人教版六年级数学上册知识点整理归纳
- 格式:pdf
- 大小:28.39 KB
- 文档页数:21
分数乘法知识点一、分数乘以整数1、分数乘以整数和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘以整数的运算:①能约分的先约分。
让分母与整数约分了,再计算。
②用分子乘以整数的积作为分子,分母保持不变。
知识点二、分数乘以分数1、分数乘以分数和整数乘法的意义不同,分数乘以分数是求这个数的几分之几是多少。
2、分数乘以分数的运算:①能约分的先约分。
让分子与分母约分了,再计算。
②用分子相乘的积作为结果的分子,用分母相乘的积作为结果的分母。
温馨提示:如果分数乘法中含有带分数,则要把带分数化成假分数再计算。
3、分数乘以小数,关键是要把小数转为分数,再利用分数乘法的运算法则来计算。
知识点三、乘法定律1、乘法交换律:a×b=b×a2、乘法结合律:a×b×c=a×(b×c)3、乘法分配律(a+b)×c=a×c+b×c知识点四、乘法规律1、一个正数乘以一个大于1的数,积比原来大。
2、一个正数乘以一个小于1的数,积比原来小。
3、一个正数乘以一个1,积等于它本身。
4、0乘以任何数都等于0 。
知识点五、分数乘法应用题1、要求一个数的几分之几是多少,就可以用乘法。
2、找单位“1”的方法:“是”、“占”、“比”字之后的量是单位“1”;“的”字前面的量是单位“1”。
位置与方向(二)知识点一、方位角的概念1、要确定物体的位置,先要确定观测点,然后确定方位角和距离。
2、方位角是从观测点起,东南西北的一条方向线与目标方向线的夹角。
例如北偏西20°,南偏东30°都是方位角。
知识点二、画出物体位置的步骤①确定观测点。
②根据方向角,从观测点开始向该方向画一条射线。
③将观测点与目标的距离换算成图上的长度,从而确定目标的位置。
④标上距离、角度、目标的名称。
知识点三、方位角的性质1、如果甲在乙的北偏东...30°方向400m 处;则乙在甲的南偏西...30°方向400m 处2、如果甲在乙的南偏西...20°方向500m 处;则乙在甲的北偏东...20°方向500m 处总结:如果观测点交换了,则方位角的方向相反了,但角度不变,距离也不变知识点四、绘制路线图先确定第一个观测点,然后画出十字方向标,再确定下一个目的地。
人教版六年级上册数学知识点汇总汇总一第一单元分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义一样。
都是求几个一样加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
〔二〕、分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意〔1〕分数的化简:分子、分母同时除以它们的最大公因数。
〔2〕关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
〔3〕当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。
一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。
一个数〔0除外〕乘1,积等于这个数。
〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。
〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a×b=b×d乘法结合律: a×b×c=a×(b×c)乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac二、分数乘法的解决问题〔单位“1”的量〔用乘法〕,求单位“1”的几分之几是多少〕1、找单位“1”:“占”、“是”、“比”的后面2、求一个数的几倍是多少;求一个数的几分之几是多少。
用乘法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
)2、求倒数的方法:〔1〕、求分数的倒数:交换分子分母的位置。
〔2〕、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
〔3〕、求带分数的倒数:把带分数化为假分数,再求倒数。
〔4〕、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
人教版六年级数学上册教材的知识点归纳总结人教版六年级数学上册教材内容丰富,包括了数的概念、整数、小数、分数、计算、图形、运算定律、面积、体积等多个知识点。
下面将对这些知识点进行归纳总结,帮助同学们更好地理解和记忆这些知识。
一、数的概念1. 自然数:从1开始的数叫做自然数,用N表示。
2. 整数:包括自然数和负整数,用Z表示。
3. 真分数:分子小于分母的分数叫做真分数。
4. 假分数:分子大于等于分母的分数叫做假分数。
5. 数轴:用来表示数的大小关系的直线。
二、整数1. 整数的概念:正整数、负整数和0统称为整数。
2. 整数的比较:同号相比较,大的数更大;异号相比较,负数更小。
3. 整数的加法和减法:同号相加减,结果的符号不变;异号相加减,结果的符号取绝对值大的数的符号。
4. 整数的乘法:同号相乘结果为正;异号相乘结果为负。
5. 整数的除法:两个整数相除,商的符号与被除数和除数的符号相同。
三、小数1. 小数的概念:整数和小数点后的数字组成的数。
2. 小数的读法:按位读出小数点前的数字,小数点后的数字按位数读。
3. 小数的比较:同样位数的小数,从左至右比较每一位的大小。
4. 小数的加法和减法:按位对齐,从右到左进行加减运算。
5. 小数的乘法和除法:按照整数运算法则进行计算,最后保留相应的小数位数。
四、分数1. 分数的概念:一个整数除以一个非零的整数所得的数。
2. 分数的分类:真分数和假分数。
