【设计】自动控制系统课程设计转速单闭环直流电机调速系统设计与仿真
- 格式:docx
- 大小:176.44 KB
- 文档页数:8
目录一.课程设计的目的 (3)二.课程设计的任务、指标内容及要求 (3)三.MATLAB软件开发系统功能简介及函数应用..........................................3~4 四.调速控制系统的性能指标 (4)五. 单闭环直流电动机系统………………………………………………………………4~5六.电路设计和仿真 (5)6.1 电路原理………………………………………………………………………5~66.2 参数设定及Matlab 的仿真…………………………………………………6~86.3 仿真结果………………………………………………………………………8~9七.总结 (10)八.参考文献 (10)一. 课程设计的目的在学习完《电力电子技术》相关课程之后进行的一个重要的实践性教学环节,是电气自动化专业学生在整个学习过程中一项综合性实践环节,是工程技术应用型人才培养目标的重要组成部分,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。
1、通过课题设计,可提高学生综合运用知识的能力,能巩固课程知识,加深对理论知识的理解,巩固和扩展学生的知识领域、训练学生综合运用所学的理论知识,培养学生严谨的科学态度和提高独立工作的能力,提升学生发现问题和解决问题的能力,从而能初步解决一些实际问题。
2、通过设计,能初步掌握电力电子系统设计方法,培养学生查阅资料,文献检索的能力,特别是如何利用Internet检索需要的文献资料。
独立获取新知识、新信息的能力,熟悉国家有关技术和经济方面的方针政策和安全规程,训练使用设计手册的技术资料的能力;3、提高学生课程设计报告撰写水平,为以后其它学科写课程设计实验报告积累经验。
4、培养学生设计和绘制电路图的能力。
二. 设计的任务、指标内容及要求。
本课题的设计任务是利用MATLAB 6.5软件设计晶闸管单环直流调速主电路,设计主电路控制参数和PID调节器参数。
综合课程设计说明书题目:单闭环直流调速系统的设计与Matlab仿真(一)学院:机电与汽车工程学院专业班级:电气工程与自动化专业(1)班姓名:学号: 07240113指导教师:目录第一章概述 (2)第二章调速控制系统的性能指标 (3)2.1 直流电动机工作原理 (4)2.2 电动机调速指标 (4)2.3 直流电动机的调速 (5)2.4 直流电机的机械特性 (5)第三章单闭环直流电动机系统 (6)3.1 V-M系统简介 (6)3.2 闭环调速系统的组成及静特性 (7)3.3反馈控制规律 (8)3.4 主要部件 (9)3.5 稳定条件 (11)3.6 稳态抗扰误差分析 (12)第四章单闭环直流调速系统的设计及仿真 (14)4.1 参数设计 (14)4.2 参数计算及MATLAB仿真 (15)第五章总结 (24)参考文献第一章概述电动机是用来拖动某种生产机械的动力设备,所以需要根据工艺要求调节其转速,而用于完成这项功能的自动控制系统就被陈为调速系统。
目前调速系统分为交流调速和直流调速系统,由于直流调速系统的调速范围广、静差率小、稳定性好以及具有良好的动态性能,因此在相当长的时间内,高性能的调速系统几乎都采用直流调速系统,但近年来,随着电子工业与技术的发展,高性能的交流调速系统也日趋广泛。
单闭环直流电机调速系统在现代生活中的应用越来越广泛,其良好的调速性能及低廉的价格越来越被大众接受。
单闭环直流电机调速系统由整流变压器、晶闸管整流调速装置、电动机-发动机、闭环控制系统等组成,我们可以通过改变晶闸管的控制角来调节转速,本文就单闭环直流调速系统的设计及仿真做以下介绍。
第二章调速控制系统的性能指标2.1 直流电动机工作原理一、直流电机的构成(1)定子:主磁极、换向磁极、机座、端盖、电刷装置;(2)转子:电枢铁芯、电枢绕组、换向装置、风扇、转轴;(3)气隙二、直流电机的励磁方式按励磁方式的不同,直流电机可分为他励、并励、串励和复励电动机四种。
课题:一、单闭环直流调速系统的设计与Matlab 仿真(一)作者:学号:专业:班级:指导教师:摘要在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。
通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型,然后用此理论去设计一个实际的调速系统。
本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。
另外,设计过程中还要以Matlab 为工具,以求简明直观而方便快捷的设计过程。
摘要:Matlab 开环闭环负反馈静差稳定性V-M 系统目录摘要 (2)一、设计任务 (4)1、 ...................................................... 已知条件42、设计要求 (4)二、方案设计 (5)1、 ...................................................... 系统原理52、 ........................................................ 控制结构图 (6)三、参数计算 (7)四、P I调节器的设计 (9)五、系统稳定性分析 (11)六、小结 (12)七、参考文献 (13)1、已知条件已知一晶闸管-直流电机单闭环调速系统(V-M 系统)的结果如 图所示。
图中直流电机的参数:Pnom=2.2KW nnom=1500r/min ,Inom=12.5A , Unom=220V 电枢电阻Ra=1欧,V-M 系统主回路总电阻 R=2.9欧,V-M 系统电枢回路总电感L=40mH 拖动系统运动部分飞轮力矩GD2=1.5N.m2测速发动机为永磁式,ZYS231/110xi 型,整流触2、设计要求:(1) 生产机械要求调速围D=15 (2) 静差率s < 5%(3) 若 U*n=10V 时,n=nnom=1500r/min ,校正后相角稳定裕度丫 =45o ,剪切频率3 c >35.0rad/s ,超调量30% 调节时间ts < 0.1s倍号詮丨1、控制原理根据设计要求,所设计的系统应为单闭环直流调速系统,选定转速为反馈量,采用变电压调节方式,实现对直流电机的无极平滑调速。
