数学分析(3)期末试题B答案
- 格式:doc
- 大小:178.00 KB
- 文档页数:6
红河学院XXXX-XXXX 学年秋季学期期末考试卷1考试科目: 数学分析III 考试日期:一、填空题(每小题3分,共24分)1、重极限22(,)limx y →=___________________2、设(,,)x yzu x y z e +=,则全微分du =_______________________3、设(sin ,)xz f x y y e =+,则zx∂=∂___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则22()Lx y ds +=⎰________.5、曲面222239x y z ++=和2223z x y =+所截出的曲线在点(1,1,2)-处的法平面方程是___________________________. 6、已知12⎛⎫Γ=⎪⎝⎭,则32⎛⎫Γ-= ⎪⎝⎭_____________. 7、改变累次积分的顺序,2120(,)x dxf x y dy =⎰⎰______________________.8、第二型曲面积分Sxdydz ydzdx zdxdy ++=⎰⎰ ______________,其中S 为球面2221x yz ++=,取外侧.二、单项选择题(每小题2分,共16分)1、下列平面点集,不是区域的是( )(A )22{(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( )(A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在00(,)x y 处重极限必定不存在. (B )函数(,)f x y 在点00(,)x y 处的两个累次极限都存在且相等,则该函数在00(,)x y 处重极限必定存在.(C )函数(,)f x y 在点00(,)x y 处的偏导数都存在,则该函数在00(,)x y 处可微. (D )函数(,)f x y 在点00(,)x y 处可微,则该函数在00(,)x y 处必定连续. 3、方程3230xyz x y z ++-=在原点附近能确定连续可微的隐函数形式是( )(A) (,)x x y z =(B)(,)y y x z =(C) (,)z z x y =(D) 以上选项都不对.4、设arctan 2z uv t =+,其中2tu e =,ln v t =,则1t dzdt=等于( )(A )225e + (B )225e - (C )225e (D )252e5、设平面曲线L :()y f x =在[,]a b 上具有一阶连续偏导数,且点A 与B 的坐标分别为(,())a f a 与(,())b f b ,又设(,)P x y 和(,)Q x y 为L 上的连续函数,则沿L 从B 到A 的第二型曲线积分(,)(,)LP x y dx Q x y dy +⎰等于 ( )(A )[](,())(,())()baP x f x Q x f x f x dx '+⎰(B )[](,())(,())()abP x f x Q x f x f x dx '+⎰(C )[](,())(,())()baP x f x Q x f x f x dx '+⎰(D )[](,())()(,())abP x f x f x Q x f x dx '+⎰6、变换T :x u uv =-,y uv =所对应的函数行列式(,)J u v 为( )(A)2u (B)2v(C) u (D) v 7、对于任意光滑封闭曲线L 中,以下第二型曲线积分中为零的是( ) (A )(sin )y Lx y dx xe dy -+⎰(B )2()2Lx y dx xydy --⎰(C )sin()cos()Lxy dx x y dy ++⎰(D )22L xdy ydxx y -+⎰8、下列积分区域D 中,既是x 型又是y 型的是( )(A)D 是由直线0x =,y x =和1y x =-所围成的闭区域. (B)D 是由直线y x =和曲线y =.(C)D 是由直线1x =,2x =和4y x =-所围成的闭区域. (D)D 是由直线y x =,0y =和曲线y =.三、计算题(每小题8分,共48分)1、讨论函数2222220(,)00xy x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在原点(0,0)处的连续性,计算(0,0)x f 和(0,0)y f .2、设,y z f x y x ⎛⎫=+ ⎪⎝⎭,求2z x y ∂∂∂3、设方程组22x u yu y v xu⎧-=⎨-=⎩确定了隐函数组(,)(,)u u x y v v x y =⎧⎨=⎩,求v x ∂∂和vy ∂∂4、利用含参量积分计算1ln x x dx xβα-⎰,其中0αβ<<. 5、计算22Lx ydx xy dy -⎰,其中L 是以R 为半径,圆心在原点的右半圆周从最上面一点A 到最下面一点B .6、利用极坐标变换计算22Dy dxdy x⎰⎰,其中D 是由圆222x y x += (0)y ≥与x 轴所围成的平面区域.四、应用题(每小题6分,共12分)1、求由球面2224x y z ++=与抛物面223x y z +=所围成的区域Ω的体积.2、某工厂打算建造一个容积为25003m 长方体仓库,其中仓库顶的造价为200元/2m ,仓库底面造价为300元/2m ,仓库四周造价为100元/2m ,问如何设计可以使仓库的建造成本最小.。
案(word版可编辑修改)的全部内容。
数学分析(3)期末试卷2005年1月13日班级_______ 学号_________ 姓名__________ 考试注意事项:2. 试卷含三大题,共100分。
3. 试卷空白页为草稿纸,请勿撕下!散卷作废!4. 遵守考试纪律。
一、填空题(每空3分,共24分)1、 设z x u ytan =,则全微分=u d __________________________。
2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则=x u _________________________。
3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________.4、 设,d ),()(sin 2y y x f x F xx⎰=),(y x f 有连续偏导数,则=')(x F __________________. 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分⎰=Ls x yd _____________。
6、 在xy 面上,若圆{}122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________.7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=⎰⎰dxdy z S2_______。
二、计算题(每题8分,共56分)1、 讨论yx y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。
2、 设),(2xy y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u .3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。
2.()Lx y ds +=⎰ 其中L 是以)1,0(),0,1(),0,0(B A O 为顶点的三角形 ( A )A. 1+B. 1C.D. 03.()Ly x dy -=⎰.,其中L 为直线,AB(1,1),(2,2)A B ( D )A. 1B. 2C.12D. 0 4 Syzdxdy =⎰⎰ ,其中S 是球面2221x y z ++=的上半部分并取外侧为正向。
( D )A. 2πB. πC. 1D. 05.Lydx xdy +=⎰. , 其中22:1L x y += ( A )A. 0B. 1C. 2D. 3精品文档二、填空题:(本题共5小题, 每小题4分,共20分)1. 22()Dx y dxdy +=⎰⎰8π, 其中22:4D x y +≤ 2.Vxyzdxdydz =⎰⎰⎰8. 其中:02,0V x y z ≤≤≤≤≤≤3. 将(,)DI f x y d σ=⎰⎰ 化成先对x 后对y 的累次积分为24422(,)y y dy f x y dx +-⎰⎰其中D 由24,2y x y x =-=围成。
4. 设L 是半圆周,0,sin ,cos :π≤≤⎩⎨⎧==t t a y t a x L则第一型曲线积分()22Lxy ds +=⎰ π5. 格林公式建立了区域D 上二重积分与D 的边界曲线L的第二型曲线积分之间的联系。
设函数(,),(,)P x y Q x y 在闭区域D 上连续,且有一阶连续的偏导数,则格林公式可表示为LPdx Qdy +=⎰()DQ Pdxdy x y∂∂-∂∂⎰⎰。
(本题共2小题,每题10分, 共20分)1.计算DI dxdy =⎰⎰,其中D 由0,1x y y x ===及围成。
解:此三条直线的交点分别为(1,1),(0,1),(0,0),所围区域如下图。
。
3分先对x 后对y 积分:11112yxI dy dx dx dy ===⎰⎰⎰⎰ 。
6分2. 计算xdxdydz Ω⎰⎰⎰,其中Ω 是三个坐标面与平面 x精品文档+ y + z =1所围成的区域解 画出区域 D : 0101y x x ≤≤-≤≤ 。
2021-2022年度大学期末考试试卷 《数学分析三》大学考试试题B 卷及参考答案一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分,共20分)1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ⎰⎰=-a aa dx x f dx x f 0)(2)( B 0)(=⎰-aa dx x fC⎰⎰-=-aaadx x f dx x f 0)(2)( D )(2)(a f dx x f aa=⎰-3、 下列广义积分中,收敛的积分是( ) A⎰11dx xB⎰∞+11dx xC⎰+∞sin xdx D⎰-1131dx x4、级数∑∞=1n na收敛是∑∞=1n na部分和有界且0lim =∞→n n a 的( )A 充分条件B 必要条件C 充分必要条件D 无关条件 5、下列说法正确的是( ) A∑∞=1n na和∑∞=1n nb收敛,∑∞=1n nn ba 也收敛 B∑∞=1n na和∑∞=1n nb发散,∑∞=+1)(n n nb a发散C∑∞=1n na收敛和∑∞=1n nb发散,∑∞=+1)(n n nb a发散 D ∑∞=1n n a 收敛和∑∞=1n n b 发散,∑∞=1n nn ba 发散6、)(1x an n∑∞=在[a ,b ]收敛于a (x ),且a n (x )可导,则( )A)()('1'x a x an n=∑∞= B a (x )可导C⎰∑⎰=∞=ban ban dx x a dx x a )()(1D∑∞=1)(n nx a一致收敛,则a (x )必连续7、下列命题正确的是( ) A)(1x an n∑∞=在[a ,b ]绝对收敛必一致收敛B)(1x an n∑∞=在[a ,b ] 一致收敛必绝对收敛C 若0|)(|lim =∞→x a n n ,则)(1x an n∑∞=在[a ,b ]必绝对收敛D)(1x an n∑∞=在[a ,b ] 条件收敛必收敛8、∑∞=++-012121)1(n n nx n 的和函数为 A xe B x sin C )1ln(x + D x cos9、函数)ln(y x z +=的定义域是( ) A {}0,0|),(>>y x y x B {}x y y x ->|),( C {}0|),(>+y x y x D {}0|),(≠+y x y x 10、函数f (x,y )在(x 0,,y 0)偏可导与可微的关系( ) A 可导必可微 B 可导必不可微 C 可微必可导 D 可微不一定可导二、计算题:(每小题6分,共30分) 1、⎰=914)(dx x f ,求⎰+22)12(dx x xf2、计算⎰∞++02221dx xx 3、计算∑∞=11n nx n 的和函数并求∑∞=-1)1(n n n4、设023=+-y xz z ,求)1,1,1(xz ∂∂5、求2220lim yx yx y x +→→ 三、讨论与验证题:(每小题10分,共20分)1、 讨论⎪⎩⎪⎨⎧=≠+-=)0,0(),(0)0,0(),(),(2222y x y x y x y x xyy x f 在(0,0)点的二阶混合偏导数2、 讨论∑∞=+-221sin 2)1(n n n n nx的敛散性 四、证明题:(每小题10分,共30分)1、设)(1x f 在[a ,b ]上Riemann 可积,),2,1()()(1 ==⎰+n dx x f x f ban n ,证明函数列)}({x f n 在[a ,b ]上一致收敛于02、设yx e z =,证明它满足方程0=∂∂+∂∂yz y x z x 3、 设)(x f 在[a ,b ]连续,证明⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,并求⎰+π2cos 1sin dx xxx参考答案一、1、B 2、B3、A4、C5、C6、D7、D8、C9、C10、C 二、1、⎰⎰++=+202222)12()12(21)12(x d x f dx x xf (3分)令122+=x u ,⎰⎰==+91222)(21)12(du u f dx x xf (3分)2、⎰∞++02221dxx x =4)1arctan(lim )1()1(11lim 002π=+=+++∞→∞→⎰A A A A x x d x (6分) 3、解:令)(x f =∑∞=11n n x n ,由于级数的收敛域)1,1[-(2分),)('x f =x x n n -=∑∞=-1111,)(x f =)1ln(110x dt t x-=-⎰(2分),令1-=x ,得2ln )1(1=-∑∞=n n n 4、解:两边对x 求导02232=--x x xz z z z (3分)x z z z x 2322-=(2分)2)1,1,1(=∂∂x