古典概型的特征和概率计算公式 教学
- 格式:doc
- 大小:236.50 KB
- 文档页数:9
《古典概型的特征和概率计算公式》说课稿(1)《古典概型的特征和概率计算公式》说课稿一、教材分析:《古典概型的特征和概率计算公式》是北师大版普通高中课程标准试验教科书数学必修3第三章第二节第一小节的内容。
本节课内容是在学生已经学习了随机事件概率的概念基础上的延续和拓展。
古典概型是一种特殊的数学模型,它的引入避免了大量的重复试验,而且得到的是概率的精确值。
它也为后面学习几何概型在思路上做了一个铺垫,在教材中起着承前启后的作用。
同时,学习本节课的内容,能够大大激发学生学习数学、应用数学的兴趣。
因此本节知识在概率论中占有相当重要的地位。
由于在这节课之前,教材中并没有安排排列组合知识,所以这节课的重点我认为不是“如何计算”,而是让学生通过生活中的实例与数学模型,来理解古典概型的两个特征,让学生初步学会把一些实际问题转化为古典概型。
所以我设计了这节课的重点和难点为:1.重点:理解古典概型及其概率计算公式2.难点:古典概型的判断二、教学目标分析:基于上述我对教材的地位和内容的剖析,根据新课程标准中发展学生数学应用意识的基本理念,结合学生已有的知识结构与心理特征,我制定了以下的教学目标:知识与技能:1.通过试验理解基本事件的概念和特点;2.在数学建模过程中,抽象出古典概型的两个基本特征,推导概率的计算公式;3.掌握用列举法和分类讨论法解决概率的计算问题。
过程与方法:通过模拟试验让学生理解古典概型的特征,观察类比各个试验,让学生归纳总结出古典概型公式。
情感态度与价值观:1.用现实意义的实例,激发学生的学习兴趣,培养学生勇于探索、善于发现的创新精神,发展学生的数学应用意识;2.经历公式的推导过程,体验由特殊到一般的归纳推理的数学思想方法,在探究活动中形成锲而不舍的钻研精神和科学态度;3.培养学生“理论来源于实践并应用于实践”的辩证思想。
三、教法与学法分析:数学是一门培育人的思维,发展人的思维的主要学科,因此,在教学中,基于这节课的特点我主要采用引导发现法和问题式教学法教学,运用多媒体等手段构造数学模型,激发学生学习兴趣,引导学生进行观察讨论、归纳总结。
数学必修三古典概型的特征和概率计算公式教案教案:数学必修三古典概型的特征和概率计算公式教学目标:1.了解古典概型的概念以及其特征;2.掌握古典概型的概率计算公式;3.能够运用古典概型的概率计算公式解决问题。
教学重点:1.古典概型的特征;2.古典概型的概率计算公式。
教学难点:1.古典概型的概率计算公式的运用;2.将古典概型的概率计算公式应用于实际问题解决。
教学准备:1.教学PPT;2.面向学生的小组活动和讨论问题。
教学过程:Step 1:导入新课通过提问的方式,引导学生回顾之前所学的概率基础知识,例如事件、样本空间、随机事件、等可能性等。
Step 2:引入古典概型1.引导学生思考古典概型的概念,并给出定义:“如果一个随机事件的样本空间必定有限且每个样本点发生的可能性相等,那么这个随机事件就是一个古典概型。
”2.通过实例,帮助学生理解古典概型的特征。
Step 3:古典概型的特征1.引导学生总结古典概型的特征:样本点有限且等可能发生。
2.利用教学PPT,展示古典概型特征的相关示意图,帮助学生更直观地理解。
Step 4:古典概型的概率计算公式1.引导学生思考如何计算古典概型的概率。
2.通过实际问题,引导学生发现古典概型的概率计算公式:“P(A)=n(A)/n(S)”,其中P(A)表示事件A发生的概率,n(A)表示事件A 的样本点个数,n(S)表示样本空间中的样本点个数。
3.给出几个实例,让学生尝试计算古典概型的概率。
Step 5:小组活动和讨论问题1.将学生分为小组,每组讨论一个实际问题,并运用古典概型的概率计算公式解决问题。
2.鼓励学生积极参与讨论和交流,互相学习,共同解决问题。
3.每组选出代表,向全班分享自己的解决思路和答案。
Step 6:总结归纳1.教师对学生的表现进行点评,总结学生们解决问题的思路和方法。
2.教师引导学生总结古典概型的特征和概率计算公式。
3.教师强调古典概型的适用范围,并提醒学生在实际问题中运用时,要注意样本点是否等可能发生。
古典概型的特征与概率计算公式古典概型是概率论中最基本的概型之一,它的特点是每个事件的可能性相等。
在古典概型中,我们可以通过计算样本空间和事件空间的大小来计算事件发生的概率。
1.等可能性:在古典概型中,每个事件的发生概率都是相等的。
2.有限性:古典概型中的样本空间是有限的,即所有可能的结果有限个。
3.独立性:古典概型中的事件之间是相互独立的,即一个事件的发生不会影响其他事件的发生概率。