3. 分数的化简:将分子和分母的公约数都除掉,得到最简分数。
4. 分数的加法和减法:分母相同,直接加减分子;分母不同,通分后再进行加减运算。
5. 分数的乘法:分子乘以分子,分母乘以分母,得到的新分数即为乘积。
6. 分数的除法:将除数倒转,变成乘法运算。
五、图形1. 正方形:四条边相等且四个角都是直角的四边形。
2. 长方形:相邻两边相等且四个角都是直角的四边形。
3. 三角形:有三条边和三个角的多边形。
4. 直角三角形:一个角为直角的三角形。
六年级上册数学知识点 第一单元 位置 1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法 (一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
人教版小学数学六年级上册知识点整理归纳 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少? A × 61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数, 这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。
一、整除和余数1. 整除的概念整数a除以整数b(b≠0),当结果为整数时,称a能整除b,记作b|a。
2. 余数的概念整数a除以整数b(b≠0),所得到的未被整除的部分叫做余数,记作a mod b。
17÷5=3(余2),则5|17,17 mod 5=2。
二、最小公倍数和最大公约数1. 最小公倍数的概念两个以上整数公有的倍数中最小的一个叫做这些整数的最小公倍数,记作a和b的最小公倍数=lcm(a,b)。
2. 最大公约数的概念两个以上整数公有的约数中最大的数叫做这些整数的最大公约数,记作a和b的最大公约数=gcd(a,b)。
三、分数1. 分数的概念形如a/b(b≠0)的数叫做分数,a叫做分子,b叫做分母。
2. 分数的大小比较分数大小比较的方法:(1)分子相等,分母越小,分数越大;(2)分母相等,分子越大,分数越大。
四、质数和合数1. 质数的概念在大于1的自然数中,除了1和它本身以外,没有其他因数的数叫做质数。
2. 合数的概念大于1的自然数中,除了1和它本身以外,还有其他因数的数叫做合数。
五、数字的读法1. 十进位和百进位的读法十进位以上的数字读法遵循“顺读”和“倒读”的规则,例如23读作“二十三”,32读作“三十二”。
2. 小数点后数字的读法小数点后的数字读法遵循“分”的规则,例如0.32读作“三十二分”。
六、加法和减法1. 加法的概念两个数进行相加的运算叫做加法,加法运算遵循交换律和结合律。
2. 减法的概念两个数进行相减的运算叫做减法,减法运算是加法运算的逆运算。
七、乘法和除法1. 乘法的概念两个数进行相乘的运算叫做乘法,乘法运算遵循交换律和结合律。
2. 除法的概念两个数进行相除的运算叫做除法,除法运算是乘法运算的逆运算。
八、计算顺序1. 加减乘除的顺序在进行多种运算时,应按照“先乘除后加减”的顺序进行运算,也可以通过加括号改变计算的顺序。
九、数学应用题1. 数学应用题的解题步骤解题步骤包括问题分析、列式、算式、检验等环节,解决数学应用问题需要灵活运用所学知识。
人教版小学六年级数学上册全册知识点汇总第一单元分数乘法一、分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)二、分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
三、积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
四、分数乘法混合运算:1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c五、倒数的意义(乘积为1的两个数互为倒数)1、倒数是两个数的关系,它们互相依存,不能单独存在。
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
人教版小学六年级数学上册知识点总结人教版小学六年级数学上册知识要点总结一、引言人教版小学六年级数学上册的知识要点总结旨在帮助学生更好地掌握所学内容,提高学习效率,并为初中数学学习奠定基础。
本总结涉及分数乘法、位置与方向(二)、分数除法、比、圆、百分数(一)和扇形统计图等方面的知识。
二、分数乘法1.概念:分数乘法是指两个或多个分数相乘得到一个新的分数的运算。
2.性质:o交换律:a × b = b × ao结合律:a × (b × c) = (a × b) × co分配律:a × (b + c) = a × b + a × c3.解题方法:o将分数相乘,约分得到最简结果。
o整数与分数相乘,将整数化成分数再相乘。
o乘法的交换律、结合律和分配律同样适用于分数乘法。
4.应用实例:o计算面积:长方形面积 = 长×宽,其中宽为分数。
o计算路程:速度×时间 = 路程,其中速度为分数。
三、位置与方向(二)1.知识点:o相对位置:通过方向角和距离描述两个物体之间的相对位置关系。
o方向角:描述物体相对于参考点在平面上的方向。
o距离:描述两个物体之间的直线距离。
2.应用实例:在地图上标注物体位置时,需要确定其相对于已知点的方向和距离。
四、分数除法1.概念:分数除法是指将一个分数除以另一个分数得到一个新的分数的运算。
2.性质:o倒数性质:a ÷ b = a × 1/b,其中1/b是b的倒数。
o除法的交换律、结合律和分配律同样适用于分数除法。
3.解题方法:o将除法转化为乘法,约分得到最简结果。
o整数与分数相除,将整数化成分数再相除。
4.应用实例:o计算数量:总数÷部分数 = 部分数所占总数的比例。
o计算平均数:总和÷个数 = 平均数。
五、比1.概念:比是指两个数相除得到的一个数值,表示两个数之间的比例关系。