z(1分)5、解:x yx yx ≤+≤||0222(5分)0lim 22200=+→→y x y x y x (1分)由于x =-2,x =2时,级数均不收敛,所以收敛域为(-2,2)(3分)三、1、解、⎪⎩⎪⎨⎧=+≠++-+=000)(4),(22222222224y x y x y x y y x x yy x f x (2分)⎪⎩⎪⎨⎧=+≠++--=000)(4),(22222222224y x y x y x y y x x xy x f y (4分)1)0,0(),0(lim )0,0(02-=∆-∆=∂∂∂→∆y f y f x y zx x y1)0,0()0,(lim )0,0(02=∆-∆=∂∂∂→∆xf x f y x zy y x (6分)2、解:由于x nx n n n n n 221sin 2|sin 2)1(|lim =-+∞→(3分),即1sin 22<x 级数绝对收敛1sin 22=x 条件收敛,1sin 22>x 级数发散(7分)所以原级数发散(2分)四、证明题(每小题10分,共20分)1、证明:因为)(1x f 在[a ,b ]上可积,故在[a ,b ]上有界,即0>∃M ,使得]),[()(1b a x M x f ∈∀≤,(3分)从而)(|)(|)(12a x M dt t f x f xa-≤≤⎰一般来说,若对n 有)!1()()(1--≤-n a x M x f n n (5分)则)()!1()()(1∞→--≤-n n a b M x f n n ,所以)}({x f n 在[a ,b ]上一致收敛于0(2分)⎰⎰⎰=+++=+aa Ta Tdt t f T t d T t f t T x dx x f 0)()()()((2)(4分)将式(2)代入(1)得证(2分)2、 y e x z y x 1=∂∂,2y x e y zy x -=∂∂,(7分)则012=-=∂∂+∂∂yx ye y xe y z y x z x y xy x (3分) 3、 证明:令t x -=π⎰⎰⎰⎰-=---=πππππππ0)(sin )(sin ))(sin()()(sin dt t tf dt t f dt t f t dx x xf 得证(7分)8cos 1sin 2cos 1sin 20202ππππ=+=+⎰⎰dx xx dx x x x (3分)。
1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭为整数为整数3、设(,)ln 1f x y x y=--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000limlim (,)limlim lim11x y x y x x y f x y x y →→→→→-===+()222200000limlim (,)limlim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y =的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D ) A 、闭区域 B 、开区域 C 、开集 D 、闭集解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域.2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A )A 、开区域必为开集B 、闭区域必为有界闭集C 、开集必为开区域D 、闭集必为闭区域 4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+ 证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y 时222222222x y y x x x y x y ,而200lim 0x y x →→=所以222200lim 0x y xy x y →→=+. 2、2200x y →→解 因为22222222222211111111x y x y x yx y xyx y所以222222000limlim11211x x y y x y x y xy.1、设xy e z =,则z x ∂=∂ ,z y∂=∂ . 解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x ∆→+∆=∆ ,000(,)lim y f x y y y∆→+∆=∆ .解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解2222cos(),cos()z zxy x y x x y x y∂∂==∂∂ ()22222cos()cos()cos()2dz xy x y dx x x y dy x x y ydx xdy ∴=+=+ 5、求曲面arctany z x 在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y 11(1,1),(1,1)22x y z z故曲面arctan y z x 在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim ),(),(lim00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim 00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)00limlim 0,lim lim 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''==4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为 00000()()()0y x x x y y z z -+---=由已知切平面与平面093=+++z y x 平行,故001131y x -== 于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==- 2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解2221(,)(0,0)02x y x y x x y ≠≤≤+当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 222ln 2z z x z y ux y x v x v y v v y∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u u f f s t∂∂==∂∂,则11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =-的方向导数. 解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB 上的方向导数. 解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y ∂=∂∂ .解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解 222221,1,0,1,0,0(2)n m n m f f f f f fy x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x y f f f f f f n m +''''''''∴======+> (,)f x y x y xy ∴=++在点)2,1(的泰勒公式为 (,)f x y x y xy =++1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(2)x y x y =+-+-+--4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A )A 、(1,0)B 、(1,2)C 、(-3,0)D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C )A 、(-1,-1)B 、(0,0)C 、(1,1)D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B C B AC =>=-=∆=-=-<故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2D 、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点.③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令00xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B AC ===∆=-=>故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B ) A 、最大值点 B 、稳定点 C 、连续点 D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题 1、求函数333(0)z axyx y a的极值.解 令22330330x yz ay x z ax y得稳定点(0,0)和(,)a a . 226,3,6xy x y z x z a z y对于点(0,0),220,3,0,90A B a C B AC a 故点(0,0)不是极值点. 对于点(,)a a ,2260,3,6,270A a B a C a B AC a 故点(,)a a 是极大点,极大值为3(,)z a a a .2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令22162054216205xyx y S x xy S y得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S 2124180,,,80555A B C B AC 故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2cos 20x dy dy y e y xy dx dx ⎛⎫⋅+-+⋅= ⎪⎝⎭2cos 2xdy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则z x ∂=∂ ,zy∂=∂ . 解法一 令(,,)z F x y z e xyz =-,则(,,),(,,),(,,)z x y z F x y z yz F x y z xz F x y z e xy '''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yz x F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u vu y x xv u v u x x x解此方程组得24u v uy x uv xy ,224v u xx xy uv1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y dy F x y x y dx F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=.法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---== 法平面方程为(1)2(1)3(1)0x y z -+-+-=,即2360x y z ++-=.4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 . 解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)0x y z -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B )A 、只有一条B 、只有二条C 、至少有三条D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线2226x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩ 该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为20,a a则问题转换为求函数,,,f x y z xyz 在条件22xy yz xza 下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得.6ax y z根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x y在点(1,1,2)的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y ,在点(1,1,2)处有4,6,4x y z F F F ,6,2,4x y z G G G (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y所以切线的法向量为(8,10,7),切线方程为1128107x y z法平面方程为8(1)10(1)7(2)0x y z 或8107120x y z .1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、20x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x +∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛. 