运用公式法1(平方差公式)
- 格式:ppt
- 大小:948.00 KB
- 文档页数:24
公式法之平方差公式平法差公式是指在代数运算中,存在一种形如(a+b)(a-b)的乘法运算规则,可以将两个相邻的平方差式表示为一个乘法式,从而简化计算。
平方差公式的推导可以通过展开乘法(a+b)(a-b)的过程进行,具体推导如下:首先,我们假设a和b是任意实数。
那么(a+b)可以看作是一个单位,(a-b)可以看作是一个差数。
我们将其展开:(a+b)(a-b)=a(a-b)+b(a-b)接下来,我们将展开式中的乘法运算进行分配:=a*a-a*b+b*a-b*b= a^2 - ab + ba - b^2由于ab和ba表示的是相同的乘法运算,所以我们可以将它们合并:= a^2 - ab + ab - b^2=a^2-b^2可以看到,展开式的结果是a^2和b^2的差。
这个差就是平方差公式的核心内容。
因此,平方差公式可以表示为:(a+b)(a-b)=a^2-b^2这个公式在代数运算中非常常用,并且在很多数学问题的解答中都会用到。
通过使用平方差公式,可以将两个相邻的平方差式简化为一个乘法式,从而可以更方便地进行运算。
举例来说,假设我们需要计算(3+2)(3-2)的值。
根据平方差公式,可以得到:(3+2)(3-2)=3^2-2^2=9-4=5因此,(3+2)(3-2)的值等于5平方差公式在解决二次方程、因式分解、简化分数等问题中都有广泛的应用。
通过运用平方差公式,可以将复杂的运算问题转化为简单的代数运算,从而更加容易进行计算和解答。
总结起来,平方差公式是一种代数运算规则,可以将两个相邻的平方差式表示为一个乘法式。
通过使用平方差公式,可以简化计算过程,提高计算效率。
在数学问题的解答中,平方差公式具有广泛的应用价值。
这就是平方差公式的基本原理和推导过程。
运⽤公式法——平⽅差公式教案运⽤公式法——平⽅差公式教案教学⽬标(⼀)知识认知要求1.使学⽣了解运⽤公式法分解因式的意义;2.使学⽣掌握⽤平⽅差公式分解因式.3.使学⽣了解,提公因式法是分解因式的⾸先考虑的⽅法,再考虑⽤平⽅差公式分解因式.(⼆)能⼒训练要求1.通过对平⽅差公式特点的辨析,培养学⽣的观察能⼒.2.训练学⽣对平⽅差公式的运⽤能⼒.(三)情感与价值观要求在引导学⽣逆⽤乘法公式的过程中,培养学⽣逆向思维的意识,同时让学⽣了解换元的思想⽅法.教学重点让学⽣掌握运⽤平⽅差公式分解因式.教学难点将单项式化为平⽅形式,再⽤平⽅差公式分解因式;培养学⽣多步骤分解因式的能⼒. 教学过程⼀、创设问题情境,引⼊新课在前两节课中我们学习了因式分解的定义,即把⼀个多项式分解成⼏个整式的积的形式,还学习了提公因式法分解因式,即在⼀个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从⽽将多项式化成⼏个因式乘积的形式.如果⼀个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利⽤这种关系找到新的因式分解的⽅法,本节课我们就来学习另外的⼀种因式分解的⽅法——公式法.⼆、新课讲解1.请看乘法公式(a +b )(a -b )=a 2-b 2 (1)左边是整式乘法,右边是⼀个多项式,把这个等式反过来就是a 2-b 2=(a +b )(a -b )(2)左边是⼀个多项式,右边是整式的乘积.⼤家判断⼀下,第⼆个式⼦从左边到右边是否是因式分解?符合因式分解的定义,因此是因式分解.对,是利⽤平⽅差公式进⾏的因式分解.第(1)个等式可以看作是整式乘法中的平⽅差公式,第(2)个等式可以看作是因式分解中的平⽅差公式.2.公式讲解请⼤家观察式⼦a 2-b 2,找出它的特点.公式的特点下⾯按公式分类,⼀⼀进⾏阐述.(1)平⽅差公式:))((22b a b a b a -+=-这⾥a ,b 可以表⽰数、单项式、多项式.公式的特点是:①左侧为两项;②两项都是平⽅项;③两项的符号相反.(是⼀个⼆项式,每项都可以化成整式的平⽅,整体来看是两个整式的平⽅差.如果⼀个⼆项式,它能够化成两个整式的平⽅差,就可以⽤平⽅差公式分解因式,分解成两个整式的和与差的积.)