式子与方程,整理与复习
- 格式:doc
- 大小:70.00 KB
- 文档页数:5
式子与方程【知识点解析】(式子的运算)四则运算的意义加法:把两个数合并成一个数的运算减法:已知两个数的和与其中一个加数,求另一个加数的运算 乘法:a 、一个数乘以整数,就是求几个相同加数的和的简便运算b 、一个数乘以小数或分数,就是求这个数的几分之几是多少 除法:已知两个因数的积与其中的一个因数,求另一个因数的运算四则运算的法则加法:a 、整数和小数:相同数位对齐,从低位加起,满十进一 b 、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加减法:a 、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减 b 、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减乘法:a 、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加。
b 、分数:分子相乘的积作分子,分母相乘的积作分母,能约分的先约分,结果要化简 除法:a 、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。
除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b 、分数除法:甲数除以乙数(0除外),等于甲数乘以乙数的倒数【典型例题】 【例】脱式计算21.28-21.28÷7.6×3.1 [1–(41+83)]÷81【举一反三】0.75+(130-0.36×350) 3-59 ×720 -1136【例】简便运算9.9×8.6+0.86 4.6×138 +8.4÷811 -138 ×5【举一反三】2.36×9.8-0.236×2 47-8÷17-917【例】列式计算:32吨的53比65吨的52多多少?【举一反三】 (1)65的倒数加上37除27的商,和是多少?(2)20千克的14 比1吨的3200 少多少千克?【过关检测】 一、直接写出复数910÷320= 14÷78= 45-12= 19×78×9=9÷43= 32×61×109= 59913 = 9×18 ÷9×18 =二、计算下列各题,能简算的要简算(215 +311 )×15×11 37.5+19.5÷2.5×454×65+52÷53 54÷[(85-21)÷85]三、文字题9.81的13 与2.5的差,除以78 ,商是多少? 94的倒数加上2.4乘0.5的积,和是多少?方程的计算与应用方程:含有未知数的等式称为方程。
篇一:苏教版六年级总结复习《式与方程》式与方程第十一课时:式与方程整理与复习(1)教学内容:苏教版六下p81~82“整理与反思”、“练习与实践”第1~4题。
教学目标:1.学生加深理解用字母表示数的意义及方法,进一步体会方程的意义及方程与等式的关系,会用等式的性质解方程,能列方程解答简单的实际问题。
2.学生进一步提高用字母的式子表示数量关系的能力,增强符号意识,体会方程思想;进一步提高分析问题和解决问题的能力。
3.学生主动参与整理和练习等学习活动,进一步感受数学与日常生活的紧密联系,体验学习成功的乐趣,发展数学学习的积极情感。
教学重点:掌握方程的意义及解方程的方法。
教学难点:用含有字母的式子表示数量关系。
教学过程:一、谈话导入谈话:这节课,我们复习“式与方程”的有关知识。
(板书课题)今天主要复习其中的字母表示数、方程的意义和解方程,并且列方程解决一些简单的实际问题。
通过复习进一步掌握用字母表示数,提高解方程和列方程解决简单实际问题的能力。
二、回顾整理1.复习用字母表示数。
(1)回顾举例。
提问:你能举出一些用字母表示数的例子吗?先独立思考,再与同桌交流。
小组交流后组织汇报,教师相应板书:示计算公式,如c=2(a+b)。
②表示运算律,如a+b=b+a.③表示数量关系,如s=vt。
提问:用字母可以表示这么多的内容,那么在用字母表示数的乘法式子里,你觉得应该提醒大家注意些什么?(2)做“练习与实践”第1题。
学生独立在书上完成,教师巡视、指导。
集体订正,选择几题让学生说说是怎样想的。
追问:第(3)题是怎样根据a=3求周长4a和面积各是多少的?提问:列含有字母的式子,是根据数量之间的联系,用字母表示数列出相应的式子。
求含有字母式子的值,只要把字母的值直接代入式子计算结果。
2.复习方程与等式。
(1)复习方程的概念。
下面的式子中,哪些是方程,哪些不是方程?为什么?3x=15 x-2 x-x= 18÷3=6 16+4x=40 a+4<b提问:根据刚才的判断,你能说说什么是方程吗?一个式子是方程,必须具备什么条件?方程与等式有什么关系?请你说一说,并从上面式子中找出例子说明。
二次根式小结与复习基础盘点1.二次根式的定义:一般地,我们把形如a (a ___0)的式子叫做二次根式,“”称为二次根式.定义诠释:(1)二次根式的定义是以形式界定的,如4是二次根式; (2)形如a b (a ≥0)的式子也叫做二次根式;(3)二次根式a 中的被开方数a ,可以是数,也可以是单项式、多项式、分式,但必须满足a ≥0. 2.二次根式的基本性质(1)a _____0(a ___0);(2)()2a =_____(a ___0);(3)a a =2=()()⎩⎨⎧0_____0_____a a ;(4)=_________(a ___0,b ___0);(5=_________(a ___0,b ___0).3.最简二次根式必须满足的条件为:(1)被开方数中不含___;(2)被开方数中所有因式的幂的指数都_____.4.二次根式的乘、除法则:(1)=______(a ___0,b ___0);(2)=_______(a ___0,b ___0).