二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立. 2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a ⎰+∞收敛,则 )(dx x f c ⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故lim ()()lim()x x x aacA A e f x dx e f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞a dx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x +∞⎰收敛,但无穷积分sin a x dx x+∞⎰发散(P275,例11).三、讨论下列无穷限积分的敛散性(1)+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x+∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰收敛.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛. (4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性201dx x +0100x + 解 (1) 由于()22sgn sin 111x x x≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令(),()cos 100f x g x x x ==+,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分⎰收敛.另一方面)1cos 212(100)2x x +=≥==+⎣⎦可证0⎰发散,而0⎰收敛,故0dx ⎰发散,原积分条件收敛. 五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、1=⎰.解 由于1lim x →=∞,故1x =为瑕点,由瑕积分定义知()11120000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=-=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0lim ln (1)1εεεε→+=---=-3、 是积分0sin xdx xπ⎰的瑕点. 解0lim 1,lim sin sin x x x x x xπ→+→-==∞ x π∴=是积分0sin xdx xπ⎰的瑕点. 4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解0x =是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散.二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是(C )A 、0⎰B 、11211--⎰x dxC 、2211ln dx x x⎰D 、1⎰解 对于积分10sin dxx⎰,0x =为瑕点,由于 0lim 1sin xx →= 故瑕积分10sin dx x⎰收敛.对于积分11211--⎰xdx ,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰badx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b a dxx f )(2发散;取()f x =,则瑕积分⎰b a dxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim (0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于 1200ln lim(0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛. (4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy x xyx = . 解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰ 2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011lnln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰ 3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0y e dy +∞-⎰收敛,故含参变量无穷积分20x y edy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故2240221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰3、2x edx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 2x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2πD 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分220x x e dx +∞-⎰,令x=则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰22x x e dx +∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭C 、111,222n B +⎛⎫ ⎪⎝⎭D 、112,22n B +⎛⎫⎪⎝⎭解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于sin ,tx ax e x e a t --≤≤<+∞而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于232cos 10,1101t tx t x t x ≤≤≤++而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰ (2)642sin cos x xdx π⎰解 (1)()()111220331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰. 2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df x y dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰ ()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+2242220),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y dxdy f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D )A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.4、设⎰⎰+=D dxdy y x I 22sin ,{}22224),(ππ≤+≤=y x y x D },则I =( B )A 、26πB 、26π-C 、0D 、6π-解 作极坐标变换,则2220sin 6DI d r rdr πππθπ===-⎰⎰⎰⎰5、设D 由曲线1,2,,4xy xy y x y x ====所围成,作坐标变换,yu xy v x==,则二重积分22Dx y dxdy ⎰⎰可化为( B )A 、24211du u dv⎰⎰B 、2241112u du dv v ⎰⎰ C 、42211du u dv ⎰⎰ D 、2421112u du dv v⎰⎰ 解 由于 2(,)1111(,)2(,)2(,)1x y u v y y xu v v x y xy x x∂====∂∂∂- 且坐标变换后积分区域为{}(,)12,14D u v u v '=≤≤≤≤,于是224221112Du x y dxdy du dv v =⎰⎰⎰⎰. 三、求解下列各题1、求2y De dxdy -⎰⎰,其中D 由直线1,y y x ==及x 轴围成.解 选择先对y 后对x 的积分次序,由于 {}(,)01,0D x y y x y =≤≤≤≤ 故()2222111110000011122yy y y y x dx e dy dy e dx ye dy e e e ----===-=-⎰⎰⎰⎰⎰2、求由曲面22222,2z x y z x y =+=+所围立体V 的体积. 解 V 在xy 平面上的投影区域为{}22(,)4D x y x y =+≤于是空间立体V 的体积为()2212DDV x y dxdy =-+⎰⎰作极坐标变换cos sin x r y r θθ=⎧⎨=⎩,则222223000011644233V d r dr d r dr ππππθθπ=-=-=⎰⎰⎰⎰3、求由曲线,,,(0,0)x y a x y b y x y x a b 所围的平面图形面积.解 作坐标变换u x yyv x =+⎧⎪⎨=⎪⎩,则。
第三学期《数学分析》期末试题一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( )A 充分条件B 必要条件C 充分必要条件D 无关条件 2、=∂∂),(00|),(y x xy x f ( )Ax y x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000 ; B xy x x f x ∆∆+→∆),(lim 000; Cx y x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000 ; D xy x f y x x f x ∆-∆+→∆),(),(lim 00000。
3、函数f (x,y )在(x 0,,y 0)可偏导,则( D )A f (x,y )在(x 0,,y 0)可微 ;B f (x,y )在(x 0,,y 0)连续;C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ;D 以上全不对。
4、22222)(),(y x y x y x y x f -+=的二重极限和二次极限各为( B )A 、0,0,0;B 、不存在,0,0,;C 、0,不存在,0;D 、0,0,不存在。
5、设yx ez =,则=∂∂+∂∂yz y x z x (A )A 、0;B 、1;C 、-1;D 、2。
二、计算题(50分,每小题10分)1、 证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微;2、 设⎰⎰'=-x xtx f x f dt d ex f 0)(),(,)(2求ττ;3、 设有隐函数,0x y F z z ⎛⎫=⎪⎝⎭,其中F 的偏导数连续,求z x ∂∂、z y ∂∂;4、 计算(cos sin )x Ce ydx ydy -⎰,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点的光滑曲线;5、 计算zdS ∑⎰⎰,其中∑为22z x y =+在14z ≤的部分;三、验证或解答(满分24分,每小题8分)1、验证曲线积分⎰+++++Ldzy x dy x z dx z y )()()(与路线无关,并求被积表达式的原函数;2、说明对任意),0(sin ,00)(2+∞∈>⎰+∞+-t tdx e x 关于αα均一致收敛;3、验证函数⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x yx xyy x f 在原点(0,0)分别对每个自变数y x 或(另一个看作常数)都连续,但是二元函数在原点(0,0)却不连续.四、(11分)求由方程组⎩⎨⎧=-+=++10333z y x z y x 确定的隐函数)2,1,1()(),(-==P x z z x y y 在点处的一阶导数。
北京大学《数学分析(Ⅲ)》2020-2021学年第一学期期末试卷《数学分析(Ⅲ)》院/系——年纪——专业——姓名——学号——一、选择题(每题2分,共20分)1. 设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f'(x) > 0,则下列结论正确的是( )A. f(x)在[a,b]上单调递增B. f(x)在(a,b)上单调递增C. f(x)在[a,b]上单调递减D. f(x)在(a,b)上单调递减2. 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a) = f(b) = 0,则在(a,b)内至少存在一点ξ,使得( )A. f'(ξ) = 0B. f'(ξ) > 0C. f'(ξ) < 0D. 以上都不一定3. 关于函数极限的ε-δ定义,以下说法正确的是( )A. 对任意ε>0,总存在δ>0,使得当|x-x0|<δ时,有|f(x)-A|<εB. 对任意δ>0,总存在ε>0,使得当|x-x0|<δ时,有|f(x)-A|<εC. 对任意ε,δ>0,当|x-x0|<δ时,有|f(x)-A|<εD. 以上都不对4. 设z = f(x,y)在点(x0, y0)处可微,则( )A. dz在(x0, y0)处连续B. dz在(x0, y0)处有界C. dz在(x0, y0)处可导D. dz在(x0, y0)处存在偏导数5. 设u = u(x,y,z)有连续的二阶偏导数,则( )A. u关于x的二阶偏导数与关于y的二阶偏导数一定相等B. u关于x的二阶偏导数与关于y的二阶偏导数一定不相等C. u关于x,y的二阶混合偏导数与关于y,x的二阶混合偏导数一定相等D. 以上都不一定6. 设函数$f(x)$在$[a, b]$上连续,在$(a, b)$内可导,若$f'(x) > 0$对所有$x \in (a, b)$成立,则$f(x)$在$[a, b]$上( )A. 单调递增B. 单调递减C. 可能递增也可能递减D. 为常数7. 设$f(x)$在$x = x_0$处可导,且$f'(x_0) > 0$,则对于充分小的$\Delta x > 0$,有( )A. $f(x_0 + \Delta x) < f(x_0)$B. $f(x_0 + \Delta x) > f(x_0)$C. $f(x_0 + \Delta x) = f(x_0)$D. 无法确定8. 若$\lim_{{x \to \infty}} f(x) = L$,则下列说法正确的是( )A. $f(x)$在$x \to \infty$时单调B. $\lim_{{x \to -\infty}} f(x) = L$C. $f(x)$在$x \to \infty$时一定有界D. $\lim_{{x \to x_0}} f(x)$不一定存在9. 设函数$z = f(x, y)$在点$(x_0, y_0)$处可微,则$f$在$(x_0, y_0)$处的全微分$dz$可以表示为( )A. $dz = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$B. $dz = f_x(x_0, y_0) + f_y(x_0, y_0)$C. $dz = f_x(x_0, y_0) dy + f_y(x_0, y_0) dx$D. $dz = \frac{\partial f}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0)$10.设$f(x)$在$[a,b]$上连续,在$(a,b)$内可导,且对任意$x \in (a,b)$,有$f(x) \geq 0$和$f'(x) \leq 0$,则:A. $f(x)$在$[a,b]$上单调递增B. $f(x)$在$[a,b]$上单调递减C. $f(x)$在$[a,b]$上恒为常数D. $f(x)$在$[a,b]$上无单调性二、填空题(每题3分,共15分)1. 设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x) < 0,则f(x)在[a,b]上的最小值为_______。