单闭环直流调速系统的设计与仿真实验报告摘要:本文基于基本原理和方法,设计和仿真了一个单闭环直流调速系统。
首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,包括PID控制器的参数调整方法。
接下来使用Matlab/Simulink软件进行系统仿真实验,对系统的性能进行评估。
最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。
关键词:直流电机调速、单闭环控制系统、PID控制器、仿真实验一、引言直流电机广泛应用于机械传动系统中,通过调节电机的电压和电流实现电机的调速。
在实际应用中,需要确保电机能够稳定运行,并满足给定的转速要求。
因此,设计一个高性能的直流调速系统至关重要。
本文基于单闭环控制系统的原理和方法,设计和仿真了一个直流调速系统。
首先介绍了直流电机调速的基本原理,然后根据系统要求,设计了控制系统的结构和参数,并采用PID控制器进行调节。
接着使用Matlab/Simulink软件进行系统仿真实验,并对系统的性能进行评估。
最后根据仿真结果对系统进行分析和总结,并提出了可能的改进方法。
二、直流电机调速的基本原理直流电机调速是通过调节电机的电压和电流实现的。
电压变化可以改变电机的转速,而电流变化可以改变电机的转矩。
因此,通过改变电机的电压和电流可以实现电机的调速。
三、控制系统设计和参数调整根据系统的要求,设计一个单闭环控制系统,包括传感器、控制器和执行器。
传感器用于测量电机的转速,并将信息传递给控制器。
控制器根据测量的转速和给定的转速进行比较,并调节电机的电压和电流。
执行器根据控制器的输出信号来控制电机的电压和电流。
在本实验中,采用PID控制器进行调节。
PID控制器的输出信号由比例项、积分项和微分项组成,可以根据需要对各项参数进行调整。
调整PID控制器的参数可以使用试错法、频率响应法等方法。
四、系统仿真实验使用Matlab/Simulink软件进行系统仿真实验,建立直流调速系统的模型,并对系统进行性能评估。
单闭环直流调速系统的设计与仿真内容摘要:在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。
通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型。
然后用此理论去设计一个实际的调速系统,并用MATLAB仿真进行正确性的验证。
关键词:稳态性能稳定性开环闭环负反馈静差The design and simulation ofSingle loop dc speed control systemAbstract :In the higher demand for performance of speed, if the open loop dc system's steady performance does not meet the requirements, can use speed inverse feedback to improve steadystate precision, but although the speed inverse feedback system adopts proportion regulator,it still have off, in order to eliminate static, can use integral regulator to replace proportion regulator.Based on the theoretical analysis of the single closed loop system which is made up of controllable power, the regulator which is made up of operational amplifier, a rectifier triggered by thyristor , motor model and tachogenerators module, compare the difference of the open loop system and the closed loop system,the original system and the this paper compares the theory of open loop system and the closed-loop system, the difference of primitive system and calibrated system, conclude the optimal model of the dc motor speed control system. Then use this theory to design a practical control system, and verify the validity with MATLAB simulation.Key words: steady-statebehaviour stability open loop Close-loop feedback offset目录1绪论 (1)1.1直流调速系统概述 (1)1.2 MATLAB简介 (1)2 单闭环控制的直流调速系统简介 (2)2.1 V—M系统简介 (2)2.2转速控制闭环调速系统的调速指标 (2)2.3闭环调速系统的组成及静特性 (3)2.4反馈控制规律 (4)2.5主要部件 (5)2.5.1 比例放大器 (5)2.5.2 比例积分放大器 (5)2.5.3额定励磁下直流电动机 (7)2.6稳定条件 (8)2.7稳态抗扰误差分析 (8)3 单闭环直流调速系统的设计及仿真 (10)3.1参数设计及计算 (10)3.1.1参数给出 (10)3.1.2 参数计算 (10)3.2有静差调速系统 (11)3.2.1有静差调速系统的仿真模型 (11)3.2.2主要元件的参数设置 (12)3.2.3仿真结果及分析 (12)3.2.4 动态稳定的判断,校正和仿真 (13)3.3无静差调速系统 (15)3.3.1 PI串联校正的设计 (15)3.3.2无静差调速系统的仿真模型 (17)3.3.3主要元件的参数设置 (18)3.3.4仿真结果及分析 (18)3.4有静差调速系统和无静差调速系统的动态分析设计 (19)3.4.1有静差调速系统的仿真模型 (19)3.4.2参数设置 (19)3.4.3仿真结果及分析 (19)参考文献 (23)致谢 (24)1绪论1.1直流调速系统概述从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统、张力控制系统等多种类型,而各种系统往往都是通过控制转速来实现的,因此调速系统是最基本的拖动控制系统。