复习提示:(1)进行乘法运算时,若结果是一个完全平方数,则应利用==a a 2()()⎩⎨⎧<-≥00a aa a 进行化简,即将根号内能够开的尽方的数移到根号外; (2)进行除法运算时,若除得的商的被开方数中含有完全平方数因数,应运用积的算术平方根的性质将其进行化简.5.同类二次根式:几个二次根式化成______后,如果_____相同,这几个二次根式就叫做同类二次根式.6.二次根式的加减法则:二次根式加减时,可以先将二次根式化成_____,然后把_______进行合并. 复习提示:(1)二次根式的加减分为两个步骤:第一步是_____,第二步是____,在合并时,只需将根号外的因式进行加减,被开方数和根指数不变;(2)不是同类二次根式的不能合并,如:53+≠8;(3)在求含二次根式的代数式的值时,常用整体思想来计算. 7.二次根式的混合运算(1)二次根式的混合运算顺序与实数中的运算顺序一致,也是先_,再__,最后__,有括号的先_内的. 复习提示:(1)在运算过程中,有理数(式)中的运算律,在二次根式中仍然适用,有理数(式)中的乘法公式在二次根式中仍然适用; (2)二次根式的运算结果可能是有理式,也可能是二次根式,若是二次根式,一定要化成最简二次根式. 8.二次根式的实际应用利用二次根式的运算解决实际问题,主要从实际问题中列出算式,然后根据运算的性质进行计算,注意最后的结果有时需要取近似值.1 二次根式有意义的条件例1 若式子43-x 在实数范围内有意义,则x 的取值范围是( )A.x ≥34B.x >34C.x ≥43D.x >43方法总结:判断含有字母的二次根式是否有意义,就是看根号内的被开方数是不是非负数,如果是,就有意义,否则就没有意义,当二次根式含有分母时,分母不能为0.2 二次根式的性质例2 下列各式中,正确的是( )A.()332-=- B.332-=- C.()332±=± D.332±=方法总结:()a a =2成立的条件是a ≥0,而在化简()2a 时,先要判断a 的正负情况.3 二次根式的非负性例3 已知32552--+-=x x y ,则xy 2的值为( )A.—15B.15C.215-D.215 方法总结:二次根式a (a ≥0)具有双重非负性,即a ≥0、a ≥0. 4 最简二次根式例4 下列二次根式中,最简二次根式是( )A.51B.5.0C.5D.50 方法总结:在进行二次根式化简时,一些同学不知道化到什么程度为止,切记,一定要化到最简二次根式为止. 5 二次根式的运算 例5 计算1824-×31=____.方法总结:二次根式的加减运算,一定要先化简才能得知算式中哪些二次根式可以合并,除法运算先化为乘法再运算,混合运算时要正确使用运算法则.6 二次根式的化简求值例6若120142013-=m,则34520132mmm--的值是_____.方法总结:解决此类问题应注意代数式的变形和整体思想的运用.一元二次方程1、一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程。
小学数学式与方程教案第一篇教学目标:1、通过复习,使学生进一步体会方程的意义和思想,会用等式的性质解一些简易方程,能列方程解需两、三步计算的实际问题,提高学生用含有字母的式子表示数量关系的能力。
2、通过复习,增强用字母表示数表达和交流信息的意识,渗透代数思想,体会数学知识与现实生活的密切联系,感受用字母表示数的优越性。
3、通过复习,使学生进一步感受用字母表示数与代数领域学习内容的趣味性和挑战性,产生继续探索学习的积极倾向,增强学好数学的信心。
教学重点:进一步掌握用字母表示数的方法,加深理解方程意义和解法,提高学生列方程解决问题的能力。
理解式、等式和方程之间的联系,完善认知结构。
教学难点:理解等式与方程的联系与区别,列方程解决实际问题。
教学过程一、生活引入:含有字母的式子1、你穿的鞋有多大?2、师:你的脚大约是?3、激疑:想知道老师是怎样算的吗?4、师说明方法:(b+10)25、思考:这是一个什么样式子?二、回顾与整理:(一)、回顾整理用字母表示数1、回忆:小学数学中有很多地方用到用字母表示数?你能举一个例子吗?(1)指名举例。
师:这个式子表示什么?还有哪些?看来用含有字母的式子可以表示运算律。
其他学生说说所表示的意义。
a+b=b+a 表示加法交换律,a、b分别表示两个加数,师:这些运算律中的字母可以表示哪些数?(2)回忆交流用字母表示计算公式。
(3)用字母表示数量关系:①学生练习:说说含有字母式子所表示的意义。
根据什么数量关系得出的?5a表示?a可以表示哪些数?②看来我们用含有字母的式子还可以表示什么?③根据题目说说式中字母可以表示哪些数?0.52a表示什么?2b 呢?0.52a+2b表示什么?2、小结:通过刚才的回忆我们知道了用含有字母的式子可以表示数量关系、运算律、计算公式,这些式子中的字母表示的数根据不同的情况有不同的范围。
3、用字母表示数有什么优越性?(二)回顾整理方程的相关的知识过渡:我也准备了一些含有字母的式子。
初一数学上册从算式到方程预习笔记整理一. 教学内容:从算式到方程1. 方程、方程的解、一元一次方程的定义。
2. 等式的性质。
3. 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
二. 知识要点:1. 与方程有关的定义(1)含有未知数的等式叫做方程。
(2)使方程中等号左右两边相等的未知数的值叫做方程的解。
(3)只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
一元一次方程有两个特点:①未知数所在的式子是整式,即分母中不含未知数;②只含有一个未知数,未知数的次数是1。
2. 等式的性质(1)等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等. 如果a=b,那么a±c=__________。