(时间:120分钟 共100分)课程编号:4081103 课程名称:数学分析 适用年级:2006 学制:_4_ 适单项选择题:(本题共5小题,每小题3分,共15分)1.122lim 1dxx ααα→=++⎰.( B )A. 2πB. 4πC. D.2.()Lx y ds +=⎰ 其中是以)1,0(),0,1(),0,0(B A O 为顶点的三角形 ( A )A. 1+B. 1C.D. 0 3.()Ly x dy -=⎰ .,其中L 为直线,AB(1,1),(2,2)A B ( D )A. 1B. 2C.2D. 0 4 Syzdxdy =⎰⎰ ,其中是球面2221x y z ++=的上半部分并取外侧为正向。
( D )A. 2B.C. 1D. 05.Lydx xdy +=⎰. , 其中22:1L x y += ( A )A. 0B. 1C. 2D. 3 二、填空题:(本题共5小题, 每小题4分,共20分)1.22()Dx y dxdy +=⎰⎰, 其中22:4D x y +≤ 2. Vxyzdxdydz =⎰⎰⎰. 其中:02,02,02V x y z ≤≤≤≤≤≤3. 将(,)DI f x y d σ=⎰⎰ 化成先对x 后对y 的累次积分为24422(,)y y dy f x y dx +-⎰⎰其中D 由24,2y x y x =-=围成。
4. 设是半圆周,0,sin ,cos :π≤≤⎩⎨⎧==t t a y t a x L则第一型曲线积分()22Lxy ds +=⎰5. 格林公式建立了区域上二重积分与的边界曲线的第二型曲线积分之间的联系。
设函数(,),(,)P x y Q x y 在闭区域上连续,且有一阶连续的偏导数,则格林公式可表示为LPdx Qdy +=⎰()DQ Pdxdy x y∂∂-∂∂⎰⎰。
三、 得分 阅卷人(本题共2小题,每题10分, 共20分)1.计算DI dxdy =⎰⎰,其中D 由0,1x y y x ===及围成。
《数学分析》(三)――参考答案及评分标准一. 计算题(共8题,每题9分,共72分)。
1.求函数11(,)f x y y x =在点(0,0)处的二次极限与二重极限。
解:11(,)f x y y x =+=,因此二重极限为0。
……(4分)因为011x y x →+与011y y x→+均不存在,故二次极限均不存在. ……(9分)2. 设(),()y y x z z x =⎧⎨=⎩ 是由方程组(),(,,)0z xf x y F x y z =+⎧⎨=⎩所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dzdx.解: 对两方程分别关于x 求偏导:, ……(4分). 解此方程组并整理得()()()()y y x y z F f x y xf x y F F dz dx F xf x y F '⋅+++-='++。
……(9分)3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程222z z zz x x y x ∂∂∂++=∂∂∂∂. 设,,22y x y x y w ze μν+-=== (假设出现的导数皆连续)。
解:z 看成是,x y 的复合函数如下:,(,),,22y w x y x yz w w e μνμν+-====. ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。
整理得:2222w ww μμν∂∂+=∂∂∂. ……(9分)4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省?解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中目标函数: 222S rh r ππ=+表,()()(1)0x yz dzdy f x y xf x y dx dx dy dz F F F dx dx ⎧'=++++⎪⎪⎨⎪++=⎪⎩约束条件: 21r h π=。
……(3分) 构造Lagrange 函数:22(,,)22(1)F r h rh r r h λππλπ=++-。
数学分析三习题答案数学分析三习题答案数学分析是数学的一门重要分支,它研究的是函数、极限、连续等概念和性质。
在学习数学分析的过程中,习题是非常重要的一部分,通过解答习题可以巩固和加深对知识的理解。
下面是一些数学分析三的习题答案,希望对大家的学习有所帮助。
1. 求极限lim (x→0) (sinx/x)解:这是一个常见的极限问题。
我们可以利用泰勒展开公式来求解。
根据泰勒展开公式,sinx的泰勒展开式为x-x^3/3!+x^5/5!-...,当x趋近于0时,我们只需要保留到x^3这一项,即sinx≈x。
所以,lim (x→0) (sinx/x) = lim (x→0) 1 = 1。
2. 求函数的导数f(x) = x^3 - 3x^2 + 2x解:要求函数f(x)的导数,我们可以使用导数的定义。
根据导数的定义,f'(x) = lim (h→0) (f(x+h) - f(x))/h。
将函数f(x)带入导数的定义中,得到f'(x) = lim (h→0) ((x+h)^3 - 3(x+h)^2 + 2(x+h) - (x^3 - 3x^2 + 2x))/h。
化简后可得f'(x) = lim(h→0) (3x^2 - 6xh + 3h^2 + 2h)/h。
继续化简,得到f'(x) = 3x^2 - 6x + 3。
3. 求不定积分∫(x^2 + 2x + 1) dx解:要求不定积分,我们可以使用不定积分的基本公式。
根据不定积分的基本公式,∫(x^n) dx = (x^(n+1))/(n+1) + C,其中C为常数。
将函数x^2 + 2x + 1带入不定积分的基本公式中,得到∫(x^2 + 2x + 1) dx = (x^3)/3 + x^2 + x + C。
4. 求定积分∫[0, 1] (x^2 + 2x + 1) dx解:要求定积分,我们可以使用定积分的基本公式。
根据定积分的基本公式,∫[a, b] f(x) dx = F(b) - F(a),其中F(x)为f(x)的一个原函数。
红河学院XXXX —XXXX 学年秋季学期《数学分析III 》期末考试卷2 参考答案及评分标准一、单项选择题(每小题2分,共16分)题号 1 2 3 4 5 6 7 8 答案 AABACCBD二、填空题(每小题3分,共24分)1、12、()xy ze ydx xdy dz +++ 3、12cos xf y f ''⋅+4、π5、1128107x y z -+-==6、200(,)dy f x y dx ⎰ 8、33a三、计算题(每小题8分,共48分)1、设,y z f x y x ⎛⎫=+ ⎪⎝⎭,求2z x y ∂∂∂.解 记u x y =+,y v x =,1f f u ∂'=∂,2f f v∂'=∂, 则由复合函数链式法则,122z z u z v yf f x u x v x x∂∂∂∂∂''=+=-∂∂∂∂∂. …………………(2分) 再记2112f f u∂''=∂,212f f u v ∂''=∂∂,2222f f v ∂''=∂,…… 2122z z y f f x y y x y x ∂∂∂∂⎛⎫⎛⎫''==- ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭…………………(3分) 11222221f f f f u v y u v f u y v y x u y v y x ⎛⎫''''∂∂∂∂∂∂∂∂'=+-+- ⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭……………(6分)11122122222111y f f f f f x x x x⎛⎫'''''=+-+- ⎪⎝⎭ …………………(7分)11122222321x y y f f f f x x x-''''=+-- …………………(8分) 2、讨论函数2222220(,)00xyx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在原点(0,0)处的连续性,计算(0,0)x f 和(0,0)y f . 解 首先考虑(,)(0,0)lim (,)x y f x y →,当点(,)x y 沿直线y kx =趋于(0,0)时,则有 ………………(2分)2222(,)(0,0)lim (,)lim (,)lim1x y x x y kxx kx kf x y f x kx x k x k →→→=⋅===++由此可见,该极限值随k 的变化而变化,故此极限不存在,从而函数(,)f x y 在原点不连续. …………(4分)由偏导数的定义,0(0,0)(0,0)0(0,0)limlim 0x x x f x f f x x ∆→∆→+∆-===∆∆ …………(6分)0(0,0)(0,0)0(0,0)limlim 0y x x f y f f yy ∆→∆→+∆-===∆∆ …………(8分)3、设方程组22x u yu y v xu⎧-=⎨-=⎩确定了隐函数组(,)(,)u u x y v v x y =⎧⎨=⎩,求u x ∂∂和uy ∂∂ 解 方程组关于x 求偏导数得122x xx x uu yu vv u xu -=⎧⎨-=+⎩…………………(3分) 解此方程组得,12u x u y∂=∂+ ………………(4分)方程组关于y 求偏导数得212y yy y uu u yu vv xu -=+⎧⎨-=⎩…………………(7分) 解此方程组得,2u uy u y∂=-∂+. ………………(8分) 4、计算22Lx ydx xy dy -⎰,其中L 是以R 为半径,圆心在原点的右半圆周从最下面一点A 到最上面一点B .解 题设中的右半圆周从点A 到点B 的参数方程为cos sin x R y R θθ=⎧⎨=⎩, 其中θ从2π-到2π. ………………………(3分)又()sin x R θθ'=-,()cos y R θθ'=,故第二型曲线积分 …………(4分)/222422422/2(cos sin cos sin )Lx ydx xy dy R R d ππθθθθθ--=-+⎰⎰……(6分)44/2/2(1cos 4)44R R d πππθθ-=--=-⎰ ………………………(8分)5、利用含参量积分计算1ln b ax x dx x-⎰,其中0a b <<. 解 因为ln b abyax x x dy x-=⎰,所以 …………………………(2分)1100ln b ab y a x x dx dx x dy x-=⎰⎰⎰.由于被积函数(,)yf x y x =在[0,1][,]a b ⨯上连续,………………………(4分)故由含参量积分连续性定理,交换积分顺序得111000ln b ab b y y a a x x dx dx x dy dy x dx x-==⎰⎰⎰⎰⎰ …………………(6分)11ln11ba bdy y a+==++⎰…………………(8分) 6、利用极坐标变换计算22Dy dxdy x⎰⎰,其中D 是由圆222x y x += (0)y ≥与x 轴所围成的平面区域.解 引入极坐标变换cos x r θ=, sin y r θ=, …………………………(2分)则积分区域D 在此极坐标变换下变为{(,)0,02cos }2r r πθθθ∆=≤≤≤≤,………………………(4分)所以,222/22cos 22200sin sin cos cos Dy dxdy rdrd d rdr x πθθθθθθθ∆==⎰⎰⎰⎰⎰⎰ ………………(6分) /2202sin 2d ππθθ==⎰……………(8分)四、应用题(每小题6分,共12分)1、某工厂打算建造一个容积为25003m 长方体仓库,其中仓库顶的造价为200元/2m ,仓库底面造价为300元/2m ,仓库四周造价为100元/2m ,问如何设计可以使仓库的建造成本最小.解 设仓库的长宽高分别为x ,y ,z ,则由题设有2500xyz =. 又设建造仓库的成本为S ,则(,,)100(22)300200S S x y z xz yz xy xy ==+++500200200xy xz yz =++ …………(2分)因此,所求问题可归结为在约束条件2500xyz =下,函数(,,)S x y z 的最小值问题.构造拉格朗日函数(,,,)500200200(2500)L x y z xy xz yz xyz λλ=+++- ………(3分)令50020005002000200200025000x yz L y z yz L x z xz L x y xy L xyz λλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪=-=⎩,解之得101025x y z =⎧⎪=⎨⎪=⎩ ………(5分)即仓库的长、宽、高分别为10m ,10m ,25m 时,造价最小,为150000元.………(6分)2、求由球面2224x y z ++=与抛物面223x y z +=所围成的区域Ω的体积. 解 设所求区域的体积为V ,则V dxdydzΩ=⎰⎰⎰. …………………(2分)引入柱面坐标变换cos x r θ=, sin y r θ=, z z =,则球面方程变为224r z +=,抛物面方程变为23r z =. …………………(3分)由方程组22243r z r z⎧+=⎨=⎩,消去z 得Ω在xy 平面上的投影区域D 的边界曲线方程r =0z =.于是,Ω在柱面坐标下可表示为2{(,,)02,3r r z r z θθπ≤≤≤≤≤≤,………………(4分)所以,22220/3)3r r V dxdydz d d rdr ππθθΩ===⎰⎰⎰⎰⎰20192)36r rdr ππ==………………(6分)。