根据这些特征,我们可以通过以下公式计算古典概型中事件的概率:1.概率的定义:事件A的概率P(A)定义为事件A发生的可能性与样本空间Ω中所有可能结果发生的总可能性的比值。
即:P(A)=N(A)/N(Ω),其中N(A)表示事件A的结果数目,N(Ω)表示样本空间Ω中所有可能结果的数目。
2.互斥事件:如果两个事件A和B是互斥的(即A和B不可能同时发生),则它们的概率之和为各自概率的和。
即:P(A∪B)=P(A)+P(B)。
3.相互独立事件:如果两个事件A和B是相互独立的(即A的发生不会影响B的发生概率),则它们的概率乘积等于各自概率的乘积。
即:P(A∩B)=P(A)*P(B)。
4.补事件:事件A的对立事件为A的补事件,记作A'。
补事件是指样本空间中不属于事件A的结果。
事件A的发生与A'的不发生是互斥的。
因此,P(A')=1-P(A)。
5.复合事件:如果事件A和B是两个独立事件,则同时发生的概率为两个事件的概率乘积。
即:P(A∩B)=P(A)*P(B)。
通过以上公式,我们可以计算古典概型中事件的概率。
需要注意的是,在应用这些公式时,必须满足古典概型的特征,即事件是等可能发生的、样本空间是有限的,并且各事件之间是相互独立的。
古典概型的特征和概率计算公式教学古典概型是概率论中最基本的概型之一,其特征和概率计算公式相当简单。
本文将详细介绍古典概型的特征和概率计算公式,并提供相关示例。
首先,古典概型的特征是指事件发生的场景或情况符合一定的条件,如硬币抛掷、骰子掷掷等。
这些特征包括以下几个方面:1.试验条件确定:古典概型的试验条件必须是确定的,即每次试验的结果只有有限个可能性。
取一个常见的抛硬币试验为例,其试验条件确定为硬币只能有两种可能的结果,即正面或反面。
2.结果互斥:每次试验的可能结果互斥,即只能出现其中一个结果而不能同时出现。
在硬币抛掷的例子中,硬币只能正面朝上或反面朝上,不能同时出现。
3.各结果等可能:每种结果出现的可能性相等。
在硬币抛掷的例子中,硬币正面朝上和反面朝上的概率均为0.5在古典概型中,事件的概率计算公式为P(A)=m/n,其中P(A)表示事件A的概率,m表示事件A发生的次数,n表示试验总次数。
下面通过几个具体的例子来说明古典概型的特征和概率计算公式。
例1:一枚均匀的骰子投掷一次,求投掷结果为1的概率。
解:试验条件确定为骰子的六个面,结果互斥为每个面只能出现一次,每个面出现的可能性相等。
事件A为投掷结果为1,即m=1,n=6根据概率计算公式,P(A)=1/6例2:一枚均匀的骰子投掷两次,求投掷结果为奇数的概率。
解:试验条件确定为骰子的六个面,结果互斥为每个面只能出现一次,每个面出现的可能性相等。
事件A为投掷结果为奇数,即m=3(骰子有三个奇数面),n=6根据概率计算公式,P(A)=3/6=1/2例3:从一副扑克牌中随机取出一张牌,求取出红心牌的概率。
解:试验条件确定为扑克牌的52张牌,结果互斥为每张牌只能取出一次,每张牌的可能性相等。
事件A为取出红心牌,即m=13(一副扑克牌有13张红心),n=52根据概率计算公式,P(A)=13/52=1/4总结起来,古典概型的特征是试验条件确定、结果互斥和各结果等可能。
北师大版高中数学必修3§2.1古典概型的特征和概率计算公式教学设计陕西宝鸡石油中学2012年5月§2.1古典概型的特征和概率计算公式陕西宝鸡石油中学沈涛邮编 721002一、教材分析本节课是高中数学北师大版(必修3)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。
二、教学目标1.知识与技能(1) 通过实例,理解古典概型及其概率计算公式;(2)理解古典概型的特征:实验结果的有限性和每一个实验结果出现的等可能性;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
《古典概型的特征和概率计算公式》说课稿(1)《古典概型的特征和概率计算公式》说课稿一、教材分析:《古典概型的特征和概率计算公式》是北师大版普通高中课程标准试验教科书数学必修3第三章第二节第一小节的内容。
本节课内容是在学生已经学习了随机事件概率的概念基础上的延续和拓展。
古典概型是一种特殊的数学模型,它的引入避免了大量的重复试验,而且得到的是概率的精确值。
它也为后面学习几何概型在思路上做了一个铺垫,在教材中起着承前启后的作用。
同时,学习本节课的内容,能够大大激发学生学习数学、应用数学的兴趣。
因此本节知识在概率论中占有相当重要的地位。
由于在这节课之前,教材中并没有安排排列组合知识,所以这节课的重点我认为不是“如何计算”,而是让学生通过生活中的实例与数学模型,来理解古典概型的两个特征,让学生初步学会把一些实际问题转化为古典概型。