(2)等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 如果a=b,那么=__________;如果a=b(c ≠0),那么=__________。
关于等式的几点说明:①弄清等式与代数式的区别与联系:等式与代数式不同,等式是含“=”的式子,代数式不含有等号,它是用运算符号连接数或表示数的字母而成的式子. 等式可用来表示两个代数式之间有相等关系,但代数式不是等式。
②一个等式中,如果等号对于一个,叫做连等式,如③等式的另外两个性质:等式的左右两边互换,所得结果仍是等式,如a=b,则b=a(这一性质也叫等式的对称性);等式具有传递性,如:若a=b,b=c,则a=c(这一性质也叫等量代换)。
3. 学会列方程列方程的一般步骤:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系;(2)“设”就是设未知数;(3)“列”就是列方程,这是最关键的一步. 一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程。
列方程需要注意的事项:(1)列方程时,寻找题目中的等量关系是关键,可利用列表、线段图等方法分析已知量与未知量的关系,从而寻找出等量关系式。
学会使用式子和方程解决数学问题在数学学习中,我们经常会遇到各种各样的问题。
其中,有些问题可以通过式子和方程来解决,这是一种非常重要且常用的方法。
本文将介绍如何学会使用式子和方程来解决各类数学问题。
一、式子与方程的基本概念及意义式子是由数字、字母、运算符号等组成的数学符号组合。
它的主要作用是表示数学关系。
式子可以包括算术式子和代数式子,例如2+3=5,2x+3y=7等。
方程是一种特殊的式子,它含有一个未知数,并且表达了未知数与其他量之间的关系。
方程通常用等号连接,例如3x-2=10,2(x+4)=16等。
解方程就是找到使方程成立的未知数的值。
式子和方程的使用可以帮助我们理解和描述问题,并通过解方程来求解未知数的值。
因此,学会使用式子和方程解决数学问题对于我们的数学学习非常重要。
二、使用式子解决数学问题的步骤使用式子解决数学问题需要以下步骤:1. 确定未知数:首先要确定问题中的未知数,用字母或其他符号表示。
2. 建立式子:根据问题中的条件和关系建立合适的式子。
式子应准确地表示问题中的关系,并用适当的运算符号连接各个量。
3. 整理和简化:根据问题需要,对式子进行整理和简化。
这可以包括合并同类项、消去分母等操作。
4. 解方程:将建立好的式子转化为方程,即将式子两边加减乘除等运算,使方程变为一个关于未知数的等式。
5. 求解:通过对方程进行求解,得到未知数的值。
可以使用多种解方程的方法,如逆运算、配方法等。
6. 检验:将求解得到的未知数代入原方程中,检验是否满足问题的条件和关系。
如果满足,说明求解正确;如果不满足,则需要回顾求解步骤,查找错误。
通过以上步骤,我们可以顺利地使用式子解决各类数学问题,提高问题解决能力和数学应用能力。
三、案例分析:使用式子和方程解决实际问题现在,我们通过一个实际问题来演示使用式子和方程解决数学问题的过程。
问题:甲乙两人合计花了80元买了若干只鸡。
如果甲乙各自花费的钱数相等,且若甲多花1元,那么乙一共购买了16只鸡。
中考数学复习重要知识点专项总结—方程和方程组一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程(1)一元二次方程的一般形式:(其中x是未知数,a、b、c 是已知数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ<0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。
2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:(不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
二次根式二、知识要点1、二次根式的概念a ≥0)的式子叫做二次根式。
注意:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a ≥0,2、取值范围(1)、二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
(2)、二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤03、二次根式a ≥0)的非负性a ≥0)表示a a ≥00(a≥0)。
注意:a ≥0)表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a ≥0)的算术平方根是非负数,即2(a ≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用0=,则a=0,b=020b =,则a=0,b=020b =,则a=0,b=0。
4、二次根式2的性质:2a =(a ≥0)描述为:一个非负数的算术平方根的平方等于这个非负数。
注意:二次根式的性质公式2a =(a ≥0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若a ≥0,则2a =,如:22=,212=。
5、二次根式的性质(0)(0)a aaa a≥⎧==⎨-<⎩描述为:一个数的平方的算术平方根等于这个数的绝对值。
注意:(1)、化简一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即(0)a a a==≥;若a是负数,则等于a的相反数-a,即1.414 1.7322.236≈≈;;;2、a的取值范围可以是任意实数,即不论a3a,再根据绝对值的意义来进行化简。