For personal use only in study and research; not for commercial use2012 –2013学年第一学期期末考试题11数学教育《数学分析》(三)一、单项选择(将正确答案的序号填在括号内,每题2分,共20分)1. 下列数项级数中收敛的是 ( )A. 211n n∞=∑; B.201n nn∞=+∑; C. 11n n∞=∑; D. 0123n n n ∞=++∑. 2. 下列数项级数中绝对收敛的是 ( )A. 1(1)n n n ∞=-∑B. 1n n ∞=1n n ∞=1sin n n n ∞=∑3.函数项级数1nn x n∞=∑的收敛域是 ( )A. (1,1)-B. (1,1]-C. [1,1)-D. [1,1]- 4.幂级数021nn n x n ∞=+∑的收敛半径是 ( )5. 下列各区域中,是开区域的是 ( )6.点集11{,|}E n N n n ⎛⎫=∈ ⎪⎝⎭的聚点是 ( )A. (){0,0}B.()0,0C. 0,0D.{}{}0,07.点函数()f P 在0P 连续,是()f P 在0P 存在偏导数 ( ) A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要条件8. 函数(,)f x y 在()00,x y 可微,则(,)f x y 在()00,x y 不一定 ( )A.偏导数连续B.连续C. 偏导数存在D. 存在方向导数 9. 设函数)()(y v x u z =,则zx∂∂等于 ( ) A.()()u x v y x y ∂∂∂∂ B. ()()du x v y dx y ∂∂ C. ()()du x v y dx D. ()()u x v y x y∂∂+∂∂ 10. 函数(,)f x y 在()00,x y 可微的充分必要条件是 ( )A. 偏导数连续;B. 偏导数存在;C.存在切平面;D. 存在方向导数.二、填空题(将正确答案填在横线上,每题2分,共20分)11. 若数项级数11np n n ∞=-∑()绝对收敛,则p 的取值范围是 ;12. 幂级数0(1)n n n x ∞=+∑的和函数是 ;13.幂级数201(1)n n x n∞=-∑的收敛域是 . ; 14.平面点集22{(,)|14}E x y x y =<+≤的内点是_________ ___ __ _______; 15.函数33(,)3f x y x y xy =+-的极值点是 ______________________. 16.曲面221z x y =+-在点(2,1,4)的切平面是 ______________________17.函数y z x =,则zy∂=∂ ______________________; 18.函数u xyz =在(1,1,1)沿方向(cos ,cos ,cos )l αβγ=的方向导数是 ___________;19.设cos sin x r y r ϕϕ=⎧⎨=⎩,则 x x r y y r ϕϕ∂∂∂∂=∂∂∂∂ ;20.若arctany x =,则dydx=______________________。
红河学院XXXX —XXXX 学年秋季学期《数学分析III 》期末考试卷3参考答案及评分标准一、填空题(每小题3分,共30分)1、ln 22、2dz dx dy =+3、1221x f f y z''-+ 4、1、113123x y z -+-==- 6、1、(1)s s + 8、11(,)xdx f x y dy ⎰⎰ 9、r 10、34R π二、判断题(在正确的命题后的括号内打“○”,错误的命题后的括号内打“×”每小题2分,共10分)题号 12345答案× × ○ ○ ×三、计算题(每小题10分,共60分)1、讨论函数222222(0(,)00x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩在原点(0,0)处的连续性,计算(0,0)x f 和(0,0)y f .解 首先考虑(,)(0,0)lim(,)x y f x y →,引入变换cos x r θ=,cos y r θ=, ………………(2分)则(,)(0,0)x y →等价于对任意θ,0r →. 因此,222(,)(0,0)(,)(0,0)1lim (,)lim ()sinlim sin x y x y r f x y x y r r →→→=+=201lim sin0r r r→==. ………………(5分) 由此可见,(,)(0,0)lim(,)(0,0)x y f x y f →=,所以该函数在(0,0)连续. …(6分)由偏导数的定义,200(,0)(0,0)(0,0)lim limx x x f x f f x∆→∆→∆-==∆()01lim sin0x x x∆→=∆=∆ ………………(8分)20(0,)(0,0)(0,0)limlim y y y f y f f y∆→∆→∆-==∆()01lim sin0y y y∆→=∆=∆ ………………(10分) 2、设,y z f x y x ⎛⎫=+ ⎪⎝⎭,求z x ∂∂和2z x y ∂∂∂.解 记u x y =+,y v x =,1f f u ∂'=∂,2ff v∂'=∂, 则由复合函数链式法则,122z z u z v yf f x u x v x x∂∂∂∂∂''=+=-∂∂∂∂∂. …………………(3分) 再记2112f f u∂''=∂,212f f u v ∂''=∂∂,2222f f v ∂''=∂,…… 2122z z y f f x y y x y x ∂∂∂∂⎛⎫⎛⎫''==- ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭…………………(5分) 11222221f f f f u v y u v f u y v y x u y v y x ⎛⎫''''∂∂∂∂∂∂∂∂'=+-+- ⎪ ⎪∂∂∂∂∂∂∂∂⎝⎭……………(7分)11122122222111y f f f f f x x x x⎛⎫'''''=+-+- ⎪⎝⎭ …………………(9分)11122222321x y y f f f f x x x -''''=+-- …………………(10分)3、制作一个无盖的长方形水箱,已知底部的造价为每平方米30元,侧面造价为每平方米10元,现用360元制作水箱,问如何设计水箱才能使其体积最大.解 设水箱的长、宽、高分别为x ,y ,z 米,则该问题为求水箱体积V xyz=在限制条件3020()360xy x y z ++=(即32()360xy x y z ++-=)的最大值. …………………(3分)构造Lagrange 函数(,,,)(32()36)f x y z xyz xy x y z λλ=+++-. …(5分)下面求(,,,)f x y z λ的稳定点,由方程组(32)0(32)0(22)032()360x yz f yz y z f xz x z f xy x y f xy x y z λλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪=++-=⎩得2x y ==,3z =………(8分)由实际问题可知,存在使体积V 达到最大的制作方式,又由稳定点是唯一的,故该稳定点必是所求的最大值点,即用360元制作的最大体积水箱的长、宽、高分别为2、2、3米,最大体积为12立方米. ………(10分)4、计算第二型曲线积分2()LI xydx x y dy x dz =+-+⎰其中,L 是螺旋线:cos x a t =,sin y a t =,z bt =从0t =到π的一段.解 由第二型曲线积分的计算公式,32222220(cos sin cos sin cos cos )I a t t a t a t t a b t dt π=-+-+⎰……(5分)3322201111sin sin (1)sin 23222a t a t a b t t π⎡⎤⎛⎫=--+++ ⎪⎢⎥⎝⎭⎣⎦……(8分)21(1)2a b π=+ …………………(10分)5、利用极坐标变换计算二重积分D⎰⎰,其中D 为圆周221x y +=与224x y +=所包围的区域在第一象限的部分.解 引入极坐标变换cos x r θ=, sin y r θ=, ………………(2分)则在极坐标系下,区域D 可表示为{(,)0,12}2r r πθθ∆=≤≤≤≤. ……(4分)于是,2sin Dr rdrd θθ∆=⋅⎰⎰⎰⎰ ……………(6分) /22301sin d r dr πθθ=⎰⎰ ……………(8分)154=…………(10分) 6、求由球面2224x y z ++=与抛物面223x y z +=所围成的区域Ω的体积. 解 设所求区域的体积为V ,则V dxdydzΩ=⎰⎰⎰. …………………(2分)引入柱面坐标变换cos x r θ=, sin y r θ=, z z =,则球面方程变为 224r z +=,抛物面方程变为23r z =. …………………(4分)由方程组22243r z r z⎧+=⎨=⎩,消去z 得Ω在xy 平面上的投影区域D 的边界曲线方程r =0z =. …………(5分)于是,Ω在柱面坐标下可表示为2{(,,)02,3r r z r z θθπ≤≤≤≤≤≤, ………………(7分)所以,22220/3)3r r V dxdydz d d rdr ππθθΩ===⎰⎰⎰⎰⎰2192)36r rdr ππ==………………(10分)。
一、填空题1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}11,00,(0,0)n m n m ⎧⎫⎧⎫⎛⎫⎛⎫⎨⎬⎨⎬⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭为整数为整数3、设(,)ln 1f x y x y =--,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= .解 222200000lim lim (,)lim lim lim11x y x y x x y f x y x y →→→→→-===+ ()222200000lim lim (,)lim lim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y=的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D )A 、闭区域B 、开区域C 、开集D 、闭集 解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域. 2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A )A 、开区域必为开集B 、闭区域必为有界闭集C 、开集必为开区域D 、闭集必为闭区域 4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在.5、下列说法正确的是( A )A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则f 在0P 处连续.三、用ε-δ定义证明22200lim 0.x y x yx y →→=+证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+ 四、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y ¹时2222222220x y y xx x y x y ?祝++,而200lim 0x y x →→=所以222200lim 0x y x y x y →→=+. 2、2200x y →→解 因为())2222221111x y x y +==++-所以()2222000limlim11211x x y y x y x y =+++=++-.1、设xy e z =,则z x∂=∂ ,zy ∂=∂ .解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x∆→+∆=∆ ,000(,)limy f x y y y ∆→+∆=∆ . 