所以我设计了这节课的重点和难点为:1.重点:理解古典概型及其概率计算公式2.难点:古典概型的判断二、教学目标分析:基于上述我对教材的地位和内容的剖析,根据新课程标准中发展学生数学应用意识的基本理念,结合学生已有的知识结构与心理特征,我制定了以下的教学目标:知识与技能:1.通过试验理解基本事件的概念和特点;2.在数学建模过程中,抽象出古典概型的两个基本特征,推导概率的计算公式;3.掌握用列举法和分类讨论法解决概率的计算问题。
过程与方法:通过模拟试验让学生理解古典概型的特征,观察类比各个试验,让学生归纳总结出古典概型公式。
情感态度与价值观:1.用现实意义的实例,激发学生的学习兴趣,培养学生勇于探索、善于发现的创新精神,发展学生的数学应用意识;2.经历公式的推导过程,体验由特殊到一般的归纳推理的数学思想方法,在探究活动中形成锲而不舍的钻研精神和科学态度;3.培养学生“理论来源于实践并应用于实践”的辩证思想。
三、教法与学法分析:数学是一门培育人的思维,发展人的思维的主要学科,因此,在教学中,基于这节课的特点我主要采用引导发现法和问题式教学法教学,运用多媒体等手段构造数学模型,激发学生学习兴趣,引导学生进行观察讨论、归纳总结。
第1课时 古典概型的特征和概率计算公式[核心必知]1.古典概型具有以下两个特征的随机试验的数学模型称为古典概型(古典的概率模型).(1)有限性:即试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)等可能性:即每一个试验结果出现的可能性相同.2.古典概型概率公式对于古典概型,通常试验中的某一事件A 是由几个基本事件组成的.如果试验的所有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n. [问题思考]1.掷一枚骰子共有多少种不同的结果?提示:6种.2.以下试验中,是古典概型的有( )A .放飞一只信鸽观察其能否飞回B .从规格直径为(250±0.6)mm 的一批合格产品中任意取一件,测量其直径C .抛掷一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶提示:只有选项C 具有:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.讲一讲1.以下试验中是古典概型的是( )A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向正方形ABCD内随机抛掷一点,该点落在正方形内任意一点都是等可能的D.在区间[0,6]上任取一点,求此点小于2的概率[尝试解答][答案] B判断一个试验是否为古典概型,关键是看该试验是否具有有限性和等可能性两个特征.练一练1.以下概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人作演讲;④一只使用中的灯泡寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优〞或“差〞.其中属于古典概型的有________.解析:①不属于,原因:所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因:命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因:显然满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因:灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因:该品牌月饼评为“优〞与评为“差〞的概率不一定相同,不满足等可能性.答案:③讲一讲2.先后抛掷两枚大小相同的骰子,求点数之和能被3整除的概率.[尝试解答] 先后抛掷两枚大小相同的骰子,结果如下:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36种不同的结果.记“点数之和能被3整除〞为事件A ,那么事件A 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (A )=1236=13.求解古典概型问题的一般步骤:(1)计算所有可能的基本事件数n ;(2)计算事件A 包含的基本事件数m ;(3)计算事件A 的概率P (A )=事件A 包含的基本事件数试验的所有可能的基本事件数=m n. 运用公式的关键在于求出m 、n .在求n 时,必须确定所有可能的基本事件是等可能发生的. 练一练2.袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任取两球,求以下事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球一个是白球,另一个是红球.解:设4个白球的编号为1,2,3,4,2个红球的编号为5、6.从袋中的6个球中任取两球的取法有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种取法,且每种取法都是等可能发生的.(1)从袋中的6个球中任取两球,所取的两球全是白球的取法总数,即为从4个白球中任取两球的方法总数,共有6种,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所以P (A )=615=25; (2)从袋中的6个球中任取两球,其中一个是白球,另一个是红球的取法有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种.所以P (B )=815. [解题高手][易错题]有1号、2号、3号3个信箱和A 、B 、C 、D 4封信,假设4封信可以任意投入信箱,投完为止,其中A 恰好投入1号或2号信箱的概率是多少?[错解] 每封信投入1号信箱的机会均等,而且所有结果数为4,故A 投入1号或2号信箱的概率为24=12. [错因] 应该考虑A 投入各个信箱的概率,而不能考虑成四封信投入某一信箱的概率.[正解] 由于每封信可以任意投入信箱,对于A 投入各个信箱的可能性是相等的,一共有3种不同的结果,投入1号信箱或2号信箱有2种结果,所以所求概率为23.1.抛掷一枚均匀的正方体骰子,向上的点数是5或6的概率是( )A.16B.13C.12D .1 解析:选B 掷一枚骰子出现向上的点数为1,2,3,4,5,6,共6种情况.P =m n =26=13. 2.有100X 卡片(从1号到100号),从中任取一X 卡片,那么取得的卡片是7的倍数的概率是( )A.320B.750C.13100D.325解析:选B ∵n =100,m =14,∴P =m n =14100=750. 3.一枚硬币连掷2次,恰好出现一次正面的概率是( )A.12B.14C.34D .0 解析:选 A 列举出所有基本事件,找出“只有一次正面〞包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有一次出现正面的包括(正,反),(反,正)2个,故其概率为24=12. 4.以下试验是古典概型的为________.①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小②同时掷两颗骰子,点数和为7的概率③近三天中有一天降雨的概率④10人站成一排,其中甲、乙相邻的概率解析:①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.答案:①②④5.(某某高考)假设甲、乙、丙三人随机地站成一排,那么甲、乙两人相邻而站的概率为________.解析:三人站成一排有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种排法,其中甲、乙相邻有4种排法,所以甲、乙两人相邻而站的概率为46=23. 答案:236.设有关于x 的一元二次方程x 2+2ax +b 2=0,假设a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根〞.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根意味着Δ=(2a )2-4b 2≥0,即a ≥b .基本事件有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共12个,其中第1个数表示a 的取值,第2个数表示b 的取值.而事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34.一、选择题1.下面是古典概型的是( )A .任意抛掷两粒骰子,所得的点数之和作为基本事件B .为求任取一个正整数,该正整数平方值的个位数字是1的概率,将取出的正整数作为基本事件C .从甲地到乙地共有n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币至首次出现正面为止解析:选C 对于A ,所得点数之和为基本事件,个数虽有限但不是等可能发生的;对于B ,D ,基本事件的个数都是无限的;只有C 是古典概型.2.