6、2与1、不同点:22表示一个正数a的算术平方根的平a的平方的算术平方根;在2中a可以是正实数,0,负实数。
但220≥0≥。
因而它的运算的结果是有差别的,2a=(a≥0)(0)(0)a aaa a≥⎧==⎨-<⎩2、相同点:当被开方数都是非负数,即a≥0时,2a<0时,2无意义,而a=-。
第四单元:简易方程整理和复习(一)一、填空.1、果园里有苹果树和梨树共45棵,其中梨树有a棵,苹果树比梨树多( )棵.2、2a表示( )或者( ),a2表示( )3、一个正方形周长是m米,这个正方形的边长是( )这个正方形的面积是( )4、某工厂每月用水a吨,全年用水( )吨5、三角形在面积公式用字母表示是( ),当a=3.6厘米,h=4厘米时,s=( )二、判断(对的打”√”,错的打”×”)1、a2>2a ( )2、2x+3=11的解是x=4. ( )3、4x+5>10是方程( )4、当a=3,b=5时,2a+3b=21 ( )5、42+3=2x,不是方程是等式.( )三、解下列方程.4x-18×2=20 2.5x-0.5x=0.4×8 x-4.5+10=17.8四、列方程解文字题.1、一个数的5倍加上这个数的8倍等于169,求这个数?2、9个0.6比x的2倍多2.7,求x?整理和复习(二)一、选择合适的方法解下列应用题.1、一个三角形面积是24.8平方米,底是12.4米高是多少米?2、小青家今年养了50只鸡,比鹅的3倍还多5只,小青家今年养鹅多少只?3、甲乙两辆汽车分别从相距800千米的两城相向开出,8小时相遇,已知甲车每小时行驶45千米, 乙车每小时会驶多少千米?4、香蕉每千克4.50元,梨每千克4元,小红的妈妈买了4千克香蕉,给了营业员30元,剩下的钱去买梨,能买梨多少千克?5、小红和小军一共储蓄了235元,已知小红储蓄的是小军的1.5倍,小红和小军各储蓄多少元?6、三个数的平均数是120,甲数是乙数的2倍,丙数比甲数多5,甲, 乙,丙三个数各是多少?第四单元测试题(A卷)一、填空.1、平行四边形底长a米,高是底的1.8倍,面积是( )2、货车每小时行S千米,客车每小时行m千米,客车3小时后和货车5小时一共行驶了( )千米.3、食堂买来200千克煤,已烧了a天,还剩b千克,平均每天烧了( )千克.4、每个足球x元,买4个足球,付出200元,应找回( )元.5、三个连续自然数,已知中间一个数是m,那么前一个数是( ),后一个数是( ),三数之和是( )6、当x=5时,x2=( ),2x+8=( )7、用字母表示梯形面积公式是( )8、一种商品降价a元后是80元,原价是( )元.二、判断.(对的打”√”,错的打”×”)(1)、方程一定是等式,等式不一定是方程.( )(2)、小明今年a岁,哥哥比他大b岁,c年后,哥哥比他大b+c岁.( )(3)、x的3倍与3x相等. ( )(4)、3x+4x=7x, 3a+4b=7ab ( )(5)、含有x的等式叫方程. ( )三、选择题.(填序号)(1)、下列式子中是方程的是( )①、4a=0.8 ②、0.17x+2.5 ③、3x+7>15 ④、3.5x-1.7x<8(2)、47除一个数所得的商是6余5,求这个数的方程是( )①、6x+5=47 ②、6x-5=47 ③、47÷6-5=x(3)、当a=8,b=6时,2a+3b等于( )①、36 ②、34 ③、240(4)、甲数是a,是乙数的3倍, 乙数是( )①、3a ②、a÷3 ③、2a(5)、一个正方形边长是8米,若边长增加2米,面积增加( )①、4平方米②、16平方米③、36平方米④、100平方米四、解下列方程.5.5x+6.7=7.8 28-x+3.6=20 3.5x-0.8x=11.348x-27.54÷2.7=1.8 6.2x-x=41.6 9x-14×5.5=58五、列式计算.1、20.3被2.9除的商去乘0.67与1.33的和,积是多少?2、15个8比一个数的4倍多10,求这个数.(列方程解答)3、甲数是x,乙数是甲数的3倍少0.2, 乙数是5.8,甲数是多少?(列方程解答)六、看图列方程.X本文艺术X本X本16本91本故事书七、应用题.1、汽车站有480箱货物,一辆货车运了5次,还剩30箱,平均每次运多少箱?(列方程解答)2、A,B两城相距150千米,甲乙两人同时骑自行车从两地相对出发,甲每小时行16千米,4小时后,两人还相距30千米, 乙每小时行多少千米?3、果园里有桃树和杏树一共1080棵,已知杏树经桃树的棵数多180棵,杏树和桃树各有多少棵?4、一个长方形操场周长是348米,宽是69米,它的面积是多少平方米?5、龟兔赛跑,全程200米,龟每分钟跑2.5米,兔每分钟跑32米,兔自以为是,在途中睡了一觉,当龟到达终点时,兔子离终点还有40米,兔子在途中睡了几分钟?第四单元测试(B 卷)一、 填空.1、长方形周长计算公式用字母表示是( )2、李师傅每天做m 个零件,比张师傅多做8个,两人一天共做( )3、每本练习本x,买了6本,付出10元,应找回( )元.4、甲数是乙数的a 倍,甲数比乙数多( )倍.5、( )叫方程.6、甲乙两数之差是14,两数之和是108,甲数是( ), 乙数是( ).7、a ×(7+b),当a =5时,b=( )才能使a ×(7+b) =52.58、一个正方形周长是a 厘米,用字母表示它面积的式子是( ),当a =24时,正方形面积应是( )平方厘米.二、把左右两边意义相等的用直线连起来.a 与a 相乘 a +2ba 与相加 a 2a 的2倍 2a +3aa 的二分之一 2a比a 的2倍多3的数 a +aa 与b 的和的2倍 21a a 与b 的2倍的和 (a +b)×2三、判断(对的打”√”,错的打”×”)(1)、等式就是方程. ( )(2)、42=4×2 ( )(3)、4x -20=4与50-5x =20的解是相同的. ( )(4)、光明商店上午卖出a 台冰箱,下午卖出b 台冰箱,这天一共卖了ab 台.