解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++ (1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解2222cos(),cos()z zxy x y x x y x y ∂∂==∂∂ ()22222c o s ()c o s ()c o s ()2d z x y x y d x x x y d y x x y y d x x d y∴=+=+ 5、求曲面arctany z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y ⅱ=-=++ 11(1,1),(1,1)22x y z z ⅱ\=-=故曲面arctan y z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩1、设),(y x f 在点(,)a b 处偏导数存在,则lim(,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b '解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim),(),(lim 00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)0l i ml i m 0,l i m l i m 0x x y x f x f f y f x x y y∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''== 4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;0000C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在; D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微.解 P172定理1 三、求解下列各题 1、求曲面xy z =上一点,使得曲面在该点的切平面平行于平面093=+++z y x ,并写出这切平面方程和法线方程.解 设所求的点为000(,,)x y z .由于,x y z y z x ''== 故000000(,),(,)x y z x y y z x y x ''==于是曲面xy z =在点000(,,)x y z 的切平面方程为00000()()()0y x x x yy z z -+---= 由已知切平面与平面093=+++z y x 平行,故001131y x -==于是000003,1,3x y z x y =-=-==,故所求的点为(3,1,3)--.曲面在点(3,1,3)--的切平面方程为(3)3(1)(3)0x y z -+-+--=,即330x y z +++= 法线方程为313131x y z ++-==---,即1333y x z ++==-2、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在附近的连续性、偏导数的存在性及可微性.解2221(,)(0,0)02x y x y x x y ≠≤≤+当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()3300222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂222l n 2z z x z y u x y xv x v y v vy∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂ 2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u uf f s t∂∂==∂∂,则 11222211,,.u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =-的方向导数.解 由于l 的方向余弦为212cos ,cos ,cos 333αβγ====-==()0000()22,()1,()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB 上的方向导数. 解 由于(4,3,12)AB =,故它的方向余弦为4312cos ,cos ,cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==21、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y∂=∂∂ . 解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解222221,1,0,1,0,0(2)n m n m f f f f f f y x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂ 22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x yf f f f f f n m +''''''''∴======+> (,)f x y x y x y ∴=++在点)2,1(的泰勒公式为 (,)f x y x y x y=++ 1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(x y x y =+-+-+-- 4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2,(,)0,(,)2xy xyf x y f x y f x y ''''''=-==-222(2,2)20,(2,2)0,(2,2)2,40xy x y A f B f C f B AC ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A )A 、(1,0)B 、(1,2)C 、(-3,0)D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于22(,)66,(,)0,(,)66xy xyf x y x f x y f x y y ''''''=+==+在点(1,0),2120,0,6,720A B C B AC =>==∆=-=-<在点(3,0)-,212,0,6,720A B C B AC =-==∆=-=> 在点(1,2)-,212,0,6,720A B C B AC ===-∆=-=>在点(3,2)--,2120,0,6,720A B C B AC =-<==-∆=-=-<故函数339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C )A 、(-1,-1)B 、(0,0)C 、(1,1)D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于22(,)4,(,)2,(,)2xy xyf x y f x y f x y ''''''==-=240,2,2,40A B CB AC =>=-=∆=-=-< 故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2D 、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点. ③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令00xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于22(,)0,(,)1,(,)0xy x y z x y z x y z x y ''''''=== 20,1,0,10A B C B A C ===∆=-=> 故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B )A 、最大值点B 、稳定点C 、连续点D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题1、求函数333(0)z axy x y a =-->的极值.解 令22330330xy z ay x z ax y ¢ï=-=ïí¢ï=-=ïî 得稳定点(0,0)和(,)a a .226,3,6xy x yz x z a z y ⅱ?=-==- 对于点(0,0),220,3,0,90A B a C B AC a ===D =-=>故点(0,0)不是极值点.对于点(,)a a ,2260,3,6,270A a B a C a B AC a =-<==-D =-=-< 故点(,)a a 是极大点,极大值为3(,)z a a a =.2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令()()22162054216205xy x y S x x y S y ì+-ïï¢=+=ïïïíï+-ï¢ï=+=ïïî得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.2212418,,555xy x y S S S ⅱⅱⅱ===2124180,,,80555A B C B A C =>==D =-=-<故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,),(,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2c o s20x d y d y y e y x y d x d x ⎛⎫⋅+-+⋅= ⎪⎝⎭ 2cos 2x dy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则zx∂=∂ ,z y ∂=∂ .解法一 令(,,)z F x y z e xyz =-,则 (,,),(,,),(,,)zx y zF x y z y z F x y z x z F x y z ex y'''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y zz z F x y z yzx F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y yy ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)(,)2(,)x y u v u v ==∂∂∂ 二、选择题1、下列命题正确的是( D )A 、任何方程都可以确定一个隐函数;B 、任何方程所确定的隐函数是唯一的;C 、任何方程所确定的隐函数一定是初等函数;D 、如果一个方程在某点满足隐函数存在定理的条件,则它确定的隐函数是唯一的. 2、方程0sin 2=++xy y x 在原点(0,0)的某邻域内必可确定的隐函数形式为( A )A 、)(x f y =B 、)(y g x =C 、两种形式均可D 、无法确定 3、隐函数存在定理中的条件是隐函数存在的( A )A 、充分条件B 、必要条件C 、充要条件D 、无关条件4、方程组22201x y z x y z ++=⎧⎨++=⎩所确定的隐函数组()()x f z y g z =⎧⎨=⎩的导数为 ( B ) A 、,dx y z dy z xdz y x dz x y --=--= B 、,dx y z dy z x dz x y dz x y --==-- C 、,dx y z dy x z dz x y dz x y--==-- D 、,dx y z dy x z dz y x dz x y--==-- 解 方程两边分别对z 求导得102220dx dydz dzdx dy x y z dz dz ⎧++=⎪⎪⎨⎪⋅+⋅+=⎪⎩解方程得,dx y z dy z x dz x y dz x y--==--. 三、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x x y z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+'四、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u v u y x xv u v u x x x ì抖ïï--=ïï抖íï抖ï---=ïï抖ïî解此方程组得24u v uy x uv xy ?=?,224v u x x xy uv?=?1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69,(,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y d y F x y x yd x F x y y x'-=-=-'- (2,1)54dy k dx ==- 故所求的切线方程为51(2)4y x -=--,即54140x y +-=.法线方程为41(2)5y x -=-,即4530x y --=.3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---==法平面方程为(1)2(1)3(1)x y z -+-+-=,即2360x y z ++-=. 4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 . 解 由于222(,,)236F x y z x y z =++-,则(,,)4,(,,)6,(,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4,(1,1,1)6,(1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)x yz -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2,(,,)4,(,,)6x y z F x y z x F x y z y F x y z z '''===0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B )A 、只有一条B 、只有二条C 、至少有三条D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线2226x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解 令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩该直线平行于xoz 平面.1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为()20,a a >则问题转换为求函数(),,,f x y z xyz =在条件()22xy yz xz a ++=下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩ 解得x y z === 根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x y ìï++=ïíï=+ïî在点(1,1,2)-的切线与法平面方程. 