单闭环直流调速系统课程设计1. 引言单闭环直流调速系统是电力工程中常见的一种控制系统,用于控制直流电机的转速。
本文将对单闭环直流调速系统进行课程设计,包括系统建模、控制器设计、仿真分析等内容。
2. 系统建模2.1 直流电机模型首先,我们需要对直流电机进行建模。
直流电机可以简化为一个电动势源、一个电阻和一个反电动势。
根据基尔霍夫定律和欧姆定律,可以得到直流电机的数学模型如下:V a=I a R a+k eωm其中,V a为输入电压,I a为输入电流,R a为线圈电阻,k e为反电动势系数,ωm为转速。
2.2 转速传感器模型在实际应用中,我们通常使用转速传感器来测量转速。
假设转速传感器测得的转速为ωr,则有:ωr=k tωm其中,k t为传感器系数。
2.3 控制器模型为了实现对直流电机转速的调节,我们需要设计一个控制器。
这里我们选择PID控制器作为控制器的模型。
PID控制器的输出为控制电压V c,根据PID控制器的定义,有:V c=K p(ωr∗−ωr)+K i∫(ωr∗−ωr)t0dt+K dddt(ωr∗−ωr)其中,K p、K i、K d分别为比例、积分和微分系数,ωr∗为期望转速。
3. 控制器设计3.1 参数整定方法在实际应用中,我们需要根据系统的要求来确定PID控制器的参数。
常用的参数整定方法有经验法、试误法和自整定法等。
这里我们选择试误法进行参数整定。
首先,将PID控制器中的积分项和微分项置零,只保留比例项。
通过调节比例系数K p,观察系统响应特性。
如果系统过冲较大,则减小比例系数;如果系统响应较慢,则增大比例系数。
接下来,在合适的比例系数下,将积分项和微分项逐渐引入,并调节相应的系数。
最终得到满足要求的PID控制器参数。
3.2 仿真分析为了验证所设计的控制器的性能,我们进行仿真分析。
选择合适的仿真软件,建立单闭环直流调速系统的数学模型,并将所设计的控制器加入系统中。
通过对不同输入信号(如阶跃信号、正弦信号等)的响应分析,可以评估控制系统的性能。
《计算机控制技术》课程设计(单闭环直流电机调速系统)摘要运动控制系统中应用最普遍的是自动调速系统。
在工程实践中,有许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的静、动态性能。
由于直流电动机具有极好的运行性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。
当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,并有望在不太长的时间内取代直流调速系统,但是就目前来讲,直流调速系统仍然是自动调速系统的主要方式。
在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。
而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
随着电子技术和计算机技术的高速发展,直流电动机调速逐步从模拟化走向数字化,特别是单片机技术的应用,使直流电动机调速技术进入一个新的发展阶段。
因此,本次课程设计就是针对直流电动机的起动和调速性能好,过载能力强等特点设计由单片机控制单闭环直流电动机的调速系统。
本设计利用AT89C52单片机设计了单片机最小系统构成直流电动机反馈控制的上位机。
该上位机具有对外部脉冲信号技术和定时功能,能够将脉冲计数用软件转换成转速,同时单片机最小系统中设计了键盘接口和液晶显示接口。
利用AT89C52单片机实现直流电机控制电路,即直流电动机反馈控制系统的下位机,该下位机具有直流电机的反馈控制功能,上位机和下位机之间采用并行总线的方式连接,使控制变得十分方便。
本系统能够用键盘实现对直流电机的起/停、正/反转控制,速度调节既可用键盘数字量设定也可用电位器连续调节并且有速度显示电路。
本系统操作简单、造价低、安全可靠性高、控制灵活方便,具有较高的实用性和再开发性。
关键词:直流电动机AT89C52 L298N 模数转换1课题来源1.1设计目的计算机控制技术课程是集微机原理、计算机技术、控制理论、电子电路、自动控制系统、工业控制过程等课程基础知识一体的应用性课程,具有很强的实践性,为了使学生进一步加深对计算机控制技术课程的理解,掌握计算机控制系统硬件和软件的设计思路,以及对相关课程理论知识的理解和融会贯通,提高学生运用已有的专业理论知识分析实际应用问题的能力和解决实际问题的技能,培养学生独立自主、综合分析与创新性应用的能力,特设立《计算机控制技术》课程设计教学环节。
《自动控制》课程论文姓名:王耀明学号:14082101440(35)2011年12月15日目录1 绪论 (3)1.1 选题依据 (3)1.2 题目要求介绍 (3)1.3 论文主要完成的工作 (3)2 系统原理 (3)2.1 系统简介 (3)2.2 系统的整体设计 (4)2.2.1 转速闭环调速环节简介 (4)2.2.2 无静差调速环节简介 (4)2.2.3 电流截止负反馈简介 (5)2.3 参数计算 (5)2.4 系统的静态结构框图 (6)3 系统仿真 (6)3.1 仿真软件MATLAB简介 (6)3.2 仿真模型 (6)3.3 系统仿真图 (7)4 总结 (8)参考文献 (8)单闭环无静差直流调速系统仿真研究1 绪论1.1 选题依据在生产中,很多设备都需要用直流电机进行拖动。
为了保证产品质量,提高生产效率,要求这些设备在不同的场合能以不同的速度工作,或者要求在变化的负载下能保持设定的速度。
在调整生产设备的速度时,不仅要求能保证达到最高与最低速度,还要求有一定的调速精度,而单闭环无静差直流调速系统便可实现这一动态与稳态性能要求。
1.2 题目要求介绍第1组电动机参数:功率kw P N 18=,额定电压v U N 220=,额定电流A I N 94=,额定转速min /0001r n N =,电枢电阻Ω=0.15a R ,主电路总电阻Ω=0.45R ,40=s k 。
最大给定电压v U nm 15*=,整定电流反馈电压v U im 10=。