( )(5)、2.5a +b =2.5ab ( )(6)、2b ×(b +c)=2b 2+2c ( )四、选择(填序号)1、a 除150的商再减去20的差,列式为( )①、a÷150-20 ②、150÷a-20③、a÷(150-20) ④、150÷(a -20)2、下列式子里是方程的有( )①、x+3 ②、3+15=18 ③、4a+27=78 ④、4x-15<203、0.75x-4×1.8=0.3的解是( )①、x=8 ②、x=10 ③、x=1004、根据8x-6=50,可推得3x+7的值是( )①、50 ②、28 ③、215、m是三个连续自然数中间一个数,三个数之和是( )①、3m+2 ②、3m ③、3m+1 ④、3m-1五、当a=4,b=5,c=6时,求下列各式的值.a+3b-2c abc÷12 bc÷a-b六、列方程并求出方程的解.1、5x减去3.2与9的积差是2.7.2、一个数的7.5倍与这个数的4.5倍多24,这个数是多少?七、应用题.1、同学们植树,一班比二班多植63棵,一班42人,平均每人植8棵,二班39人,平均每人植多少棵?(用方程解答)2、买3张桌子和4把椅子一共用了308元,每把椅子32元,每张桌子多少元?(用方程解答)3、一个长方形周长和一个正方形周长相等,已知长方形长24厘米,宽16厘米,求正方形面积?4、两辆汽车从相距400千米的两地同时相对开出,3小时后还相距10千米,已知一辆汽车每小时行驶55千米,求另一辆汽车速度?(用两种方法解答)1、鸡兔同笼,共有35个头,94条腿,求鸡兔各有几只?总复习(一)一、直接写出得数.8-0.72=0.72×2.5×4=7.2÷0.8=0.64÷1.6=8.7÷2.9×2.9= 4.2÷0.1=7.2+6.5+2.8= 1.5×0.75+1.5×0.25=二、用自己喜欢的方法计算下列各题.12.7-(8.65+2.7) 92.5×0.25×4 6.7×0.9+6.7×0.18.25×9.9+0.825 3.4×8.7+34×0.13 6.5×1.1三、笔算下列各题.7.89×4.27 28.56÷5.1 102.6÷3.8四、列式计算.1、8.5与4.2的积比17.8的一半多多少?2、26.34比3.4与4.6的积多多少?总复习(二)一、填空.1、0.78+0.78+0.78+0.78改写成简便算式是( ),这个算式表示的意义是( ),也表示( ).2、5小时24分=( )小时 2.3小时=( )小时( )分3、12.53里面有( )个0.01 125个0.1是( )4、8.789保留整数是( ),保留一位小数是( ),精确到百分位是( )5、20÷6的商是一个( )小数,写成简便记法是( )6、求6.25的十分之三是多少?列式是( )7、在3.6262,3.62,3.62,3.626中,是有限小数的( );是无限小数的有( );纯循环小数是( ),混循环小数是( ).二、判断(1)、8.25×4.7与82.5×0.47的积相等. ( )(2)、无限小数一定比有限小数大. ( )(3)、两个小相等,积一定比其中任何一个因数大.( )(4)、循环小数一定是无限小数.( )(5)、一个数除以小数,商一定比被除数小.( )(6)、3.26的循环节是26.( )三、计算下面各题(得数保留两位小数)3.03÷(0.25×68) 16.06÷5.7×1.74.65×5.73÷3.9总复习(三)一、填空.1、加法、减法叫做( )运算, 乘法,除法叫做( )运算2、只含同一级运算的要( )计算,含有两级运算的要先算( )运算,再算( )运算.3、8.2+4.5×0.3÷1.5这道算式含有( )级运算,要先算( )法,再算( )法,最后算( )法,如果把这道算式改写成先算加,再算除,最后算乘法,列式为( )二、按顺序计算,然后列成综合算式.列综合算式:______________ 列综合算式:______________三、列式计算.1、5.2与3.5的差去除10.5,所得商再加上20.9,和是多少?2、1.28减去1.54与0.31的差,所得的差再乘9.4,积是多少?总复习(四)一、 填空.1、7.2公顷=( )平方米 3.04平方米=( )平方米( )方分米2、两个完全一样的( )梯形可拼成一个长方形,这个拼成的长方形面积是每个梯形面积的( )倍.3、一个三角形与一个平行四边形等底等高,这个三角形面积一定是这个平行四边形面积的( )4、一个平行四边形的面积是63平方米,现在底缩小3倍,高不变,面积是( )平方米.二、计算下面每个图形的面积(单位:厘米)5.2 5.8 4.7 3.4 4.2 4.5 4.8 5.5 3.2三、应用题.1、有一块三角形小麦地,高30米,比底长18米,这块地面积是多少平方米?2、有一个平行四边形底是15分米,高8分米,它和另一个三角形的面积,底相等,这个三角形的高是多少分米?3、如右图,用篱笆围一块菜地,利用了一面墙.篱笆全长40米,这块菜地面积是多少平方米?9米总复习(五)一、填空.1、一个三角形,它的底是a米,高是2米,它的面积是( )2、a+b比a大( ),a-s比a小( )3、a+a+a+a+a=( ) a×a×a=( )4、a、b、c 三数的平均数是( )5、甲数比乙数大5,如果乙数是m,那么甲数是( ),如果甲数是m,那么乙数是( )6、当x=5时,2x-1.7×4的值是( )二、判断题.(对的打”√”,错的打”×”.)1、等式一定是方程.( )2、只含有未知数x的等式才是方程.( )3、a×b×2=2ab,a×2b=2ab. ( )4、2×2=4,22=4,所以a2=a×2. ( )三、解下列方程1.8×2-0.3x=2.4 15x-8x+30=135 8x+0.4×1.2=1.2四、列方程并求出方程的解.1、12.5减去一个数的2.5倍,等于这个数的3.5倍,求这个数?2、3.5除17.5的商比一个数的4倍多0.2,求这个数?总复习(六)应用题.1、梯形上底是a米,下底是b米,高是h米,(1)用字母表示出梯形的面积S.(2)当a=2.5,b=4.8,h=2.4时这个梯形面积是多少?2、一枝钢笔的价钱是一枝圆珠笔的2.5倍,现各买2支,一共用了10.5元,每支钢笔和圆珠笔各是多少元?3、AB两城相距720千米,一列客车从A城开往B城,行2小时后,另一辆货车从B城开往A城,4小时后与客车相遇,已知客车每小时行80千米,货车平均每小时行多少千米?4、一根绳子长13.4米,第一次剪去3.2米,第二次剪去多少米才能使剩下的长度刚好是第一次剪去的2倍?5、甲乙丙三数之和是183,甲数比乙数的2倍多7,丙数比乙数的3倍少4,求甲乙丙三数各是多少?。