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.“分数乘整数”指的是第二个因数必须是整数,不能是分数.2、一个数乘分数的意义就是求一个数的几分之几是多少.“一个数乘分数”指的是第二个因数必须是分数,不能是整数.(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变.(1)为了计算简便能约分的可先约分再计算.(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数.(整数千万不能与分母相乘,计算结果必须是最简分数).2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母.(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算.(2)分数化简的方法是:分子、分母同时除以它们的最大公因数.(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数.(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数).(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变.(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数.a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数.a×b=c,当b <1时,c<a(b≠0).一个数(0除外)乘等于1的数,积等于这个数.a×b=c,当b =1时,c=a .在进行因数与积的大小比较时,要注意因数为0时的特殊情况.(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的.2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便.乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数.1、倒数是两个数的关系,它们互相依存,不能单独存在.单独一个数不能称为倒数.(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”.例如:a×b=1则a、b互为倒数.3、求倒数的方法:①求分数的倒数:交换分子、分母的位置.②求整数的倒数:整数分之1.③求带分数的倒数:先化成假分数,再求倒数.④求小数的倒数:先化成分数再求倒数.4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母.5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身.假分数的倒数小于或等于1.带分数的倒数小于1.(六)分数乘法应用题——用分数乘法解决问题1、求一个数的几分之几是多少?(用乘法)已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘.2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”.3、什么是速度?速度是单位时间内行驶的路程.速度=路程÷时间时间=路程÷速度路程=速度×时间单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等.4、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙第二单元位置与方向(二)1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来.括号里面的数由左至右为列数和行数,即“先列后行”.数对的作用:确定一个点的位置.经度和纬度就是这个原理.2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺).描绘路线图的关键是选好观测点,建立方向标,确定方向和路程.位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等.相对位置:东--西;南--北;南偏东--北偏西.第三单元分数的除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算.二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数.1、被除数÷除数=被除数×除数的倒数.2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数.3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算.4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角.2、运算顺序:①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算.加、减法为一级运算,乘、除法为二级运算.②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面.(a±b)÷c=a÷c±b÷c第四单元比比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值.连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几.例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数.比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式.3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变.4、化简比:化简之后结果还是一个比,不是一个数.