统计学第九章双因素和多因素方差分析
- 格式:ppt
- 大小:368.50 KB
- 文档页数:49
第九章双因素和多因素方差分析引言方差分析是一种常用的统计方法,用于比较两个或多个组之间的差异。
双因素和多因素方差分析是方差分析的扩展,允许考虑两个或多个自变量对因变量的影响。
本文将介绍双因素和多因素方差分析的概念、假设检验、模型构建等内容。
双因素方差分析双因素方差分析主要用于对两个自变量对因变量的影响进行分析。
其中一个自变量称为因子A,另一个自变量称为因子B。
通过双因素方差分析,我们可以了解到两个自变量对因变量的主效应以及交互效应。
假设检验进行双因素方差分析时,我们需要对两个自变量的主效应和交互效应进行假设检验。
主效应是指每个因子对因变量的影响,交互效应是指两个因子之间是否存在相互影响。
在进行双因素方差分析时,我们需要提出以下假设:•零假设H0: 两个因子对因变量没有主效应和交互效应•备择假设H1: 至少一个因子对因变量有主效应或交互效应然后,我们可以通过方差分析结果的显著性检验来判断是否拒绝零假设。
模型构建双因素方差分析可以通过构建线性模型来进行。
通常,我们使用以下模型进行双因素方差分析:Y = μ + α + β + (αβ) + ε其中,Y表示因变量,μ表示总体均值,α表示因子A的主效应,β表示因子B的主效应,(αβ)表示交互效应,ε表示误差。
通过对数据进行拟合并计算模型中的各个参数,我们可以得到双因素方差分析的结果。
多因素方差分析多因素方差分析是对多个自变量对因变量的影响进行分析。
多因素方差分析可以包含两个以上的自变量,并且可以考虑每个自变量的主效应和交互效应。
假设检验进行多因素方差分析时,我们同样需要对每个自变量的主效应和交互效应进行假设检验。
假设检验的步骤与双因素方差分析类似。
模型构建多因素方差分析的模型构建与双因素方差分析类似,但是需要考虑多个自变量的影响。
Y = μ + α1 + α2 + … + αn + β + (αβ) + ε其中,Y表示因变量,μ表示总体均值,α1, α2, …, αn表示各个自变量的主效应,β表示交互效应,(αβ)表示两个或多个自变量之间的交互效应,ε表示误差。
第九章两因素及多因素方差分析9.1双菊饮具有很好的治疗上呼吸道感染的功效,为便于饮用,制成泡袋剂。
研究不同浸泡时间和不同的浸泡温度对浸泡效果的影响,设计了一个两因素交叉分组实验,实验结果(浸出率)见下表[52]:浸泡温度/℃浸泡时间/min10 15 2060 23.72 25.42 23.5880 24.84 28.32 29.5595 30.64 31.58 32.21对以上结果做方差分析及Duncan检验。
该设计已经能充分说明问题了吗?是否还有更能说明问题的设计方案?答:无重复二因素方差分析程序及结果如下:options linesize=76 nodate;data hermed;do temp=1 to 3;do time=1 to 3;input effect @@;output;end;end;cards;23.72 25.42 23.5824.84 28.32 29.5530.64 31.58 32.21;run;proc anova;class temp time;model effect=temp time;means temp time/duncan alpha=0.05;run;The SAS SystemAnalysis of Variance ProcedureClass Level InformationClass Levels ValuesTEMP 3 1 2 3TIME 3 1 2 3Number of observations in data set = 9The SAS SystemAnalysis of Variance ProcedureDependent Variable: EFFECTSum of MeanSource DF Squares Square F Value Pr > FModel 4 87.0707778 21.7676944 12.56 0.0155Error 4 6.9321778 1.7330444Corrected Total 8 94.0029556R-Square C.V. Root MSE EFFECT Mean0.926256 4.741881 1.31645 27.7622Source DF Anova SS Mean Square F Value Pr > FTEMP 2 78.7202889 39.3601444 22.71 0.0066TIME 2 8.3504889 4.1752444 2.41 0.2058The SAS SystemAnalysis of Variance ProcedureDuncan's Multiple Range Test for variable: EFFECTNOTE: This test controls the type I comparisonwise error rate, notthe experimentwise error rateAlpha= 0.05 df= 4 MSE= 1.733044Number of Means 2 3Critical Range 2.984 3.050Means with the same letter are not significantly different.Duncan Grouping Mean N TEMPA 31.477 3 3B 27.570 3 2C 24.240 3 1The SAS SystemAnalysis of Variance ProcedureDuncan's Multiple Range Test for variable: EFFECTNOTE: This test controls the type I comparisonwise error rate, notthe experimentwise error rateAlpha= 0.05 df= 4 MSE= 1.733044Number of Means 2 3Critical Range 2.984 3.050Means with the same letter are not significantly different.Duncan Grouping Mean N TIMEA 28.447 3 3AA 28.440 3 2AA 26.400 3 1从方差分析结果可以得知,温度是极显著的影响因素,时间是不显著因素。