式与方程内容
在数学中,式和方程是两个重要的概念。
简单来说,式是一个数学表达式,而方程则是一个等式。
以下是式与方程的内容解释:式:在数学中,式指的是一个数学表达式,它由变量、常数和运算符组成。
例如,x + 2 = 5 就是一个式子,其中 x 是变量,2 和 5 是常数,+ 和 = 是运算符。
式子可以用来表示一个计算过程或者某个关系。
一般来说,式子中包含的变量可以取不同的值,从而得到不同的结果。
方程:方程是一个等式,它包含一个或多个未知数,并且要求这些未知数满足某种特定的关系。
例如,2x + 3 = 7 就是一个方程,其中 x 是未知数,要求找出 x 的值,使得等式左边和右边相等。
方程也可以包含多个未知数,例如 x + y = 5,其中 x 和 y 都是未知数。
通过解方程,我们可以求出未知数的值,从而得到需要的结果。
总之,式和方程都是数学中重要的概念,它们都能够用来描述数学问题和关系。
式子旨在用来表示一个计算过程或者某个关系,而方程则是用来求解一个或多个未知数的值,使得等式成立。
人教版六年级下册数学《式与方程(2)》教案(5篇)第一篇:人教版六年级下册数学《式与方程(2)》教案人教版六年级下册数学《式与方程(2)》教案式与方程(2)教学目标:1、知识与技能:进一步认识用字母表示数的意义及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式等。
掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。
2、过程与方法:能根据问题的特点选择恰当的方法来解答,进一步培养分析数量关系的能力,发展思维。
3、情感态度与价值观:提高整体认识知识的能力,找到知识间的内在联系。
教学重点:熟练找出等量关系,能根据题意正确地列方程解决问题。
教学难点:提高学生的解决问题的能力,整理知识的能力。
教学准备:电脑课件;学生:与式与方程有关的相关知识教学过程:一、创设情境,引出知识出示:学校组织远足活动。
原计划每小时走3.8km,3小时到达目的地。
实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)解题过程解:设现在平均每小时走了x千米。
2.5x=3.83 2.5x2.5=11.42.5 x=4.56答:平均每小时走了4.56千米?二、提出问题1、这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的一种方法。
请你以小组为单位,合作自主梳理有关代数的知识。
2、小组进行讨论(设计意图:从学生已有知识经验基础出发,将这道具体的例题作为一个点,四散出各个基础知识,边回顾边整理,成为一个具体的体系,使学生明白基础的重要。
)三、分析知识建立联系(一)学生汇报各类知识小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。
(设计意图:小组合作后需要集体进行知识的再加工与再整理,使知识更加完善。
)(二)解方程与方程的解1、具体知识4.56是方程的解,而求这个解的过程就是解方程。
方程是含有字母的等式补充提问:能举几个是方程的式子吗?第二篇:人教版六年级下册数学《式与方程(1)》教案人教版六年级下册数学《式与方程(1)》教案式与方程(1)教学目标:1、知识与技能:理解用字母表示数的意义和方法,能用字母表示常见的数量关系。
了解数学中的算式与方程的关系数学是一门精确的科学,涵盖了广泛的概念和原理。
在数学的学习过程中,算式和方程是两个核心概念。
它们之间有着密切的联系和差异,理解它们的关系对于数学的学习和运用至关重要。
一、算式和方程的基本含义和区别算式是数学中用数字符号表示的计算式子。
它由运算符、数字和变量组成,通过运算符的运算符号进行计算和求值。
算式是对数学几何关系的描述和计算,它是一种数学语言的表达方式。
例如,2 + 3 = 5和4 × 6 = 24都是算式。
方程是关于未知数的等式,通常用字母表示未知数。
它由等号连接的两个表达式组成,左边是已知的量,右边是未知数。
通过求解方程,可以找到使等式成立的未知数的值。
方程在数学中扮演着重要的角色,应用广泛。
例如,2x + 3 = 7和x^2 - 9 = 0都是方程。
从定义可以看出,算式和方程的主要区别在于方程含有未知数,需要进行求解。
算式则是已知数的运算,通过运算符进行计算求值。
二、算式和方程的联系与应用1. 算式是方程的基础算式是数学中最基本的计算形式,是数学运算的基础。
方程则是在算式的基础上引入了未知数,通过未知数的求解来满足等式的成立。
可以说,方程是算式的进一步延伸和应用。
2. 方程是问题求解的工具在实际问题中,通常需要通过建立方程来求解未知数的值。
问题中的条件和关系可以通过方程来表示,然后通过解方程来解决问题。
例如,小明去超市购买了苹果,总共花了x元,每个苹果的价格是5元,那么可以建立方程5x = 总花费,通过求解方程可以得到小明花费的金额。