解 设222222(,,)239,(,,)3F x y z x y z G x y z z x y =++-=--,在点(1,1,2)-处有4,6,4x y z F F F ⅱ?==-=,6,2,4x y zG G G ⅱ?=-== (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y 抖?=-=-=-抖?所以切线的法向量为(8,10,7),切线方程为1128107x y z -+-==法平面方程为8(1)10(1)7(2)0x y z -+++-=或8107120x y z ++-=.1、=++⎰+∞0284x x dx.解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、2x xe dx +∞-=⎰= .解()()2222200111limlim lim 1222AA x x x A A A A xedx xedx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxxp 1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3). 4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn nx x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx x x n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin p xdx x+∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin pxdx x +∞⎰在1p >时绝对收敛,在1p ≤时条件收敛.二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立.2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a⎰+∞收敛,则 )(dx x f c⎰+∞必收敛.B 、如果 )(dx x f a⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()x e f x -在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Ax x x aace f x dx e f x dx e f x dx ---=+⎰⎰⎰故l i m ()()l i m (x x xaac A A e f x dxe f x dx e f x dx ---→+∞→+∞=+⎰⎰⎰ 即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞adx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( B )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x+∞⎰收敛,但无穷积分sin a x dx x +∞⎰发散(P275,例11). 三、讨论下列无穷限积分的敛散性(1)0+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x +∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x +∞+⎰收敛.(4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x x dx e +∞-⎰收敛,从而无穷积分11x xdx e +∞-⎰也收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性00 解 (1) 由于()22sgn sin 111x x x ≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令()()cos f x g x x ==,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分dx ⎰收敛.另一方面)21cos 2121002(100)2100100x x x xx x x ⎡⎤+=≥==+⎢⎥++++⎣⎦可证0100dx x +∞+⎰发散,而02100x dx x +∞+⎰收敛,故0⎰发散,原积分条件收敛.五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有 ()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.1、10=⎰. 解 由于1limx →=∞,故1x =为瑕点,由瑕积分定义知()1112000001lim lim 1lim 2x εεεεεε---→+→+→==--=-⎰⎰⎰0lim 11ε→+⎤=--=⎦2、10ln xdx =⎰= .解 由于0lim ln x x →+=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε→+→+→+⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0l i m l n (1)1εεεε→+=---=- 3、 是积分0sin xdx xπ⎰的瑕点. 解 0lim 1,lim sin sin x x x xx xπ→+→-==∞x π∴=是积分0sin xdx xπ⎰的瑕点.4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)m xdx m xπ->⎰在 时收敛,在 时发散. 解 0x =是积分201cos (0)mxdx m x π->⎰的瑕点且 22001cos 1cos 1lim lim 2m m x x x x x x x -→+→+--⋅== ∴瑕积分201cos (0)mxdx m x π->⎰在03m <<时收敛,在3m ≥时发散. 二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 11122211001111lim lim 21dx dx dx x x x x x εεεεεεε----→+→+-⎡⎤⎡⎤⎛⎫=+=--=-=∞⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦⎰⎰⎰ 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx 1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解 ⎰e x x 1ln ,⎰-101x e ,⎰20cos x是瑕积分. 3、下列瑕积分中,发散的是( C )A 、10sin dx x ⎰B 、11211--⎰x dx C 、2211ln dx x x⎰D 、1⎰解 对于积分0⎰,0x =为瑕点,由于 0lim 1x→= 故瑕积分0⎰收敛. 对于积分11211--⎰x dx,1x =±为瑕点且12111211lim(1)lim lim (1)limx x x x x x →-→→-+→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x→+→-→-→-→----⋅=====+++故该积分发散;对于积分10⎰,0x =为瑕点且 121lim(0)1x x →--= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰ba dx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b adx x f )(2发散;取()f x =,则瑕积分⎰b adxx f )(收敛,⎰a dx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x -→+→+⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2) 1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim (0)lim 1x x x xx xx →+→+-⋅==故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim(0)lim 0ln lim(1lim 1x x x x x x x →+→+→-→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim ,lim 111x x x xx x→+→-=∞=---,故0x =为瑕点.又由于1200ln lim (0)lim 01x x x x x →+→+-⋅==- 故积分10ln 1xdx x-⎰收敛.(4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π→-→--⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy xxyx = .解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011ln ln 11b a b b b y y a a a x x b dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰3、Γ函数与B 函数的关系为 .解 ()()(,)()p q B p q p q ΓΓ=Γ+4、12⎛⎫Γ ⎪⎝⎭= ,()1n Γ+=.解 12⎛⎫Γ= ⎪⎝⎭()1!n n Γ+=5、13,44B ⎛⎫= ⎪⎝⎭.解 由于()131313134444,134414444B ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭===ΓΓ ⎪ ⎪ ⎪Γ⎛⎫⎝⎭⎝⎭⎝⎭Γ+ ⎪⎝⎭,又由余元公式有1344sin 4ππ⎛⎫⎛⎫ΓΓ== ⎪⎪⎝⎭⎝⎭故13,44B ⎛⎫= ⎪⎝⎭.二、选择题1、21ln()d xy dy dx ⎰=( )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0ye dy +∞-⎰收敛,故含参变量无穷积分20x yedy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故 22400221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰ 3、2x e dx +∞-=⎰( )A 、πB 、πC 、2πD 、2π 解 22x e dx +∞-=⎰(课本P316例13)4、22x x e dx +∞--∞=⎰( C )A 、πB 、πC 、2π D 、2π 解 由于被积分函数为偶函数,故222202x x x e dx x e dx +∞+∞---∞=⎰⎰,对积分22x x e dx +∞-⎰,令x =则2112220000111311222242x tt tx e dx te dt t e dt t e dt +∞+∞+∞+∞----⎛⎫⎛⎫=⋅===Γ=Γ= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰222x x e d x+∞--∞=⎰5、1122(1)n x dx --⎰=( C )A 、12n +⎛⎫Γ ⎪⎝⎭B 、11,22n B +⎛⎫⎪⎝⎭ C 、111,222n B +⎛⎫⎪⎝⎭ D 、112,22n B +⎛⎫⎪⎝⎭ 解令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰ 三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)tx e xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于s i n ,t x a x e x e a t --≤≤<+∞而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于 232c o s 10,1101t t x t x t x ≤≤≤++ 而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛. 四、用Γ函数和B 函数求下列积分.(1)⎰(2)642sin cos x xdx π⎰解 (1) ()()1112200331113322422(1),22338x x dx B π⎛⎫⎛⎫⎛⎫⎛⎫ΓΓΓΓ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=-==== ⎪ΓΓ⎝⎭⎰⎰(2) ()64207553113111753222222222sin cos ,22265!512x xdx B ππ⎛⎫⎛⎫⎛⎫⎛⎫ΓΓ⋅⋅⋅Γ⋅⋅⋅Γ ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭====⎪Γ⎝⎭⎰1、2sin y xdy dx x ππππ-=⎰⎰.解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x xπππππππππ+-===-=⎰⎰⎰⎰⎰.2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()()()22222220012RR Df xy dxdy d f r rdr d f r d r ππθθ'''+==⎰⎰⎰⎰⎰⎰()()()()2221020f R f d f R f πθπ⎡⎤=-⎣⎦⎡⎤=-⎣⎦⎰4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰=.解 作极坐标变换,则()22211x y fdxdy d f r rdr πθ+≤=⎰⎰⎰⎰5、改变累次积分的顺序: ⎰⎰⎰⎰+224222),(),(y x y dx y x f dy dx y x f dy = .解2422202122(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y d x d y f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D ) A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.。