以下对古典概型的说法中正确的选项是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件总数为n ,随机事件A 假设包含k 个基本事件,那么P (A )=k n.A .②④B .①③④C .①④D .③④解析:选B ②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.3.在5X 卡片上分别写上数字1,2,3,4,5,然后将它们混合后,再任意排成一行,那么得到的五位数能被2或5整除的概率是( )A .0.2B .0.4C .0.6D .0.8解析:选C 一个五位数能否被5整除关键看其个位数字,而由1,2,3,4,5组成的五位数中,1,2,3,4,5出现在个位是等可能的.所以个位数字的基本事件有1,2,3,4,5,“能被2或5整除〞这一事件中含有基本事件2,4,5,概率为35=0.6. 4.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,那么这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选 A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 5.4X 卡片上分别写有数字1,2,3,4,从这4X 卡片中随机抽取2X ,那么取出的2X 卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34解析:选C 从4X 卡片中随机抽取2X ,对应的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故基本事件总数n =6.且每个基本事件发生的可能性相等.设事件A =“取出的2X 卡片上的数字之和为奇数〞,那么A 中所含的基本事件为:(1,2),(1,4),(2,3),(3,4),故m =4,综上可知所求事件的概率P (A )=m n =23. 二、填空题6.三X 卡片上分别写上字母E ,E ,B ,将三X 卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.解析:三X 卡片的排列方法有EEB ,EBE ,BEE ,共3种.且等可能出现,那么恰好排成英文单词BEE 的概率为13. 答案:137.(某某高考)从1,2,3,4这四个数中一次随机地取两个数,那么其中一个数是另一个数的两倍的概率是________.解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍〞的基本事件有{1,2},{2,4},共2个,所以所求的概率为13. 答案:138.将一枚质地均匀的硬币先后抛掷三次,恰好出现一次正面向上的概率是________.解析:所有的基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共8组.设“恰好出现1次正面向上〞为事件A ,那么A 包含(正,反,反),(反,正,反),(反,反,正),共3个基本事件,所以P (A )=38.答案:38三、解答题9.设b 和c 分别是先后抛掷一枚骰子得到的点数,求方程x 2+bx +c =0有实根的概率. 解:设事件A 为“方程x 2+bx +c =0有实根〞,那么 A ={(b ,c )|b 2-4c ≥0,b ,c =1,2,…,6}.而(b ,c )共有(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共36组.其中,可使事件A 成立的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共19组.故事件A 的概率为P (A )=1936. 10.(某某高考)袋中有五X 卡片,其中红色卡片三X ,标号分别为1,2,3;蓝色卡片两X ,标号分别为1,2.(1)从以上五X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一X 标号为0的绿色卡片,从这六X 卡片中任取两X ,求这两X 卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三X 红色卡片分别记为A ,B ,C ,标号为1,2的两X 蓝色卡片分别记为D ,E ,从五X 卡片中任取两X 的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一X 卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五X 卡片中任取两X ,这两X 卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两X 卡片颜色不同且它们的标号之和小于4的概率为310. (2)记F 为标号为0的绿色卡片,从六X 卡片中任取两X 的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一X卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六X卡片中任取两X,这两X卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两X卡片颜色不同且它们的标号之和小于4的概率为815.。