3. 算式和方程的相互转化在某些情况下,可以将算式转化成方程,或将方程转化成算式。
例如,已知一个方程2x + 3 = 7,可以将它转化为算式2x = 7 - 3,然后进行求解得到x的值。
同样,可以将一个算式转化成方程。
例如,2 × 3= ? 可以转化成方程2 × 3 = x,并求解得到x的值。
三、算式和方程的应用举例1. 利用算式计算周长和面积算式在几何中的应用很广泛。
(完整word版)小升初数学“式与方程”专题复习教案年级:六年级科目:数学课题式与方程(1)教师评价:______________________ 家长签名:______________________教学流程:1、教学目标2、教学考点、重点、难点归纳3、典型例题4、基础训练题5、知识应用题6、能力提高与拓展题式与方程(1)知识点复习一、用字母表示数1、用字母表示数的意义和作用用字母可以表示我们学过的任何数,用含有字母的式子,可以把数量关系简明的表达出来,也可以表示运算的结果。
2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系①路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vt、v=s/t、t=s/v②总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bc、b=a/c、c=a/b(2)运算定律和性质加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc 减法的性质:a-(b+c) =a-b-c (3)用字母表示几何形体的公式①长方形的长用a表示,宽用b表示,周长用C表示,面积用S 表示: C=2(a+b)、S=ab②正方形的边长a用表示,周长用C表示,面积用S表示: C=4a、S=a2③平行四边形的底a用表示,高用h表示,面积用S表示:S=ah④三角形的底用a表示,高用h表示,面积用S表示: s=ah/2⑤梯形的上底用a表示,下底b用表示,高用h表示,面积用S 表示:S=(a+b)h/2 、S=mh⑥圆的半径用r表示,直径用d表示,周长用C表示,面积用S 表示:C=πd=2πr 、S=πr2⑦长方体的长用a表示,宽用b表示,高用h表示,底面积用S 表示,体积用V表示:S=2(ab+ah+bh)、 V=Sh=abh⑧正方体的棱长用a表示,表面积用S表示,体积用V表示:S=6a2、V=a3⑨圆柱的高用h表示,底面半径用r表示、直径用d表示,底面积用S表示,表面积用S1表示,体积用V表示:S1= 2S+Ch = 2πr2+Ch = 2πr2 +2πrh,V=Sh=πr2 h⑩圆锥的高用h表示,底面半径用r表示、直径用d表示,底面积用S表示,体积用V表示:S=πr2, V=13Sh =13πr2h例1、每支铅笔a元,钢笔的单价是铅笔的11倍,小明买了5支铅笔和1支钢笔。
式子与方程整理与复习
整理教师:刘新民
一、基础知识整理
(一)用字母表示数、数量关系、运算定律和计算公式
1. 用字母或含有字母的式子可以简明地表示数(包括整数、小数、分数、百分数),也可以表示数量关系、运算定律和计算公式等。
(1)用字母表示数。
一班有男生a 人,女生b 人,一共有a+b 人。
(2)用字母表示数量关系。
如果用v 表示速度,t 表示时间,s 表示路程,那么行程问题中的数量关系用字母表示为s=vt ,v=s ÷t ,t=s ÷v 。
(3)用字母表示运算定律。
①加法交换律:a+b=b+a
②加法结合律:(a+b )+c=a+(b+c )
③乘法交换律:a ·b=b ·a
④乘法结合律:(a ·b )·c=a ·(b ·c )
⑤乘法分配律:(a+b )·c=a ·c+b ·c
(4)用字母表示计算公式。
如果长方形的长用a 表示,宽用b 表示,周长用C 表示,则长方形的周长计算公式为C=2(a+b )。
(5)用字母表示其他。
①同分母分数加、减法的计算方法:
a b ±a c =a
c b ± ②用分数表示循环小数:0.a 。
bc 。
=999abc ;0.ab 。
c 。
=990a abc - ③用字母表示分数的简算:)
(1n a a +⨯=(a 1-n a +1)×n 1(n 为分母差);ab b a ±=a 1±b
1。
2. 在含有字母的式子里,字母就读字母的名称,字母与字母、字母与数字之间的乘号可以记作“·”或省略不写。
但要注意,在省略乘号时,应当把数字写在
字母的前面。
3. 用字母表示除法、分数、和比时,表示除数、分母、比的后项的字母不能为0。
4. 用字母表示运算结果时,必须是最简的式子。
(二)等式与方程
1. 等式的意义:表示相等关系的式子叫做等式。
2. 方程的意义:含有未知数的等式叫做方程。
3. 等式与方程的关系:所有的方程都是等式,但等式却不一定是方程。
4. 方程的解的意义:使方程左右两边相等的未知数的值,叫做方程的解。
5. 解方程的意义:求方程的解的过程叫做解方程。
(三)等式的性质
1. 性质1:等式的两边同时加上(或减去)同一个数,左右两边仍然相等。
2. 性质2:等式两边同时乘(或除以)同一个不等于0的数,左右两边仍然相等。
(四)列方程解应用题的一般步骤
1. 弄清题意,找出未知数并用x表示(也可以设某个间接量为x再通过这个量去求未知数)。
2. 找出题中数量间的等量关系,并根据等量关系列出方程。
(关键)
3. 解方程,求出未知数的值。
4. 检验,并写出答语。
(五)找等量关系的方法
1. 明确表示等量关系的关键性词语。
(谁比谁多(或少)多少;谁是谁的几倍(或几分之几、百分之几)
2. 列等量关系式。
(1)利用常见的四则运算的意义列等量关系式。
(2)利用常见的数量关系列等量关系式。
(3)利用计算公式列等量关系式。
二、例题精讲
例1、小丽今年a岁,比妈妈小24岁,2年后她和妈妈的年龄和是多少?