要求系统调速范围D=20,静差率≤10%,N dbl I I 5.1=,N dcr I I 1.1=。
1.3 论文主要完成的工作✧ 单闭环调速系统的组成和各环节的介绍;✧ 参数计算,依据以上参数和指标要求完成单闭环调速系统相关参数计算✧ 画出调速系统电路原理图和静态结构图✧ 根据参数计算结果,在MATLAB 上仿真实现,检验调速系统的动,静态性能指标。
论文中要附有调速系统在启动过程中电流和转速变化的仿真图,如有需要,应加入电流截止负反馈。
单闭环直流调速系统的设计与仿真实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]比例积分控制的单闭环直流调速系统仿真一、实验目的1.熟练使用MATLAB 下的SIMULINK 仿真软件。
2.通过改变比例系数K K 以及积分时间常数τ的值来研究K K 和τ对比例积分控制的直流调速系统的影响。
二、实验内容1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析三、实验要求建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。
四、实验原理图4-1 带转速反馈的闭环直流调速系统原理图调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。
转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。
在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。
当t=0时突加输入K in 时,由于比例部分的作用,输出量立即响应,突跳到K ex (K )=K K K in ,实现了快速响应;随后K ex (K )按积分规律增长,K ex (K )=K K K in +(K /τ)K in 。
在K =K 1时,输入突降为0,K in =0,K ex (K )=(K 1/τ)K in ,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。
五、实验各环节的参数及K K和1/τ的参数的确定各环节的参数:直流电动机:额定电压K N=220V,额定电流K dN=55A,额定转速K N=1000r/min,电动机电动势系数K e= min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数K s=。
电枢回路总电阻R=Ω,电枢回路电磁时间常数K l=电力拖动系统机电时间常数K m=。
单闭环直流调速系统课程设计一、课程设计简介本次课程设计的主要内容是单闭环直流调速系统,旨在通过理论学习和实践操作,使学生掌握单闭环直流调速系统的基本原理、控制方法和实现技术,提高学生的电子技术实践能力和综合素质。
二、课程设计目标1.了解单闭环直流调速系统的基本原理和控制方法;2.熟悉单闭环直流调速系统的硬件组成和软件编写;3.能够根据要求进行电路设计、仿真和实验操作;4.培养学生分析问题、解决问题的能力;5.提高学生的团队协作精神和沟通能力。
三、课程设计内容1.单闭环直流调速系统的基本原理(1)直流电机基本原理(2)PWM技术及其应用(3)PID控制器原理及应用2.单闭环直流调速系统硬件组成(1)电源模块(2)信号采集模块(3)PWM模块(4)PID控制器模块(5)输出驱动模块3.单闭环直流调速系统软件编写(1)编写程序框图设计文档(2)编写控制程序(3)编写PWM程序(4)编写PID控制器程序4.电路设计、仿真和实验操作(1)根据要求进行电路设计和仿真(2)进行实验操作,测试系统性能5.课程设计报告撰写(1)系统框图设计和电路原理图绘制(2)软件设计文档、程序代码和注释说明(3)实验数据记录和分析四、课程设计步骤及要点1.学习单闭环直流调速系统的基本原理和控制方法,了解硬件组成和软件编写;2.根据课程要求进行电路设计、仿真和实验操作;3.撰写课程设计报告,包括系统框图设计、电路原理图绘制、软件设计文档、程序代码和注释说明,以及实验数据记录和分析;4.在整个课程设计过程中,要注意安全问题,严格遵守实验室规定。
五、课程设计评价方法1.考核学生对单闭环直流调速系统的理解深度;2.考核学生的实验操作能力;3.考核学生的团队协作精神和沟通能力;4.评价学生的课程报告质量。
六、总结本次课程设计以单闭环直流调速系统为主题,通过理论学习和实践操作,使学生掌握了单闭环直流调速系统的基本原理、控制方法和实现技术,提高了学生的电子技术实践能力和综合素质。
实验一、转速反馈单闭环直流调速系统仿真一、实验内容:直流电机模型框图如下图所示,仿真参数为R=0.6,T l=0.00833,T m=0.045,Ce=0.1925。
本次仿真采用算法为ode45,仿真时间5s。
1.开环仿真:用Simulink实现上述直流电机模型,直流电压U d0取220V,0~2.5s,电机空载,即I d=0;2.5s~5s,电机满载,即I d=55A。
画出转速n的波形,根据仿真结果求出空载和负载时的转速n以及静差率s。
改变仿真算法,观察效果(运算时间、精度等)。
实验步骤:(1)按照上图把电机模型建立好,其中u d0设置为常数,并把其幅值设置为220,把其它相应的环节也设置好。
把I d设置为“阶跃信号”,且在0~2.5s之间其幅值为0,而2.5~5s之间其幅值为55,在对系统中其它参数进行设置。
为了观察输出地波形,在输出处接上一个示波器。
(2)对仿真模式进行设置,系统默认的仿真算法为ode45,只需要把仿真时间设置为5s即可。
(3)对系统进行仿真。
仿真结果:(1)仿真算法为ode45:图1 上图即为电机转速的仿真结果图,同图上我们可以看出来分为了两个阶段,其中第一个阶段(0~2.5s)为空载转速,第二阶段(2.5~5s)为满载转速。
空载转速为1142n/min。
在2.5s时加入了负载,通过仿真结果我们可以看出来,负载转速为972n/min。
这可以看出来在加入负载之后,电机的转速开始下降。
根据电机转差率的公式s=(n0-n)/ n0=(1142-972)/1142=0.149。
转差率还是比较小的,说明该电机效率比较高。
通过观察该仿真的时间,其运算时间为T=9.134*10^-7s。
(2)仿真算法为ode23:仿真结果图如图2所示,由图我们可以看出来,结果基本上和计算方法为ode45的结果一样,但是运算时间却不一样,该算法的运算时间为T=3.636*10^-7s。