(1)、用比的前项和后项同时除以它们的最大公约数.(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简.也可以求出比值再写成比的形式.(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比.5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比.6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变.分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变.分数除法和比的应用1、已知单位“1”的量用乘法.2、未知单位“1”的量用除法.3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配.5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知.(2)分析数量关系.(3)找等量关系.(4)列方程.两个量的关系画两条线段图,部分和整体的关系画一条线段图.第五单元圆一、圆的特征1、圆是平面内封闭曲线围成的平面图形.2、圆的特征:外形美观,易滚动.3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心.圆心确定圆的位置.半径r:连接圆心到圆上任意一点的线段叫做半径.在同一个圆里,有无数条半径,且所有的半径都相等.半径确定圆的大小.直径d:通过圆心且两端都在圆上的线段叫做直径.在同一个圆里,有无数条直径,且所有的直径都相等.直径是圆内最长的线段.同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合.同心圆:圆心重合、半径不等的两个圆叫做同心圆.5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.折痕所在的直线叫做对称轴.有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角.有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径.(2)画圆步骤:定半径、定圆心、旋转一周.二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示.1、圆的周长总是直径的三倍多一些.2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示.即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr圆周率π是一个无限不循环小数,3.14是近似值.3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同.4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形.圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小.周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形.3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍.4、环形面积=大圆–小圆=πR2-πr2扇形面积=πr2×n÷360(n表示扇形圆心角的度数)5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和.因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度.一个圆的半径增加a厘米,周长就增加2πa厘米.一个圆的直径增加b厘米,周长就增加πb厘米.6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π.7、常用数据π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7第六单元百分数(一)一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数.百分数又叫百分比或百分率,百分数不能带单位.注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比.1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系.(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位.分数不仅表示倍比关系,还能带单位表示具体数量.百分数的分子可以是小数,分数的分子只可以是整数.注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的.“%”的两个0要小写,不要与百分数前面的数混淆.一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%.一般出粉率在70%、80%,出油率在30%、40%.2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”.(2)小数化百分数:小数点向右移动两位,添上“%”.(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数.(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数.