matlab仿真实验
- 格式:doc
- 大小:132.00 KB
- 文档页数:13
matlab软件仿真实验(信号与系统)(1)《信号与系统实验报告》学院:信息科学与⼯程学院专业:物联⽹⼯程姓名:学号:⽬录实验⼀、MATLAB 基本应⽤实验⼆信号的时域表⽰实验三、连续信号卷积实验四、典型周期信号的频谱表⽰实验五、傅⽴叶变换性质研究实验六、抽样定理与信号恢复实验⼀MATLAB 基本应⽤⼀、实验⽬的:学习MATLAB的基本⽤法,了解 MATLAB 的⽬录结构和基本功能以及MATLAB在信号与系统中的应⽤。
⼆、实验内容:例⼀已知x的取值范围,画出y=sin(x)的图型。
x=0:0.05:4*pi;y=sin(x);plot(y)例⼆计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。
z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,⽤subplot函数绘图。
参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表⽰1、指数信号:指数信号Ae at在MATLAB中可⽤exp函数表⽰,其调⽤形式为:y=A*exp(a*t) (例取 A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;2、正弦信号:正弦信号Acos(w0t+?)和Asin(w0t+?)分别由函数cos和sin表⽰,其调⽤形式为:A*cos(w0t+phi) ;A*sin(w0t+phi) (例取A=1,w0=2π,?=π/6) 参考程序:A=1;w0=2*pi; phi=pi/6; t=0:0.001:8;ft=A*sin(w0*t+phi);plot(t,ft);grid on ;3、抽样函数:抽样函数Sa(t)在MATLAB中⽤sinc函数表⽰,其定义为:sinc(t)=sin(πt)/( πt)其调⽤形式为:y=sinc(t)参考程序:t=-3*pi:pi/100:3*pi;ft=sinc(t/pi);plot(t,ft);grid on;4、矩形脉冲信号:在MATLAB中⽤rectpuls函数来表⽰,其调⽤形式为:y=rectpuls(t,width),⽤以产⽣⼀个幅值为1,宽度为width,相对于t=0点左右对称的矩形波信号,该函数的横坐标范围由向量t决定,是以t=0为中⼼向左右各展开width/2的范围,width的默认值为1。
附录实验二程序:(1)>> clear>> tic;>> t=-5:0.5:5;>> for n=1:size(t,2)if(t(n)<0)y(n)= 3*t(n)^2+5;elsey(n)= -3*t(n)^2+5;endend>> figure(1);>> plot(t,y);>> xlabel('x');>> ylabel('y');>> grid on;>> toc;(2)>> clear>> tic;>> t=[-5:0.5:5];>> b=t>=0;>> y(b)=-3*t(b).^2 + 5;>> y(~b)=3*t(~b).^2 + 5;>> figure(2);>> plot(t,y);>> xlabel('x');>> ylabel('y');>> grid on;>> toc;结果:(1)Elapsed time is 0.156000 seconds.(2)Elapsed time is 0.094000 seconds.实验三程序:(1)>> clear;>> n=input('ENTER A NUMBER:');>> sum=0;>> m=1;>> while m<nsum=sum+m;m=m+2;end>> fprintf('The result of all odd numbers within a given number is:%d\n',sum);(2)创建Fib.m文件% 函数功能: 计算斐波那契数列的第 n 个斐波那契数% 文件名: Fib.m% 含有 n 个数的斐波那契数列的定义如下:% f(1) = 1% f(2) = 2% f(n) = f(n-1) + f(n-2)function y=Fib(n);a(1)=1;a(2)=1;i=2;while i<=na(i+1)=a(i-1)+a(i);i=i+1;end;y=a(i);结果:(1)ENTER A NUMBER:6The result of all odd numbers within a given number is:9(2)>> Fib(7)ans =21实验四(1)程序:创建myfun.m文件% 函数功能: 计算x的双曲正弦、双曲余弦和双曲正切,并画出对应的图象。
如何利用Matlab进行模拟和仿真实验Matlab是一种功能强大的数学计算和数据可视化软件。
它不仅可以进行数学模拟和仿真实验,还可以处理数据、绘制图表和实施算法。