运算时间比ode45的时间短。
《单闭环直流调速系统课程设计》摘要:本课程设计旨在深入研究单闭环直流调速系统的原理、设计方法和实现技术。
通过对系统的理论分析和实际设计,掌握直流调速系统的基本特性和性能指标的优化方法。
课程设计包括系统的方案选择、参数计算、硬件电路设计、软件编程以及系统调试与性能测试等环节。
通过本次课程设计,培养学生的工程实践能力、创新思维和解决实际问题的能力,为今后从事相关领域的工作打下坚实的基础。
一、概述直流调速系统在工业生产、交通运输、电力电子等领域具有广泛的应用。
它能够实现对直流电动机转速的精确控制,满足不同工况下对转速稳定性和调速精度的要求。
单闭环直流调速系统是一种常见的调速系统结构,具有简单可靠、性能稳定等优点。
本课程设计将围绕单闭环直流调速系统展开,深入探讨其设计与实现的相关技术。
二、单闭环直流调速系统的工作原理单闭环直流调速系统主要由直流电动机、转速反馈环节、放大器、触发器和晶闸管整流装置等组成。
其工作原理如下:转速反馈环节将直流电动机的实际转速转换为电信号反馈到放大器输入端,与给定转速信号进行比较,得到偏差信号。
放大器对偏差信号进行放大处理后,输出触发脉冲信号控制晶闸管整流装置的导通和关断,从而改变直流电动机的电枢电压,实现对电动机转速的调节。
通过转速反馈环节的作用,系统能够使电动机的实际转速跟随给定转速变化,保持系统的稳定性和良好的调速性能。
三、系统方案的选择在进行单闭环直流调速系统课程设计时,首先需要进行系统方案的选择。
根据设计要求和实际应用场景,可以选择不同的调速方案。
常见的方案有转速负反馈单闭环调速系统、电流负反馈单闭环调速系统等。
转速负反馈单闭环调速系统具有结构简单、稳定性好、调速范围广等优点,适用于大多数调速控制场合;电流负反馈单闭环调速系统则能够提高系统的动态性能,适用于对动态响应要求较高的系统。
在本课程设计中,选择转速负反馈单闭环调速系统作为设计方案。
四、系统参数的计算系统参数的计算是单闭环直流调速系统设计的重要环节。
带电流截止负反馈的转速单闭环直流调速系统设计与仿真 一、设计要求系统稳定并无静差 二、给定参数17,220,3000/min N N N P kw U V n r ===,I N =87.3A ,电枢回路电阻0.087a R =Ω,电感0.0032a L H =,励磁回路电阻181.5Ω,电动机的转动惯量20.76.J Kg m =三、闭环直流调速系统稳态参数的计算 1)额定负载时的稳态速降应为:m i n/12.6min /)02.01(1002.03000)1(r r s D s n n N cl =-⨯⨯≤-=∆2)闭环系统应有的开环放大系数:计算电动机的电动势系数: r V r V n R I U C N a N N e min/071.0min/3000087.03.87220⋅=⋅⨯-=-=闭环系统额定速降为:min /97.106min /071.0087.03.87r r C R I n e N op =⨯==∆闭环系统的开环放大系数为:5.16112.697.1061=-≥-∆∆=clop n n K003.0/max max n ==n U α3)计算运算放大器的放大系数和参数 运算放大器放大系数K p 为:5.16/e p ≥=s K KC K α电枢回路的总电感为0.0032H电磁时间常数为037.0/l ==R L T 27/1l ==τK4)电流截止负反馈 四加电网扰动(第8s电压220→240)负载扰动给定值扰动五、将PI调节器参数改变1.电网扰动(第8s电压220→240)2.负载扰动3.给定值扰动转速、电流双闭环直流调速系统设计与仿真一、设计要求系统稳定并无静差 二、给定参数17,220,3000/min N N N P kw U V n r ===,I N =87.3A ,电枢回路电阻0.087a R =Ω,电感0.0032a L H =,励磁回路电阻181.5Ω,电动机的转动惯量20.76.J Kg m =三、电流调节器ACR 参数计算允许电流过载倍数λ=2;设调节器输入输出电压im nm **U U ==10V ,电力电子开关频率为f=l kHz .首先计算电流反馈系数β和转速反馈系数α:06.0 I n im *==ββλU N U n nm *α= α=0.003s T 001.0s = ,电流环小时间常数为s T T T oi 002.0s i =+=∑电流调节器超前时间常数为s T K l i 015.0/1i ===τ 而对电流环开环增益局l K =250/5.0=∑i T ,于是ACR 的比例系数为:94.4/i l i ==s K R K K βτ 四、转速调节器ASR 参数计算 选中频段宽度h=5。
课题:一、单闭环直流调速系统的设计与Matlab 仿真(一)作者: 学号: 专业: 班级: 指导教师:在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。
通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型,然后用此理论去设计一个实际的调速系统。
本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。
另外,设计过程中还要以Matlab为工具,以求简明直观而方便快捷的设计过程。
摘要:Matlab 开环闭环负反馈静差稳定性V-M 系统摘要 (2)一、 ..................................................... 设计任务 41、 ...................................................... 已知条件42、设计要求 (4)二、 ..................................................... 方案设计 51、 ...................................................... 系统原理 52、 ........................................................ 控制结构图 6三、 ..................................................... 参数计算7四、 ....................................................... PI调节器的设计.. (9)五、 ................................................ 系统稳定性分析11六、 ......................................................... 小结12七、 ..................................................... 参考文献13一、设计任务1、已知条件已知一晶闸管-直流电机单闭环调速系统(V-M系统)的结果如图所示。
