的值。
例如,对于一个实数x和一个很小的实数y,我们可以利用二项式定理近似计算 (x + y)^n 的值。
3.2. 求组合数组合数是二项式系数的另一种常见应用。
在组合数学中,我们常常需要计算从n个元素中选择k个的组合数。
例如,在概率论中,我们需要计算选择k个事件发生的可能性。
3.3. 求多项式系数二项式定理还可以用来计算多项式的系数。
例如,对于一个多项式的展开式,我们可以通过二项式定理将其展开并求得各项系数。
4. 二项式定理的证明二项式定理可以通过数学归纳法来证明。
首先,我们证明当n=1时定理成立。
然后,我们假设当n=k时定理成立,并证明当n=k+1时也成立。
根据这个逻辑推理,我们可以得出结论二项式定理对于所有非负整数n都成立。
5. 二项式定理的拓展在高等数学中,二项式定理还有一些拓展形式。
二项式定理知识点总结
二项式定理是一个关于排列组合计算的定理。
它是已知整数n和k,该定理对应于n个不同对象从中挑选k个对象,排列组合共有
$ C_{n}^{k}\\$种情况。
主要包括:
一、定义:
二项式定理定义为:令$ C_{n}^{k}\\$表示从n个不同的元素中取出k
个元素的所有可能组合,则有
$$C_{n}^{k}=\frac{n!}{k!(n-k)!}$$
二、特点:
(1)二项式有逆元素:$C_{n}^{k}=C_{n}^{n-k}$
(2)$C_{n}^{k}$是一个单调函数,即$k\gt n-k$时,$C_{n}^{k}$是一个单增函数,反之$C_{n}^{k}$是一个单减函数。
(3)$C_{n}^{0}=C_{n}^{n}=1$
三、应用:
二项式定理应用主要是赋予概率分布、抽样、计算机科学以及计算复
杂性等,它们在统计学上大量应用,其特点是一次可以抽取多个,也可以不抽取,以及抽取的元素之间的顺序无所谓,这都可以用二项式定理来解决;并且它也可以应用在记忆过程,以及各类技术中。
(a +b )n 展开式中的第r +1项为:T r +1=C n a b (0 ≤ r ≤ n ,r ∈Z ) .⎧A k ≥A k +1, ⎧A k ≤A k +1⎩A k ≥A k -1⎩A k ≤A k -1n ! (n -r )!高中数学知识点总结---二项式定理1. ⑴二项式定理:(a +b )n =C n 0a n b 0+C n 1a n -1b + +C n r a n -r b r + +C n n a 0b n .展开式具有以下特点:123项数:共有n +1项;系数:依次为组合数C n 0,C n 1,C n 2, ,C n r , ,C nn ;每一项的次数是一样的,即为 n 次,展开式依 a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.r n -r r .....⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大.I. 当 n 是偶数时,中间项是第n 2n+1项,它的二项式系数C 2 n 最大;II. 当 n 是奇数时,中间项为两项,即第n +12项和第n +12n -1 n +12n =C 2n +1项,它们的二项式系数C ...........最大.③系数和:C n 0+C n 1+ +C nn =2nC n 0+C n 2+C n 4+ =C n 1+C n 3+ =2n -1附:一般来说(ax +by )n (a ,b 为常数)在求系数最大的项或最小的项时均可直接根据性质二求解. 当 a ≠1或b ≠1时,一般采用解不等式组⎨ 或⎨(A k 为T k +1的系数或系数的绝对值)的办法来求解.⑷如何来求 (a +b +c )n 展开式中含 a p b q c r 的系数呢?其中 p ,q ,r ∈N , 且 p +q +r = n 把(a +b +c )n =[(a +b )+c ]n 视为二项式,先找出含有 C r 的项 C n r (a +b )n -r C r ,另一方面在(a +b )n -r 中含有 b q 的项为 C n -r q a n -r -q b q =C n -r q a p b q ,故在 (a +b +c )n 中含 a p b q c r 的项为=C n r C n -r q a p b q c r .其系数为C n r C n -qr =n !r !q !p !⋅r !(n -r )! q !(n -r -q )!=C n p C n -p q C rr .2. 近似计算的处理方法.当 a 的绝对值与 1 相比很小且 n 不大时,常用近似公式(1+a)n≈1+na,因为这时展开式的后面部分C n 2a2+C n 3a3+ +C n n a n很小,可以忽略不计。
高考数学二项式定理总结
作者:佚名
【考纲要求】
1.能用计数原理证明二项式定理;
2.掌握二项展开式系数的性质及计算的问题;
3.会用二项式定理解决与二项展开式有关的简单问题.
【知识网络】
【考点梳理】
要点一、二项式定理
公式叫做二项式定理。
其中叫做二项式系数。
叫做二项展开式的通项,它表示第项。
其中:
①公式右边的多项式叫做的二项展开式;
②展开式中各项的系数叫做二项式系数;
③式中的第r+1项叫做二项展开式的通项,用表示;二项展开式的通项公式为.
要点诠释:
二项展开式的通项公式集中体现了二项展开式中的指数、项数、系数的变化,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数以及数、式的整除等方面有着广泛的应用。
使用时要注意:(1)通项公式表示的是第“r+1”项,而不是第“r”项;
(2)通项公式中a和b的位置不能颠倒;
(3)展开式中第r+1项的二项式系数与第r+1项的系数,在一般情况下是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心以防出差错;
(4)在通项公式中共含有a,b,n,r,这5个元素,在有关二项式定理的问题中,常常会遇到:知道5个元素中的若干个(或它们之间的关系),求另外几个元素的问题。
这类问题一般是利用通项公式,把问题归结为解方程(组)或不等式(组),这里要注意n为正整数,r为非负数,且r≤n。
要点二、二项展开式的特性
①项数:有n+1项;
②次数:每一项的次数都是n次,即二项展开式为齐次式;
③各项组成:从左到右,字母a降幂排列,从n到0;字母b 升幂排列,从0到n;
④系数:依次为.
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也
不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
语文课本中的文章都是精选的比较优秀的文章,还有不少名
家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作
中自觉不自觉地加以运用、创造和发展。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习
者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
要点三、二项式系数的性质…………点击查看完整内容。