《数学分析(III )》试题2005.1一.在球面上找点,满足,,,使得该球面在点处的切平面与三个坐标平面围成的四面体的体积最小。
1222=++z y x ),,(0000z y x P 00>x 00>y 00>z 0P二.求球面()被平面2222a z y x =++0>a 4a z =与2az =所夹部分的面积。
三.计算二重积分()∫∫+Ddxdy x y x 24,其中是由D x 轴,直线x y =以及曲线1=+y x ,2=+y x 所围成的平面闭区域。
四.计算三重积分∫∫∫,其中。
Ωdxdydz e z ||}1|),,({222≤++=Ωz y x z y x五. 计算曲线积分∫+Lds z y 222,其中L 是球面()与平面2222a z y x =++0>a y x =相交而成的圆周。
六.计算曲面积分,其中∫∫Σ++dxdy z dzdx y dydz x 222Σ为锥面在平面与()之间的部分,定向为下侧。
222z y x =+0=z h z =0>h七.设是右半平面j i λλ)()(2),(24224y x x y x xy y x A +−+=}0|),({>=x y x D 上的向量场,试确定常数λ,使得为上函数的梯度场,并求出。
),(y x A D ),(y x u ),(y x u八.将|(sin |)(x x f =ππ≤≤−x )展开为Fourier 级数,并分别求级数∑∞=−12141n n ,()∑∞=−122141n n的和。
九.设∫∞++=12)1(cos )(dt t t xtx f ,),(∞+−∞∈x 。
(1)证明积分∫∞++12)1(cos dt t t xt关于x 在),(∞+−∞上一致收敛; (2)证明;0)(lim =+∞→x f x (3)证明在上一致连续。
)(x f ),(∞+−∞《数学分析(III )》试题答案2005.1一.(本题满分10分)33000===z y x 。
第 1 页 共 6 页数学分析下册期末试题及参考答案05一、 填空题(第1题每空2分,第2、3、4、5、6题每题4分,共26分)1、已知、已知 22xy u e-=,,则u x¶¶= ,uy¶=¶ , du = ;2、cos sin x ar y br q q =ìí=î,则(,)J r q = ;3、设L :cos sin x a t y b t=ìí=î 0t p ££,则22()Lx y ds +ò= ;4、120(,)ydyf x y dx òò交换积分顺序后为:交换积分顺序后为: ; 5、2221x y I x ydxdy +£=òò= ;6、令设222L x y a +=:,则Lydx xdy -=ò . 第 2 页 共 6 页二、判断题(对的打√,错的打×,每空3分,共15分)1、若函数(,)z f x y =的重极限和两个累次极限都存在,的重极限和两个累次极限都存在,则他们必相等;则他们必相等; ( )2、若函数(,)z f x y =在00(,)x y 可微,则(,)z f x y =在点00(,)x y 一定连续;一定连续; ( )3、若函数(,)z f x y =在闭区域D 上连续,则函数(,)z f x y =在D 上可积;上可积; ( )4、(,,)P x y z 是定义在双侧曲面S 上的函数,则上的函数,则(,,)(,,)SSP x y z dxdy P x y z dxdy =-òòòò; ( )5、若函数(,)z f x y =的偏导数在00(,)x y 的邻域内存在,则(,)f x y 在点00(,)x y 可微;( )三、计算题(第3、6题各7分,其余每题8分,共46分)1、求曲面22z x y =+与22z x y =+所围立体的体积. 得 分分 阅卷人阅卷人得 分分 阅卷人阅卷人第 3 页 共 6 页2、计算222VI x y z dxdydz =++òòò,其中V 是由222x y z z ++=-所围成的区域. 3、利用二重积分计算椭圆面:22221x y a b+£的面积的面积任教姓学考生答题不得过此线密封线课教师:学班号:名:号:装订线第 4 页 共 6 页4、计算第二型曲面积分:1SI dxdy z =òò,其中S 是椭球面2222221x y z a b c ++=的外侧. 5、计算22()SI x y ds =+òò,其中S 为立体221x y z +££的边界曲面.第 5 页 共 6 页6、利用高斯公式计算235SI xdydz ydzdx zdxdy =++òò,其中S 是单位球面2221x y z ++=的外侧. 四、证明题(四、证明题(66分)1、证明(3sin )(cos )x y dx x y dy ++是全微分,并求原函数(,)u x y得 分分 阅卷人阅卷人 考生答题不得过此线密封线任课教师:教学班号:姓名:学号:装订线得 分分 阅卷人阅卷人第 7 页 共 6 页1、求曲面22z x y =+与22z x y =+所围立体的体积 解:设所求体积为V,V,则则2222[()]xyD V x y x y dxdy =+-+òò,其中,22:1xy D x y +£(3分),令cos ,sin x r y r q q ==,则xy D 可表示为:02,01r q p ££££(4分),所以,,所以, 21200()V d r r rdr pq =-òò(5分)=6p (8分)分)2、计算222VI x y z dxdydz =++òòò,其中V 是由222x y z z ++=-所围成的区域解:令sin cos ,sin sin ,cos x r y r z r j q j q j ===(2分), 则V 可表示为:02,,0cos 2r pq p j p j ££££££-(4分),所以, 222VI x y z dxdydz =++òòò=2cos 3002sin d d r dr ppjp q j j -òòò(5分) =10p(8分)3、利用二重积分计算椭圆面:22221x y a b+£的面积解:设所求面积为S,则Ds dxdy =òò,其中D 为:22221x y a b +£(2分),令cos ,sin x ar y br q q ==(3分),则D 可表示为:02,01r q p ££££(4分),所以, 2100S d abrdr pq =òò(5分),所以S ab p =(7分). 4、计算第二型曲面积分:1S I dxdy z =òò,其中S 是椭球面2222221x y z a b c ++=的外侧解:记1S 为椭球面0z ³的一侧,2S 为椭球面0z £的一侧,则的一侧,则12111S S SI dxdy dxdy dxdy z z z ==+òòòòòò(2分),则12,S S 在xoy 面上的投影都是2222:1xy x y D a b +£(3分),所以222222221111xyxyDD I dxdy dxdy x y x y c c aba b =------òòòò22221x y c a b --21dr c r-=4ab cp(,则221x y z z ++=22x y =+,则2212x y z z ++=(22222)+2)+=(12)2p +23Sxdydz ydzdx +òò235Sxdydz ydzdx =++òò分),所以10I =D 44033p p ´=分)分)则y x ==¶¶,所以第 9 页 共 6 页则00(,)(3sin )(cos )3cos x yM Mu x y x y dx x y dy xdx x ydy =++=+òòòò(5分)分)=23sin 2x x y +(6分)(说明:原函数可以直接观察得出!)五、应用题(五、应用题(77分) 一页长方形白纸,要求印刷面积占2Acm ,并使所留页边空白为:上部与下部宽度之和为:a b h +=cm,左部与右部宽度之和为:c d r +=cm (A,r,h 为已知数),求页面的长(y)和宽(x),使它的面积最小.解:由题意,目标函数与约束条件分别为xy S =与.))(( , ,A h y r x h y r x =-->>(1分)作Lagrange 函数],))([(A h y r x xy L ---+=l (2分)则有分)则有ïîïíì=---==-+==-+=.0))(( ,0)( ,0)(A h y r x L r x x L h y y L yx l l l (3分)分) 由此解得由此解得, , 111r h Ah x y r l l l l l æö===-+ç÷ç÷++èø(5分)分) 于是有于是有. ,h rAhy r h Arx +=+=(6分)分)根据问题的实际意义知,此时页面的面积是最小的根据问题的实际意义知,此时页面的面积是最小的..(7分)分)。
2.
()L
x y ds +=⎰ 其中L 是以)1,0(),0,1(),0,0(B A O 为顶
点的三角形 ( A )
D. 0
3.
()L
y x dy -=⎰ .,其中
L 为直线,AB
(1,1),(2,2)A B ( D )
A. 1
B. 2
C.
1
2
D. 0 4 S
yzdxdy =⎰⎰ ,其中S 是球面222
1
x y z ++=的上半部分并取外侧为正向。
( D )
A. 2π
B. π
C. 1
D. 0 5.
L
ydx xdy +=⎰
. , 其中22:1L x y +=
( A )
A. 0
B. 1
C. 2
D. 3
二、
填空题:(本题共5小题, 每小题4分,共20分)
1. 22
()D
x y dxdy +=⎰⎰
8π, 其中22:4D x y +≤ 2.
V
xyzdxdydz =
⎰⎰⎰8
. 其
中
:02,02,02V x y z ≤≤≤≤≤≤
3. 将(,)D
I f x y d σ=
⎰⎰ 化成先对x 后对y 的累次积分为
244
2
2
(,)y y dy f x y dx +-⎰
⎰其中D 由
24,2y x y x =-=围成。
4. 设L 是半圆周
,0,
sin ,
cos :π≤≤⎩⎨
⎧==t t a y t a x L
则第一型曲线积分
()2
2L
x
y ds +=⎰ π
5. 格林公式建立了区域D 上二重积分与D 的边界曲线L
的第二型曲线积分之间的联系。
设函数(,),(,)P x y Q x y 在闭区域D 上连续,且有一阶连续的偏导数,则格林公式可表示为
L
Pdx Qdy +=⎰
(
)D
Q P
dxdy x y
∂∂-∂∂⎰⎰。
(本题共2小题,每题10分, 共20分)
1.计算D
I dxdy =
⎰⎰,其中D 由0,1x y y x ===及围成。
解:此三条直线的交点分别为(1,1),(0,1),(0,0),所围
区域如下图。
。
3分
先对x 后对y 积分:
1
1
1
12
y
x
I dy dx dx dy ===
⎰⎰⎰⎰ 。
6分
2. 计算
xdxdydz Ω
⎰⎰⎰,其中Ω 是三个坐标面与平面 x
+ y + z =1所围成的区域
解 画出区域 D : 0101
y x x ≤≤-≤≤ 。
3分
xdxdydz Ω
⎰⎰⎰
11
10
x y
x
dx
dy
xdz ---=⎰⎰
⎰。
6分
1100
(1)x
dx
x x y dy -=--⎰⎰ 。
8分 1
2
011(1)224
x x dx =-=⎰ 。
10
分
得分 阅卷人
(本题共2道小题,每题10分,共20分)
1. 计算
⎰⎰
d d ,S
z x y 其中 S 是球 面
++=222
1
x y z 在
≥≥0,0
x y 部分并取球面的外侧。
解 曲面 S 在第一、五卦限部分的方程分别为
==1122:,
:.
S z S z 。
3分
它们在 xy 平面上的投影区域都是单位圆在第一象限部分. 因积分是沿
1
S 的上侧和
2
S 的下侧进行, 故
=+⎰⎰⎰⎰⎰⎰
1
2
d d d d d d S
S S z x y z x y z x y 。
6分
(
=
-
⎰⎰
⎰⎰()
()
d d d xy xy D D x y x y
=⎰⎰()
2d xy D x y。
8分
=⎰⎰π1
20
2d =
.
3
r r π
θ 。
10分
2. 计算下列第一型曲面积分:
2
2(),S
x
y z ds +-⎰⎰其中S 为1,z = 22 1.x y +≤
解: S 由平面构成:2:1,S z = 2
2
1.x y +≤
2
21
2
2
2
2
2
()(1)(1),
2
S D
x y z ds x y dxdy d r rdr π
π
θ+-=+-=-⋅=-⎰⎰⎰⎰⎰⎰。
10分
五、
(本题共1小题,每小题15分,共15分)
计算曲线积分 ,L
I ydx xdy =
-⎰
其中L 为曲线
|1|y x =- (02)x ≤≤
沿x 增大的方向.
解 由于L :
1, 01
,1, 12x x y x x -≤≤⎧=⎨-<≤⎩。
3分
所以 L
I ydx xdy =-⎰
1 2 2
1
1
(1)10x xdx x dx xdx =-++--=⎰⎰⎰ 。
10分
(本题共1小题,每小题10分,共10分)
计算sin d d ,D x
I x y x =
⎰⎰其中 D 是直线,0,y x y ==
x π=所围成的闭区域.
解: 由被积函数可知,
先对 x 积分不行,
因此取D 为X – 型域 : 0:0y x
D x π
≤≤⎧⎨≤≤⎩ 。
3分
sin d d D x
x y x ∴
⎰⎰ 0sin d x x x π=⎰ 0d x y ⎰ 。
7分
sin d x x π
=⎰ 。
9分 []
cos 0
x π
=-
2= 。
10分。