(5)小数化分数:把小数成分母是10、100、1000等的分数再化简.(6)分数化小数:分子除以分母.二、百分数应用题1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几.2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度.求甲比乙多百分之几:(甲-乙)÷乙求乙比甲少百分之几:(甲-乙)÷甲3、求一个数的百分之几是多少.一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数.部分量÷百分率=一个数(单位“1”)5、折扣、打折的意义:几折就是十分之几也就是百分之几十折扣、成数=几分之几、百分之几、小数八折=八成=十分之八=百分之八十=0.8八五折=八成五=十分之八点五=百分之八十五=0.85五折=五成=十分之五=百分之五十=0.5=半价6、利率(1)存入银行的钱叫做本金.(2)取款时银行多支付的钱叫做利息.(3)利息与本金的比值叫做利率.利息=本金×利率×时间税后利息=利息-利息的应纳税额=利息-利息×5%注:国债和教育储蓄的利息不纳税7、百分数应用题型分类(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几(2)求甲比乙多百分之几——(甲-乙)÷乙×100%(3)求甲比乙少百分之几——(乙-甲)÷乙×100%第七单元扇形统计图的意义1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图.2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少.(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少.(3)扇形统计图直观显示部分和总量的关系.第八单元数学广角--数与形2+4+6+8+10+12+14+16+18+20=(110)规律:从2开始的n个连续偶数的和等于n×(n+1).10×(10+1)=10×11=110从1开始的连续奇数的和正好是这串数个数的平方.。
人教版六年级上册数学知识点汇总
一、整数
1. 自然数、负整数和零的概念
2. 整数的比较大小
3. 整数相加、相减
4. 整数的乘法和除法
5. 整数的绝对值
6. 整数的加法和减法运算法则
7. 整数的乘法和除法运算法则
8. 整数的混合运算
二、分数
1. 分数的概念
2. 分数的比较大小
3. 分数的相加、相减
4. 分数的乘法和除法
5. 分数的化简
6. 分数的三个基本性质:相等性、倍数性、约分性
7. 分数的混合运算
三、小数
1. 小数的概念
2. 小数和分数的关系
3. 小数的读法和写法
4. 小数的比较大小
5. 小数的加法和减法
6. 小数的乘法和除法
7. 小数的化简
8. 小数的混合运算
四、数据与图形
1. 数据和调查的关系
2. 数据的整理和分类
3. 表格和柱形图的绘制和解读
4. 折线图和饼图的绘制和解读
五、数式与方程
1. 代数字母的认识和使用
2. 使用字母表示数的大小
3. 表达计算结果的数式
4. 数式的运算:加法、减法、乘法和除法
5. 解一元一次方程。
人教版六年级数学上册知识点汇总第一单元分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。
6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。
2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。
3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。
人教版六年级上册数学知识点归纳总结目录第一单元负数。
2第二单元百分数二。
4第三单元圆柱和圆锥。
6第四单元比例。
12第五单元数学广角-鸽巢问题。
17第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的13.42/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负。
2、负数:小于零的数叫负数(不包括零),数轴上左边的数叫做负数。
若一个数小于零,则称它是一个负数。
负数有无数个,其中包括负整数、负分数和负小数。
负数的写法:数字前面加负号“-”号,不可以省略。
例如:-2,-5.33,-45,-2/5.正数:大于零的数叫正数(不包括零),数轴上右边的数叫做正数。
若一个数大于零,则称它是一个正数。
正数有无数个,其中包括正整数、正分数和正小数。
正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/5.4、零是正数和负数的分界限。
负数都小于零,正数都大于零。
负数都比正数小,正数都比负数大。
5、数轴:6、比较两数的大小:①利用数轴:负数<<正数或左边<右边。
②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大。
例如:1/3>1/6,-1/3<-1/6.第二单元百分数二一)、折扣和成数折扣是指商品现价与原价的比值,通常以百分数或分数表示。
例如,八折意味着商品现价是原价的80%,六折五则是65%。
解决打折问题的关键在于将折数转化为百分数或分数,并按照求比一个数多(少)百分之几(几分之几)的数的方法进行计算。
成数是指十分之几或百分之几十,例如一成相当于10%,八成五则是85%。
解决成数问题的关键在于将成数转化为百分数或分数,并按照求比一个数多(少)百分之几(几分之几)的数的方法进行计算。
税率是指应纳税额与各种收入的比率,纳税是根据国家税法规定,按照一定比率缴纳一部分收入给国家。
人教版小学六年级上册数学知识点总结一、数与代数(一)分数的运算1.分数的加减法•同分母分数:分母保持不变,分子进行加减运算。