古典概型和特征和概率计算公式古典概型是概率论中最简单的概率模型之一,也称为等可能概型。
在古典概型中,试验的所有可能的结果具有相同的概率,因此可以使用特征和概率计算公式来计算特定事件的概率。
一、古典概型的特征:在古典概型中,试验的样本空间S是有限的,即S={a1, a2, ..., an},其中n为有限个数。
每个样本点ai(a1 ≤ i ≤ n)的发生概率都是相等的,即P(ai) = 1/n。
二、概率计算公式:1.对于一个事件A,A是样本空间S的子集,事件A的概率可以用以下公式计算:P(A)=n(A)/n(S),其中n(A)表示事件A中发生的样本点数,n(S)表示样本空间中的总样本点数。
2.对于互斥事件A和B(即A和B不可能同时发生),它们的并事件(A∪B)的概率可以用以下公式计算:P(A∪B)=P(A)+P(B)。
3.对于独立事件A和B(即A的发生不受B的发生影响,反之亦然),它们的交事件(A∩B)的概率可以用以下公式计算:P(A∩B)=P(A)×P(B)。
4.对于事件A的对立事件(即A不发生),对立事件的概率可以用以下公式计算:P(A')=1-P(A),其中A'表示事件A的对立事件。
5.对于事件A的补事件(即A不发生的事件),补事件的概率可以用以下公式计算:P(A')=1-P(A)。
6.对于事件A的条件概率,即在事件B发生的条件下事件A发生的概率,可以用以下公式计算:P(A,B)=P(A∩B)/P(B),其中P(A,B)表示在已知事件B发生的条件下事件A发生的概率。
三、应用举例:假设有一个装有5个红球和3个蓝球的箱子。
现从箱子中任意取出一个球,求以下事件的概率:1.事件A:取出的球是红球。
P(A)=n(A)/n(S)=5/(5+3)=5/82.事件B:取出的球是蓝球。
P(B)=n(B)/n(S)=3/(5+3)=3/83.事件C:先后取出两个红球。
P(C)=P(A∩A)=P(A)×P(A)=(5/8)×(4/7)=20/56=5/144.事件D:取出的球不是红球。
古典概型的特征和概率计算公式完美正规版古典概型是概率论中最简单的一种概率模型,它采用了等可能性的假设,即每一个样本点出现的概率都是相等的。
这个模型的特征及其概率计算公式如下:1.样本空间:古典概型中的样本空间是一个有限个数的集合,用Ω表示。
例如,掷骰子的样本空间为Ω={1,2,3,4,5,6},抛硬币的样本空间为Ω={正面,反面}。
2.事件:在古典概型中,事件是样本空间的子集,用A表示。
例如,在掷骰子的样本空间中,事件A可以表示为"出现奇数点数",事件B可以表示为"出现偶数点数"。
3.等可能性假设:古典概型中的一个重要假设是每一个样本点出现的概率都是相等的。
例如,在掷骰子的样本空间中,每一个点数出现的概率都是1/64.概率计算公式:根据等可能性假设,我们可以使用计数的方法来计算事件的概率。
事件A的概率表示为P(A),计算公式为:P(A)=N(A)/N(Ω)其中,N(A)表示事件A中样本点的个数,N(Ω)表示样本空间中样本点的个数。
例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,其样本点为{1,3,5},样本点个数为N(A)=3;样本空间Ω中的样本点个数为N(Ω)=6、因此,事件A的概率为:P(A)=N(A)/N(Ω)=3/6=1/2这个公式可以扩展到多个事件的情况下。
例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,事件B表示出现偶数点数,这两个事件是互斥事件,即事件A和事件B不能同时发生。
因此,事件A和事件B的概率可以通过以下计算公式得到:P(A)=N(A)/N(Ω)=3/6=1/2P(B)=N(B)/N(Ω)=3/6=1/2请注意,在古典概型中,当事件A和事件B互斥时,它们的概率相加等于1,即P(A)+P(B)=1总结起来,古典概型的特征是样本空间有限、等可能性假设成立;概率计算公式是P(A)=N(A)/N(Ω)。