【关键字】设计东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计设计题目:转速单闭环直流电机调速系统设计与仿真学生:张海松专业:自动化班级学号:指导教师:王立夫设计时间:2012年6月27日东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计任务书专业:自动化班级:509 学生姓名:设计题目:转速单闭环直流电机调速系统设计与仿真一、设计实验条件实验设备:PC机二、设计任务直流电机额定电压,额定电枢电流,额定转速,电枢回路总电阻,电感,励磁电阻,励磁电感,互感,,允许过载倍数。
晶闸管装置放大系数:,时间常数:,设计要求:对转速环进行设计,并用Matlab仿真分析其设计结果。
目录绪论--------------------------------------------------------------------------------11.转速单闭环调速系统设计意义-----------------------------12.原系统的动态结构图及稳定性的分析-----------------------22.1 转速负反应单闭环控制系统组成-----------------------22.2 转速负反应单闭环控制系统的工作原理-----------------33.调节器的选择及设计-------------------------------------33.1调节器的选择- --------------------------------------33.2 PI调节器的设计--- ---------------------------------44.Mat lab仿真及结果分析----------------------------------74.1 simulink实现上述直流电机模型-----------------------74.2 参数设置并进行仿真---------------------------------74.3结果分析--------------------------------- ---------155.课设中遇到的问题--------------------------------------166.结束语- ---------------------------------------------17参考文献- ---------------------------------------------17转速单闭环直流电机调速系统设计与仿真绪论直流电动机由于调速性能好,启动、制动和过载转矩大,便于控制等特点,是许多高性能要求的生产机械的理想电动机。
课程设计任务书学生姓名:丁志辉专业班级:电气1005班指导教师:饶浩彬工作单位:自动化学院题目: 带电流截止负反馈转速单闭环直流调速系统建模与仿真初始条件:1.技术数据直流电动机:P N=3KW , U N=220V , I N= , n N=1500r/min , R a=Ω堵转电流 I dbl=2I N, 截止电流 I dcr= ,GD2=三相全控整流装置:K s=40 , R rec=1. 3Ω平波电抗器:R L=0. 3Ω电枢回路总电阻 R=Ω,总电感 L=200mH ,2.技术指标稳态指标:无静差(静差率s≤2%, 调速范围D≥10)动态指标:系统稳定要求完成的主要任务:1.技术要求:(1) 该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作(2) 根据指标要求进行动态校正,选择调节器的参数,并确定电流截止负反馈环节的相关参数,(3) 系统在5%负载以上变化的运行范围内电流连续2.设计内容:(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图(2) 根据带电流截止负反馈转速单闭环直流调速系统原理图, 分析转速调节器和电流截止负反馈的作用,(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB来进行调节器的参数调节。
(4) 绘制带电流截止负反馈转速单闭环直流调速系统的电气原理总图(要求计算机绘图)(5) 整理设计数据资料,课程设计总结,撰写设计计算说明书时间安排:课程设计时间为一周半,共分为三个阶段:(1)复习有关知识,查阅有关资料,确定设计方案。
约占总时间的20%(2)根据技术指标及技术要求,完成设计计算。
约占总时间的40%(3)完成设计和文档整理。
约占总时间的40%指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要............................................. 错误!未定义书签。
《MATLAB工程应用》
转速单闭环直流调速系统仿真
一、选题背景
此次课程设计要求设计转速单闭环直流电路,与转速双闭环直流电路相比,转速单闭环直流电路的电源利用率更高,应用更为广泛。
我们应该对转速单闭环直流理论知识详细掌握,以及对MATLAB的simulink进行熟练的操作。
二、原理分析
任何一个自动控制系统的调试都是先从弄清这个自动控制系统由哪些器件或设备组成,其大致的工作原理及整个系统的工作过程如何开始的。
对自动控制系统基本组成及工作原理的分析称为定性分析。
下面就结合本章介绍的相关知识,对一个实际的自动控制系统——单闭环直流调速系统进行工作原理上的定性分析。
三、过程论述
原理图
仿真图
四、结果分析
五、课程设计总结
当负载突增时,积分控制的无静差调速系统动态过程曲线如图。
在稳态运行时,转速偏差电压必为零。
如果不为零,则继续变化,就