例如:2/5 + 3/5 = 5/5 或1;4/7 - 2/7 = 2/7。
•异分母分数:首先找到两个分母的最小公倍数,然后进行通分,使两个分数具有相同的分母,接着进行加减运算。
例如:1/2 + 1/3 = 3/6 + 2/6 =5/6;3/4 - 1/5 = 15/20 - 4/20 = 11/20。
2.分数的乘法•分子乘分子,分母乘分母。
例如:2/3 × 4/5 = 8/15。
•分数与整数相乘,整数可以看作是分母为1的分数,然后与另一个分数相乘。
例如:2 × 3/4 = 6/4 = 3/2。
3.分数的除法•将除数颠倒后与被除数相乘。
例如:4/5 ÷ 2/3 = 4/5 × 3/2 = 12/10 = 6/5。
4.带分数与假分数的互化•带分数转化为假分数:分母不变,分子为整数部分与分母的乘积加上原分数的分子。
例如:2(1/2) = 2 × 2 + 1 = 5/2。
•假分数转化为带分数:分母不变,分子除以分母得到的商为整数部分,余数作为新分数的分子。
例如:7/3 = 2...1,所以7/3 = 2(1/3)。
5.分数与小数的互化•分数转化为小数:直接进行除法运算,得到的结果即为小数形式。
例如:1/2 = 0.5;3/4 = 0.75。
•小数转化为分数:将小数表示为分数形式,能简化的要简化。
例如:0.5 = 1/2;0.75 = 3/4。
(二)百分数1.百分数的概念•百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。
百分数通常不会写成分数的形式,而采用符号“%”(百分号)来表示。
2.百分数与小数、分数的互化•百分数转化为小数:去掉百分号,小数点左移两位。
例如:75% = 0.75。
•小数转化为百分数:加上百分号,小数点右移两位。
第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:43×5,表示:5个43相加是多少,还表示43的5倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:5×43,表示:5的43是多少。
43×97,表示:43的97是多少。
(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
最全面人教版数学六年级上册知识点归纳总结人教版数学六年级上册知识点是学生在初中数学学习过程中的基本知识,需要学生认真掌握和理解。
下面是数学六年级上册知识点的详细归纳总结。
第一章分类整数知识点1.1 整数和自然数自然数:1, 2, 3, 4, 5,…….(不包括0)整数:…….-2, -1, 0, 1, 2, ……(自然数和负整数)知识点1.2 整数的相加法则同号两数相加,绝对值相加,符号不变;异号两数相加,绝对值相减,结果的符号与绝对值较大的数的符号相同。
知识点1.3 整数减法整数减法可以转化为加法,即a - b = a + (-b)知识点1.4 绝对值数轴上数a的绝对值,表示为|a|,表示a到0的距离。
知识点1.5 整数的大小比较两个整数比较大小,可以先比较绝对值,再根据符号确定大小。
知识点1.6 整数的拓展绝对值可以是小数或分数,小数或分数的绝对值用绝对值符号表示。
第二章十进制小数知识点2.1 小数的意义小数是指有小数点的数,小数点是整数位和小数位的分界线。
知识点2.2 小数的读法从小数点左起第一位到最后一位依次读出,小数点可以读作“点”.知识点2.3 小数的比较比较小数大小,可以先确定小数点后的整数大小,然后比较小数点后的小数位。
知识点2.4 小数的相加法则小数相加,先让小数点对齐,然后按位相加,最后把小数点写在和的下方。
知识点2.5 小数的减法法则小数相减,先让小数点对齐,然后按位相减,最后把小数点写在答案的下方。
知识点2.6 小数的乘法法则小数相乘,先把小数前的数乘起来,再把总位数相加,最后把小数点放到乘积中位数的位置。
知识点2.7 小数的除法法则小数相除,先把被除数和除数放大到整数,再按整数的除法法则计算,最后把小数点放在商中位数的位置。
第三章平面图形知识点3.1 分类平面图形可以分为点、线、面,其中面又可分为三角形、四边形等。
知识点3.2 三角形三角形是由三条边和三个角组成的图形,可以根据边长和角度分类。
人教版六年級數學上冊知識點匯總第一單元分數乘法(一)分數乘法的意義1、分數乘整數:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數和得簡便運算。
例如:512×6,表示:6個512相加是多少,還表示512的6倍是多少。
2、一個數(小數、分數、整數)乘分數:一個數乘分數的意義與整數乘法的意義不相同,是表示這個數的幾分之幾是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)分數乘法的計算法則1、整數和分數相乘:整數和分子相乘的積作分子,分母不變。
2、分數和分數相乘:分子相乘的積作分子,分母相乘的積作分母。
3、注意:能約分的先約分,然後再乘,得數必須是最簡分數。
當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
(三)分數大小的比較:1、一個數(0除外)乘以一個真分數,所得的積小於它本身。
一個數(0除外)乘以一個假分數,所得的積等於或大於它本身。
一個數(0除外)乘以一個帶分數,所得的積大於它本身。
2、如果幾個不為0的數與不同分數相乘的積相等,那麼與大分數相乘的因數反而小,與小分數相乘的因數反而大。
(四)解決實際問題。
1、分數應用題一般解題步行驟。
(1)找出含有分率的關鍵句。
(2)找出單位“1”的量(3)根據線段圖寫出等量關係式:單位“1”的量×對應分率=對應量。
(4)根據已知條件和問題列式解答。
2、乘法應用題有關注意概念。
(1)乘法應用題的解題思路:已知一個數,求這個數的幾分之幾是多少?(2)找單位“1”的方法:從含有分數的關鍵句中找,注意“的”前“比”後的規則。