古典概型的特征和概率计算公式古典概型是概率论中最简单的概型之一,它是基于等可能性假设的。
古典概型的特征和概率计算公式如下所示。
1.特征:-等可能性假设:古典概型假设所有可能的结果具有相同的发生概率。
-有限个数的可能结果:古典概型假设实验的所有可能结果可数且是有限的。
-互斥性:古典概型假设每个实验结果都是唯一的,任意两个不同结果之间是互斥的,即同一次试验只能出现一种结果。
2.概率计算公式:在古典概型下,我们可以使用以下公式来计算事件的概率。
-样本空间:古典概型中,样本空间的大小等于实验的所有可能结果数的总和。
假设样本空间为S,大小为n,即S={A1,A2,A3,...,An}。
- 事件的概率: 假设事件A是样本空间S的子集,包含m个可能结果,即A = {Ai1, Ai2, Ai3, ..., Aim}。
则事件A的概率P(A)等于事件A中所有可能结果的概率之和。
P(A) = P(Ai1) + P(Ai2) + P(Ai3) + ... + P(Aim) = m/n。
3.举例说明:为了更好地理解古典概型的特征和概率计算公式,我们来举一个简单的例子。
假设有一个标准的六面骰子,每个面上的数字是等可能的。
(1)样本空间:这个例子中,样本空间S包含了所有可能的结果,即S={1,2,3,4,5,6}。
(2)事件A:假设我们关注的事件是掷出的数字是奇数。
事件A是样本空间S的子集,A={1,3,5}。
(3)概率计算:根据公式,我们可以计算事件A的概率:P(A)=P(1)+P(3)+P(5)=1/6+1/6+1/6=3/6=1/2从这个例子中,我们可以看到事件A的概率是1/2,即掷出的数字是奇数的可能性为1/2总结起来,古典概型是概率论中最基本的概型之一、它的特征包括等可能性假设、有限个数的可能结果和互斥性。
在古典概型下,我们可以使用简单的公式来计算事件的概率,即事件中所有可能结果的概率之和。
这个概率计算公式是P(A)=m/n,其中m是事件A包含的可能结果数,n是样本空间S的大小。
3.2.1《古典概型的特征和概率计算公式》的教案说明彬县中学程红云良好的开端是成功的一半。
本教案依据新课标理念,基于对教材的理解与分析,并结合学生的实际,创设生活情境把学生带入课堂,以问题为纽带,在学生的“最近发展区”提出问题,引导学生积极思考,主动探究,类比分析,归纳小结,化结果为过程贯穿于整个教学过程。
教学力求符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念。
现就本节教案从以下方面做以说明:一、教学内容的本质新课标要求数学教学应返璞归真,努力揭示数学的本质。
在数学教学中,学习形式化表达是一项基本要求,本节教学我通过创设情境,引导学生观察,分析,交流,类比,归纳,让学生主动构建新知,揭示古典概型的特征和概率计算公式的发展过程和本质,体会蕴藏在其中的思想方法,将生动活泼的数学思维活动体现与数学教学之中。
二、三维目标定位基于对教材的理解与分析,我将目标定位为“知识与技能”目标:①理解古典概型的特征; ②掌握古典概型的概率计算公式;③会用列举法计算一些随机事件发生的概率。
“过程与方法”目标:通过引导学生分析,交流,归纳出古典概型的特征与概率计算公式,体会知识发展的过程,渗透从具体到抽象,从特殊到一般的认知结构,领会化归,分类讨论的思想方法。
“情感、态度和价值观”目标:①在探索古典概型的特征和概率计算公式的过程中,让学生感受数学问题探索的乐趣和成功的喜悦,体会与他人合作的重要性,初步树立从具体到抽象,从特殊到一般的的辩证唯物主义观点,发展学生用随机的观点来理性的理解世界。
②在解决例题和情境问题中感受古典概型的使用价值,增强数学思维的情趣和形成学习数学知识的积极态度。
三、内容的基础与用途概率是一门研究现实世界中广泛存在的随机现象的科学。
它已经不是数学家手中的抽象理论,而成为我们认识世界的工具,从彩票中奖,到证劵分析;从基因工程,到法律诉讼;从市场调查,到经济宏观调控,;概率无处不在。
古典概型的特征和概率计算公式完美正规版古典概型是概率论中最简单的模型之一,适用于试验结果相互独立且每个结果发生的概率相等的情况。
在古典概型中,试验的结果可以通过一个有限的样本空间来描述,样本空间中的每个样本点都是一个可能的结果。
下面将介绍古典概型的特征以及概率计算公式的完美正规版。
一、古典概型的特征1.试验结果相互独立:古典概型中的试验结果之间是相互独立的,即一个结果的发生不会影响其他结果的发生。
2.每个结果发生的概率相等:古典概型中每个结果发生的概率是相等的,即每个结果发生的可能性相同。
在古典概型中,我们通常希望计算一些事件的概率,即该事件发生的可能性。
为了计算概率,我们需要以下两个关键步骤:确定样本空间和确定事件。