如x 2-16=(x )2-42=(x +4)(x -4).9 m 2-4n 2=(3 m )2-(2n )2=(3 m +2n )(3 m -2n )3.例题讲解例1 :把下列各式分解因式:(1)25-16x 2; (2)9a 2-41b 2. 解:(1)25-16x 2=52-(4x )2=(5+4x )(5-4x ); (2)9a 2-41b 2=(3a )2-(21b )2 =(3a +21b )(3a -21b ). 例2 :把下列各式分解因式:(1)9(m +n )2-(m -n )2;(2)2x 3-8x .解:(1)9(m +n )2-(m -n )2=[3(m +n )]2-(m -n )2=[3(m +n )+(m -n )][3(m +n )-(m -n )]=(3 m +3n + m -n )(3 m +3n -m +n )=(4 m +2n )(2 m +4n )=4(2 m +n )(m +2n )(2)2x 3-8x =2x (x 2-4)=2x (x +2)(x -2)说明:例1是把⼀个多项式的两项都化成两个单项式的平⽅,利⽤平⽅差公式分解因式;例2的(1)是把⼀个⼆项式化成两个多项式的平⽅差,然后⽤平⽅差公式分解因式,例2的(2)是先提公因式,然后再⽤平⽅差公式分解因式,由此可知,当⼀个题中既要⽤提公因式法,⼜要⽤公式法分解因式时,⾸先要考虑提公因式法,再考虑公式法. 补充例题3:判断下列分解因式是否正确.(1)(a +b )2-c 2=a 2+2ab +b 2-c 2.(2)a 4-1=(a 2)2-1=(a 2+1)·(a 2-1).解:(1)不正确.本题错在对分解因式的概念不清,左边是多项式的形式,右边应是整式乘积的形式,但(1)中还是多项式的形式,因此,最终结果是未对所给多项式进⾏因式分解.(2)不正确.错误原因是因式分解不到底,因为a 2-1还能继续分解成(a +1)(a -1).应为a 4-1=(a 2+1)(a 2-1)=(a 2+1)(a +1)(a -1).例4 :把下列各式分解因式:(1)22b a 9-;(2)22m n 4+-;(3)22b 9a 161-;(4)422c b 25a 16-;(5)09.0y x 4122+-。
运用公式法—平方差公式今天我给大家带来的说课是选自教材北师大版八年级(下)第二章分解因式的第三节,题目是运用公式法。
根据新课程标准的理念,对于本节课,我将以“教什么”,“怎样教”,“为什么这样做”为指导思想,从以下:①教材分析②目的分析③过程分析④教法分析⑤评价分析,5大方面进行阐述。
一、教材分析:(一)教材的地位与作用用平方差公式分解因式是整式乘法的逆运用,与整式乘法运算有着密切的联系。
它被广泛地用于初等数学之中,为解决许多数学问题的计算提供一种优化的方法,同时也为学习分式,利用分解因式解一元二次方程奠定基础,对整个教科书起到了承上启下的作用。
(二)学情分析学生在此之前已经学习了整式乘法和提公因式法分解因式,对如何分解因式已经有了初步的认识,但对于平方差公式进一步的应用及正确判断分解因式的彻底性,可能会产生一定的困难,所以通过问题串的形式,引导学生去思考,经历自学、合作交流、归纳等活动,完成教学任务,从而增强学生学好数学的愿望与信心。
(三)教学重难点参考新课程标准及学生认知特点,特制定本节课的重难点,如下:1、重点:掌握平方差公式结构特征,进行分解因式2、难点:灵活地运用平方差公式和提公因式法进行分解因式,正确判断分解因式的彻底性及应用的意识。
二、目的分析:(一)知识与技能分析:会用平方差公式分解因式,掌握提取公因式法、平方差公式分解因式的综合运用及今后解题过程中的应用意识。
(二)过程与方法分析:经历通过整式乘法的逆向运算得出平方差分解因式的方法的过程,发展学生的逆向思维和推理能力。
(三)情感与态度分析:学生通过自己发现问题,解决问题,体会在解决问题的过程中与他人合作的重要性,并体验成功的喜悦和勇于探索的精神。
三、过程分析:根据新的教育理念和教学原则,以学生为主体,设计教学流程如下:(一)创设情景;(二)导入新课(三)自主探究;(四)尝试练习(五)归纳小结;(六)拓展思维(七)达标检测;(八)作业布置具体过程分析如下:(一)创设情景1、把下列各式变形为一个式子的平方形式 ①2169c =( )2 ②64x 2y 2 = ( )2③9(m +n)2=〔 〕22、计算:999992-1=______针对此教学环节,我设计了两个习题,第1道习题就是为了下面的自主学习作铺垫,起到承上启下的作用。