當句子中的單位“1”不明顯時,把原來的量看做單位“1”。
(3)甲比乙多幾分之幾表示甲比乙多的數占乙的幾分之幾,甲比乙少幾分之幾表示甲比乙少數占乙的幾分之幾。
(4)在應用題中如:小湖村去年水稻的畝產量是750千克,今年水稻的畝產量是800千克,增產幾分之幾?題目中的“增產”是多的意思,那麼誰比誰多,應該是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多幾分之幾,結合應用題的表達方式,可以補充為“今年水稻的畝產量比去年水稻的畝產量多幾分之幾?”(5)“增加”、“提高”、“增產”等蘊含“多”的意思,“減少”、“下降”、“裁員” 等蘊含“少”的意思,“相當於”、“占”、“是”、“等於”意思相近。
人教版六年级数学上册知识点整理归纳第一单元位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)(列,行)↓↓竖排叫列横排叫行(从左往右看)(从下往上看)(从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:×7表示: 求7个的和是多少?或表示:的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:×表示: 求的是多少?9 ×表示: 求9的是多少?A ×表示: 求a的是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c 一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如的分数可折成()× (四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a≠0),它的倒数为;非零整数a的倒数为;分数的倒数是。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题1、求一个数的几分之几是多少?(用乘法)“1”× =例如:求25的是多少?列式:25× =15甲数的等于乙数,已知甲数是25,求乙数是多少?列式:25× =15注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、(什么)是(什么)的。
()= ( “1” )× 例1: 已知甲数是乙数的,乙数是25,求甲数是多少?甲数=乙数×即25× =15注:(1)“是”“的”字中间的量“乙数”是的单位“1”的量,即是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量例2:甲数比乙数多(少),乙数是25,求甲数是多少?甲数=乙数±乙数×即25±25× =25×(1±)=40(或10)3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?——速度是单位时间内行驶的路程。
速度=路程÷时间时间=路程÷速度路程=速度×时间——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙第三单元分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例÷3= × =3÷=3× =52、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c当b>1时,c<A&NBSP; (a≠0)②除以小于1的数,商大于被除数:a÷b=c当b<1时,c>a (a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别:除法被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数分子分数线(——)分母(不能为0)分数的基本性质分数是一个数比前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用1、已知单位“1”的量用乘法。
例:甲是乙的,乙是25,求甲是多少?即:甲=乙×(15× =9)2、未知单位“1”的量用除法。
例: 甲是乙的,甲是15,求乙是多少?即:甲=乙×(15÷ =25)(建议列方程答)3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几(例:甲是15的,求甲是多少?15×=9)乙=甲÷几分之几(例:9是乙的,求乙是多少?9÷=15)几分之几=甲÷乙(例:9是15的几分之几?9÷15=)(“是”字相当“÷”号,乙是单位“1”)(2)甲比乙多(少)几分之几?A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15===)B 多几分之几是:–1 (例: 15比9少几分之几?15÷9= -1=–1=)C 少几分之几是:1–(例:9比15少几分之几?1-9÷15=1–=1–=)D 甲=乙±差=乙±乙× =乙±乙× =乙(1±)(例:甲比15少,求甲是多少?15–15×=15×(1–)=9(多是“+”少是“–”)E 乙=甲÷(1± )(例:9比乙少,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)(例:15比乙多,求乙是多少?15÷(1+ )=15 ÷=9)(多是“+”少是“–”)4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35方法二:甲:56×=21 乙:56×=35例如:已知甲是21,甲、乙的比3∶5,求乙是多少?方法一:21÷3=7 乙:5×7=35方法二:甲乙的和21÷=56 乙:56×=35方法二:甲÷乙=乙=甲÷=21÷=355、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。