分析与解答:因为小丽比妈妈小24岁,所以妈妈的年龄是(a+24)岁,2年后
她们共长了2+2=4(岁),那么2年后她和妈妈的年龄和是a+a+24+4=2a+28(岁)。
例2、甲、乙两地相距318㎞,王东和李华骑摩托车同时从甲、乙两地相向而行,王东每小时行48㎞,李华每小时行44㎞,几小时后相遇?
分析与解答:找出题中相等的数量关系是列方程解决问题的关键,根据题意有这样的等量关系:王东行的路程+李华行的路程=总路程,因为他们是同时从两地相向而行,所以相遇时,两人所行的时间相等,即可设x 小时相遇,那么相遇时,王东行了48x (千米),李华行了44x (千米),他们x 小时一共行了(48x+44x )(千米),在根据上面的等量关系列方程,即48x+44x=138,解得x=1.5,则1.5小时后相遇。
例3、一个饲养场共养鸡和鸭共1500只,养鸡只数的
4
1比养鸭只数的40%少15只,这个饲养场养鸡和鸭各多少只?(用方程解)
分析与解答:根据题意可得关系式:鸭的只数×40%-鸡的只数×41=15,这里可设鸡有x 只,则鸭有(1500-x )只,再由上面的关系式,可列方程:(1500-x )×40%=4
1x=15,解得x=900,则鸭有1500-900=600(只),故这个饲养场养鸡900只,养鸭600只。
三、精选练习
1. 填空。
(1)甲数是a ,比乙数少2,甲、乙两数的和是( )。
(2)一杯水有2升,每次倒出x 毫升,倒了4次后还剩( )毫升。
(3)5路公交车上原有乘客y 人,在长江路下去6人,上来15人,车上现在有乘客( )人。
(4)张老师买了3个足球,每个足球x 元,他付给售货员300元,那么3x 表示( ),300-3x 表示( )。
(5)一件女装原价a 元,现在打七折出售,比原价优惠了( )元。
2. 解方程。
28.4+x=64.7
103:21=5
4:x
92x+3
1=1 (1.5+x )×9=16.2
3. 用小棒按下面的顺序拼摆八边形。
···
(1)根据上图填表。
(2)如果拼摆成6个八边形,需要( )根小棒。
(3)萌萌、亮亮、乐乐通过观察表格和图形,找出了拼摆成的八边形的数量和需要的小棒数量之间的关系。
在找得对的后面的括号里画“☺”。
萌萌:16+16n (n >3)( )
亮亮:7n+1( )
乐乐:8n-1( )
(4)当n =12时,需要( )根小棒。
(5)用50根小棒能拼摆( )个八边形。
4. 列方程解决问题。
1. 欧亚商场因换季销售某种商品,如果按定价的五折出售,则赔30元;如果按定价的九折出售,将赚20元。
该商品的定价为多少元?
2. 有两个书架,第一个书架放的书比第二个书架的3倍还多18本,如果把第一个书架的书拿出80本放到第二个书架,那么两个书架所放的书的本数相等。
原来两个书架各有多少本书?
3. 北京故宫外围有一条护城河,护城河的长是3800米,长比宽的73倍还多4米。
护城河的宽是多少米?
四、思维训练
1. 一架飞机的燃料最多可以用4小时,如果飞机飞出时是顺风,每小时飞1500㎞;飞回时逆风,每小时飞1200㎞,这架飞机最多飞出多少千米后必须往回飞?
2. 长春市少先队员为山区学校捐赠了一批图书,按计划把这批图书的10
1多6本送给永红小学;把余下图书的一部分送给少年宫,送给少年宫的比送给永红小学的3倍还多136本;又把第二次余下图书的75%多80本送给春芽幼儿园;最后还余下300本作为山区小学数学竞赛的奖品。
问长春市少先队员一共捐赠了多少本图书?。