公式法——平方差公式平方差公式是二次方程求解过程中常用的一个公式,它能够帮助我们简化计算,在解决一些特定类型二次方程问题时非常有用。
平方差公式的形式为:(a+b)(a-b)=a²-b²简单来说,平方差公式可以用来计算两个数相乘的结果的平方差。
当我们遇到形式为(a+b)(a-b)的表达式时,我们可以利用平方差公式将其化简为a²-b²的形式。
下面,我们将详细介绍平方差公式的用法和相关的解题技巧。
首先,我们来看一个简单的例子。
例题:计算(3+2)(3-2)的值。
解法:根据平方差公式,我们将表达式(3+2)(3-2)化简为3²-2²的形式。
可以计算得到3²=9,2²=4,因此,(3+2)(3-2)=9-4=5通过这个例子,我们可以看到平方差公式的使用过程非常简单,只需要计算两个数的平方然后相减即可。
下面,我们来讨论一下平方差公式在解决二次方程问题时的应用。
首先,我们来解决一个常见的二次方程问题:找到一个数的平方与另一个数的平方之差。
例题:已知a²-b²=45,并且a>b,求a和b的值。
解法:根据平方差公式,我们可以将表达式a²-b²化简为(a+b)(a-b)。
所以,我们可以得到(a+b)(a-b)=45、根据已知条件,我们可以知道a+b>a-b,即a>b,所以(a+b)和(a-b)一定是正数。
因此,我们需要将45分解为两个正数之积。
我们可以列出45的所有正因数对:(1,45),(3,15),(5,9)。
通过尝试,我们发现只有(5,9)满足条件,即(a+b)=9,(a-b)=5解方程组得到:a+b=9a-b=5我们可以通过消元法或代入法得到a=7,b=2因此,上述二次方程的解为a=7,b=2通过这个例题,我们可以看到平方差公式在解决二次方程问题时的应用非常灵活。
它可以帮助我们简化计算,找到问题的解。
初中一年级数学公式总结(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
公式法——平方差公式法,平方差公式法,也称为代数方法或笔算方法,是一种通过使用数学公式和恒等式来解决问题的方法。
它是数学中常用的一种解题方法,适用于各种数学题目,包括代数、几何、微积分等。
其中,平方差是一种常见的公式法问题类型。
平方差是指一个数字的平方与另一个数字的平方之间的差。
解决平方差问题的一种常见方法是使用平方差公式。
平方差公式表示为:(a+b)(a-b)=a^2-b^2这个公式可以将一个数字的平方与另一个数字的平方之间的差表示为两个数字的和与差的乘积。
通过使用这个公式,我们可以简化平方差问题的解决过程。
下面我们将通过几个例子来介绍平方差的求解过程。
例1:求解81的平方与5的平方之差。
解:根据平方差公式,我们有:(81+5)(81-5)=81^2-5^2使用计算器或者手工计算,我们可以得到:(81+5)(81-5)=86×76=6536也就是说,81的平方与5的平方之差为6536例2:求解24的平方与9的平方之差。
解:同样地,根据平方差公式,我们有:(24+9)(24-9)=24^2-9^2计算得到:(24+9)(24-9)=33×15=495所以24的平方与9的平方之差为495除了使用平方差公式,我们还可以运用一些简化技巧来求解平方差问题。
例3:求解64的平方与16的平方之差。
解:在这个问题中,我们可以观察到64和16都是平方数,并且它们之间的关系很特殊。
所以我们可以不使用平方差公式,而是直接计算它们的差。
64^2-16^2=(64+16)(64-16)=80×48=3840通过直接计算,我们得到64的平方与16的平方之差为3840。
在解决平方差问题时,我们还应该注意一些常见的特殊情况。
例4:求解81的平方与-81的平方之差。
解:这个问题中涉及到正负数的平方。
根据平方差公式,我们有:(81+(-81))(81-(-81))=81^2-(-81)^2化简并计算得到:0×162=0所以81的平方与-81的平方之差为0。