1.确定样本空间:样本空间是指试验的所有可能结果的集合。
对于古典概型来说,样本空间可以通过列举出所有可能结果来确定。
样本空间的个数通常表示为n。
2.确定事件:事件是样本空间中的一个子集,表示我们感兴趣的试验结果。
可以通过列举出所有可能的事件来确定。
根据古典概型的特征,事件A发生的概率可以通过以下公式计算:P(A)=事件A包含的样本点数/样本空间的样本点数这个计算公式适用于古典概型中任何一个事件的概率计算。
下面通过一个例子来解释该公式的使用。
例子:假设有一个卡片盒,里面有5张红色卡片和3张蓝色卡片。
现在从卡片盒中随机抽取一张卡片,求该卡片是红色的概率。
解答:样本空间为{红,红,红,红,红,蓝,蓝,蓝},样本空间的样本点数为8事件A表示抽取一张红色卡片,包含的样本点数为5根据概率计算公式,可得:P(A)=5/8因此,该卡片是红色的概率为5/8总结:古典概型是概率论中最简单的模型之一,适用于试验结果相互独立且每个结果发生的概率相等的情况。
古典概型的特征是试验结果相互独立,并且每个结果发生的概率相等。
在古典概型中,可以使用概率计算公式P(A)=事件A包含的样本点数/样本空间的样本点数来计算事件发生的概率。
古典概型的特征和概率计算公式教学目标1、正确理解古典概型的两大特点,掌握古典概型的概率计算公式;2、利用运算法则解决简单的概率计算问题。
重点与难点重点:理解古典改性的额概念及利用古典概型求解随机事件的概率。
难点:如何判断一个实验是否是古典概型,分清古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
教法与学法通过阅读课本,联系实际,自主合作学习。
教学流程一、自主学习1、什么叫概率?2、抛掷一枚均匀的硬币,如何求出现“正面朝上”的概率?3、投掷一枚均匀的骰子,出现“向上的点数为6”的概率是多少?思考上面的问题2和问题3,看它们有哪些共同的特征,给出古典概型的概念是:4、如何判断一个数学模型是否为古典概型?5、对于古典概型,通常试验中的某一事件A是有几个基本事件组成的。
如果试验的所有可能结果(基本事件)数为n,随机事件A包含的基本事件数为m,,那么事件A的概率为6、判别下列哪一个是古典概型:(1)有一个6等份标记的转盘,转动时箭头指向6等份中的某一部分;(2)向一个圆面内随机的投一个点,如果该点落在圆内任意一点都是等可能的;(3)射击运动员向一靶心进行射击,可以得到从10环到0环11个不同的结果。
操作说明:1、学生独立完成,时间5分钟,时间结束后,老师检查各组完成情况,并给各组赋分。
2、由学科组长订正本组答案,并指派一名组员展示。
3、教师重点让学生古典概型的特征和概率计算公式。
二、合作探究1、课本p132页的例12、在例1中,随机的从2个箱子中各取一个质量盘。
(1)计算总质量少于20kg的概率;(2)计算总质量至少20kg的概率;(3)计算总质量超过20kg的概率;(4)若某人不能拉动超过22 kg的质量,求他能拉开拉力器的概率。
操作说明:1、各组在学科组长的带领下交流讨论探究,时间5分钟,完成后指派一名同学展示。
(其中1、3、5组展示探究一,2、4、6组展示探究二)2、由学科组长进行知识规律总结。
北师大版高中数学必修3
§2.1古典概型的特征和概率计算公式
教学设计
陕西宝鸡石油中学
2012年5月
§2.1古典概型的特征和概率计算公式
陕西宝鸡石油中学沈涛邮编 721002
一、教材分析
本节课是高中数学北师大版(必修3)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。
二、教学目标
1.知识与技能
(1) 通过实例,理解古典概型及其概率计算公式;
(2)理解古典概型的特征:实验结果的有限性和每一个实验结果出现的等可能性;
(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
2.过程与方法
根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。
适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
三、重点、难点
重点:古典概型的特征及概率计算公式应用。
难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
,,
,,
经观察,概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。
(等可能性)
你能举出几个生活中的古典概在古典概型下,如何求随机
①用A表示事件“选取的两个质量盘的。