不是稳态了。
在突加负载引起动态速降时产生,达到新的稳态时,又恢复为零,但已从上升到,使电枢电压由上升到,以克服负载电流增加的压降。
比例积分控制综合了比例控制和积分控制两种规律的优点,又克服了各自的缺点,扬长避短,互相补充。
比例部分能迅速响应控制作用,积分部分则最终消除稳态偏差。
带电流截止负反馈的转速单闭环直流调速系统的设计和仿真1.设计原理带电流截止负反馈的转速单闭环直流调速系统由速度反馈环和电流反馈环组成。
其基本原理是,通过测量电机驱动器的输出转速,并与给定的转速进行比较,从而产生误差信号。
误差信号经过比例、积分和微分三个环节进行处理后,作为电机驱动器的控制量,用于调节电机的输入电压。
具体的设计步骤如下:(1)确定电机的调速要求和性能指标,包括稳态误差、调速范围、动态响应时间等。
(2)根据电机的参数和特性曲线,确定理想的速度控制系统传递函数。
(3)选择合适的调节器类型和参数,并确定反馈信号的获取方式。
(4)设计速度环和电流环的控制回路,包括比例、积分和微分环节的参数设置。
(5)进行系统稳态和动态性能的仿真和分析。
2.仿真过程在进行仿真前,需要先确定电机的参数和特性曲线,并建立相应的数学模型。
然后,在Simulink等软件中搭建整个调速系统的模型。
具体步骤如下:(1)根据电机的特性曲线确定电机的传递函数模型,例如:Gs=1/(Js+B)其中,Gs为电机的机械转速传递函数,J为转动惯量,B为阻尼系数。
(2)设计速度环的控制回路,包括比例环节、积分环节和微分环节。
通常采用PID控制器,其传递函数为:Gc=Kp+Ki/s+Kd*s其中,Kp、Ki和Kd分别为比例、积分和微分环节的增益。
(3)设计电流环的控制回路,采用电流截止负反馈的方式。
电流环的控制器传递函数为:Gc=Kc*(1+s*Rf)其中,Kc为增益,Rf为电流截止反馈的滤波器。
(4)将速度环和电流环相连接,构成整个闭环控制系统。
(5)进行系统的仿真,观察系统的稳态和动态响应,并根据需要进行参数调整和优化。
3.仿真结果和分析根据以上步骤进行仿真后,可以得到系统的稳态和动态响应曲线。
通过观察和分析这些曲线,可以评估系统的性能和效果。
首先,可以通过误差曲线来评估系统的稳态性能,即在给定转速下是否存在稳态误差。
如果误差较大,需要调整PID控制器的参数来改善系统的稳定性。
【关键字】设计东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计设计题目:转速单闭环直流电机调速系统设计与仿真学生:张海松专业:自动化班级学号:指导教师:王立夫设计时间:2012年6月27日东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计任务书专业:自动化班级:509 学生姓名:设计题目:转速单闭环直流电机调速系统设计与仿真一、设计实验条件实验设备:PC机二、设计任务直流电机额定电压,额定电枢电流,额定转速,电枢回路总电阻,电感,励磁电阻,励磁电感,互感,,允许过载倍数。
晶闸管装置放大系数:,时间常数:,设计要求:对转速环进行设计,并用Matlab仿真分析其设计结果。
目录绪论--------------------------------------------------------------------------------11.转速单闭环调速系统设计意义-----------------------------12.原系统的动态结构图及稳定性的分析-----------------------22.1 转速负反应单闭环控制系统组成-----------------------22.2 转速负反应单闭环控制系统的工作原理-----------------33.调节器的选择及设计-------------------------------------33.1调节器的选择- --------------------------------------33.2 PI调节器的设计--- ---------------------------------44.Mat lab仿真及结果分析----------------------------------74.1 simulink实现上述直流电机模型-----------------------74.2 参数设置并进行仿真---------------------------------74.3结果分析--------------------------------- ---------155.课设中遇到的问题--------------------------------------166.结束语- ---------------------------------------------17参考文献- ---------------------------------------------17转速单闭环直流电机调速系统设计与仿真绪论直流电动机由于调速性能好,启动、制动和过载转矩大,便于控制等特点,是许多高性能要求的生产机械的理想电动机。
尽管近年来,以变频器为核心的高性能交流调速技术不断普及,在许多调速要求指标不高的场合下广泛应用,大有取代直流电机调速的势头,然而,直流调速毕竟在理论和实践上都比较成熟,而且从控制的角度来看,它是交流调速的基础,交流调速的许多思想和方法都源自直流调速。
数字仿真是研究高性能电机控制系统的重要一环。
为了设计出品质优良的电机控制系统,首先要对电机控制系统进行分析和试验。
电机控制系统的数字仿真就是将电机控制系统的数学模型放到计算机上进行试验的技术,以获得研究系统所必须的信息.是一种既经济又安全的试验方法。
本文对单闭环直流电机调速系统的SIMULINK 仿真进行了探讨,着重于模型的搭建以及参数的调试。
1.转速单闭环调速系统设计意义为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反应的方式不同可分为转速反应,电流反应,电压反应等。
在单闭环系统中,转速单闭环使用较多。
在对调速性能有较高要求的领域常利用直流电动机作动力,但直流电动机开环系统稳态性能不能满足要求,可利用速度负反应提高稳态精度,而采用比例调节器的负反应调速系统仍是有静差的,为了消除系统的静差,可用积分调节器代替比例调节器.反应控制系统的规律是要想维持系统中的某个物理量基本不变,就引用该量的负反应信号去与恒值给定相比较,构成闭环系统。
对调速系统来说,若想提高静态指标,就得提高静特性硬度,也就是希望转速在负载电流变化时或受到扰动时基本不变。
要想维持转速这一物理量不变,最直接和有效的方发就是采用转速负反应构成转速闭环调节系统。
2.原系统的动态结构图及稳定性的分析2.1 转速负反应单闭环控制系统组成转速反应闭环调速系统是一种基本的反应控制系统,它具有三个基本特征。
一,只用比例放大器的反应控制系统,其被调量仍是有静差的。
二,反应控制系统的作用是:抵抗扰动,服从给定。
三,系统的精度依赖于给定和反应检测精度。
图2.1是用集成电路运算放大器作为电压放大器的转速负反应闭环控制有静差直流调速系统。
图2.1转速负反应闭环控制有静差直流调速系统原理图ASR是调节器,当其选用P调节器时,就是一个有静差的单闭环调速系统;当其选用PI 调节时,就是一个无静差的调速系统;GT是触发器装置;V是由电力电子器件组成的变换器,其输入接三相(或单相)交流电,输出为可控的直流电压;TG是测速发电机,它与电动机同轴安装。
是给定电位器,通常由一个稳压电源供电,以保证给定信号的精度。
与TG 相串联的电位器是为获得调速负反应系数而设置的一个电位器。
已知测速发电机输出电压与电动机M的转速n成正比,即有,式中为直流永磁式发电机的电动势常数。
假设电位器的分压系数为,则反应电压,式中称为转速负反应系数。
2.2 转速负反应单闭环控制系统的工作原理引入转速负反应信号以后,放大器的输入信号是给定信号和反应信号之差,即得到转速偏差。
经过发达器ASR产生V所需要的控制电压,V的输出则为空空的直流电压,该电压即是直流电动机等效电路的主回路电压,用以控制直流电动机的转速,从而构成转速负反应控制的单闭环直流调速系统。
根据闭环控制规律,当电动机负载增加时,转速n 则降低,反应电压值将减小,偏差将增大,控制电压增大,V输出的直流电压增大,则电动机的转速上升,最终回到原来的运行速度,维持转速恒定。
上述调节过程如下:3.调节器的选择及设计3.1 调节器的选择在设计闭环调速系统时,常常会遇到动态稳定性与稳态性能指标发生矛盾的情况,这时,必须设计一个合适的动态校正装置,用它来改造系统,使它同时满足动态稳定性和稳态性能指标两方面要求。
动态校正的方法很多,而且对于一个系统来说,能够符合要求的校正方案也不是唯一的。
在电力拖动自动控制系统中,最常用的是串联校正和反应校正。
串联校正比较简单,也容易实现。
对于带电力电子变换器的直流闭环调速系统,由于其传递函数的阶次较低,一般采用PID 调节器的串联校正方案就能完成动态校正的任务。
PID 调节器中有PD 、PI 和PID 三种类型。
由于PD 调节器构成的超前校正,可提高系统的稳定裕度,并获得足够的快速性,但稳定精度可能受到影响;由PI 调节器构成的滞后校正,可以保证稳定精度,却是以对快速性的限制来换取系统稳定的,用PID 调节器实现的滞后和超前校正则有二者的优点,可以全面提高系统的控制性能,但具体实现与调试要复杂一些。
一般调速系统的要求以动态稳定性和稳态精度为主,对快速性要求差一些,所以采用PI 调节器。
如图3.1所示。
图3.1比例积分(PI )调节器线路图3.2 PI 调节器的设计已知系统为不稳定的。
设计PI 调节器,使系统能在保证稳定性能要求下稳定运行。
已知参数:直流电机额定电压220V N U =,额定电枢电流136A N I =,额定转速1460rpm N n =,电枢回路总电阻0.5Ωa R =,电感0.012H a L =,励磁电阻240f R =Ω,励磁电感120H f L =,互感 1.8H af L =,0.132Vmin r e C =,允许过载倍数 1.5λ=。
晶闸管装置放大系数:40s K =,时间常数:0.03s l T =,0.18s m T =设计过程:①已知晶闸管放大系数:40s K =②设计反馈系数按给定电位器12V n =*U 对应期望的输出转速1460rpmn =设计反馈系数,有 ③测速发电机反馈电位器的整定④运算放大器放大系数的确定⑤PI 调节器传递函数的确定为了使系统稳定设置PI 调节器,考虑到原始系统中包含了放大系数为P K 的比例调节器,现在换成PI 调节器,它的传递函数应为:式中,n 101p ,R R K C R ==τ为积分时间常数。
⑥系统开环传递函数的确定已知工频电源的平均延迟时间s T s 00167.0=,电磁时间常数,30.0l s T =机电时间常数s T m 18.0=,则系统固有部分的开环传递函数为⑦校正环节将固有特性按0.5=KT 校正成典型I 型系统,取校正环节的时间常数0.142=τ,则校正装置的零点与最大时间常数的极点对消,系统的开环传递函数为之后将看成小惯性群,简化后的小惯性环节时间常数简化后的系统为二阶系统,开环传递函数为二阶系统分别由时间参数和震荡参数表示时,有 参数满足n n 21,2ζωζω==T K 。
按二阶最佳工程参数设计系统时,阻尼比21=ζ,超调量为4.3%=σ,此时将0.03967,07.17p ==T K K 带入上式,得 由0.73801p ==R R K ,0.142n 1==C R τ,选定Ω=K R 400时,计算得 ⑧校正后系统的动态结构图校正后系统的动态结构图如图3.2所示。
图3.2(a) 转速负反馈闭环控制系统的动态结构图图3.2(b) 等效的动态结构图 4.Matlab 仿真及结果分析4.1 simulink 实现上述直流电机模型4.2 参数设置并进行仿真设置:阶跃信号 step1在0~4s 电机空载,即0dl =I ;在4~10s 电机满载,即A I 136dl =。
①取不同的p K 值时有静差系统(比例调节器)的仿真结果:通过仿真结果我们可以看出,4s 之前空载,4s 之后负载,加入负载后电机的转速有所下降,并随p K 增加到一定值之前空载转速和负载转速都在增加,根据电机静差率的公式00n n)-(n s =,得知随p K 增加到一定值之前静差率s 减小,即得出结论,在比例调节器控制的有静差调速系统中,在一定范围内,p K 越大,空载转速和负载转速越大,静差率越小,系统效率越高,系统越稳定,但始终存在静差。
②取不同的p K 和τ值时无静差系统(比例+积分调节器)的仿真结果:通过仿真结果我们可以看出,4s 之前空载,4s 之后负载,加入负载后电机的转速有所下降,但很快回到原速度,过渡时间极短,在τ和p K 保持一定的比例时,系统的性能都相对较好一点,但是当τ比p K 过大时,可能会导致系统不稳定,且调节时间也会相应的增加。