在工程、物理学、生物学等领域,Matlab被广泛用于解决各种实际问题。
本文将介绍如何利用Matlab进行模拟和仿真实验,并探讨其在实验设计和结果分析中的应用。
一. Matlab的基本功能Matlab具有很多基本功能,如矩阵操作、数值计算、符号计算等。
这些功能使得Matlab成为进行模拟和仿真实验的理想选择。
在Matlab中,可以定义和操作矩阵,进行线性代数运算,如求解方程组、矩阵求逆等。
此外,Matlab还提供了许多内置函数,可以进行数值计算和符号计算,如求解微分方程、积分、数值优化等。
二. 模拟实验的设计在进行模拟实验之前,首先需要设计实验方案。
实验设计包括选择合适的模型和参数设置,确定实验变量和观测指标等。
在Matlab中,可以使用函数或脚本来定义模型和参数,通过修改参数值来观察实验结果的变化。
比如,可以使用Matlab的模型库来选择合适的模型,然后使用函数传入参数值进行求解。
此外,Matlab还提供了绘图功能,可以绘制实验结果的图表,以便更直观地分析数据。
三. 仿真实验的实施在设计好实验方案后,就可以开始进行仿真实验了。
在Matlab中,可以使用已定义的模型和参数进行仿真计算。
可以通过Matlab的编程功能来实现计算过程的自动化。
比如,可以使用循环语句来迭代计算,以观察参数变化对结果的影响。
此外,Matlab还提供了随机数生成和统计分析函数,可以用于生成随机变量和分析实验数据。
四. 实验结果的分析在完成仿真实验后,需要对实验结果进行分析。
Matlab提供了丰富的数据处理和分析工具,可以对实验数据进行统计分析、绘图和可视化展示。
可以使用Matlab的数据处理函数来计算均值、标准差、相关系数等统计指标。
此外,Matlab还可以通过绘图函数来绘制直方图、散点图、线图等图形,以便更好地理解和展示数据。
matlab仿真实验报告Matlab仿真实验报告引言:Matlab是一种广泛应用于科学和工程领域的数值计算软件,它提供了强大的数学和图形处理功能,可用于解决各种实际问题。
本文将通过一个具体的Matlab 仿真实验来展示其在工程领域中的应用。
实验背景:本次实验的目标是通过Matlab仿真分析一个电路的性能。
该电路是一个简单的放大器电路,由一个输入电阻、一个输出电阻和一个放大倍数组成。
我们将通过Matlab对该电路进行仿真,以了解其放大性能。
实验步骤:1. 定义电路参数:首先,我们需要定义电路的各个参数,包括输入电阻、输出电阻和放大倍数。
这些参数将作为Matlab仿真的输入。
2. 构建电路模型:接下来,我们需要在Matlab中构建电路模型。
可以使用电路元件的模型来表示电路的行为,并使用Matlab的电路分析工具进行仿真。
3. 仿真分析:在电路模型构建完成后,我们可以通过Matlab进行仿真分析。
可以通过输入不同的信号波形,观察电路的输出响应,并计算放大倍数。
4. 结果可视化:为了更直观地观察仿真结果,我们可以使用Matlab的图形处理功能将仿真结果可视化。
可以绘制输入信号波形、输出信号波形和放大倍数的变化曲线图。
实验结果:通过仿真分析,我们得到了以下实验结果:1. 输入信号波形与输出信号波形的对比图:通过绘制输入信号波形和输出信号波形的变化曲线,我们可以观察到电路的放大效果。
可以看到输出信号的幅度大于输入信号,说明电路具有放大功能。
2. 放大倍数的计算结果:通过对输出信号和输入信号的幅度进行计算,我们可以得到电路的放大倍数。
通过比较不同输入信号幅度下的输出信号幅度,可以得到放大倍数的变化情况。
讨论与分析:通过对实验结果的讨论和分析,我们可以得出以下结论:1. 电路的放大性能:根据实验结果,我们可以评估电路的放大性能。
通过观察输出信号的幅度和输入信号的幅度之间的比值,可以判断电路的放大效果是否符合设计要求。
MATLAB信号处理仿真实验1. 引言信号处理是一种广泛应用于各个领域的技术,它涉及到对信号的获取、处理和分析。
MATLAB是一种强大的数学软件,提供了丰富的信号处理工具箱,可以用于信号处理的仿真实验。
本文将介绍如何使用MATLAB进行信号处理仿真实验,并提供详细的步骤和示例。
2. 实验目的本实验旨在通过MATLAB软件进行信号处理仿真,以加深对信号处理原理和算法的理解,并掌握使用MATLAB进行信号处理的基本方法和技巧。
3. 实验步骤3.1 生成信号首先,我们需要生成一个待处理的信号。
可以使用MATLAB提供的信号生成函数,如sine、square和sawtooth等。
以生成一个正弦信号为例,可以使用以下代码:```MATLABfs = 1000; % 采样频率t = 0:1/fs:1; % 时间向量f = 10; % 信号频率x = sin(2*pi*f*t); % 生成正弦信号```3.2 添加噪声为了更真实地摹拟实际信号处理场景,我们可以向生成的信号中添加噪声。
可以使用MATLAB提供的随机噪声生成函数,如randn和awgn等。
以向生成的信号中添加高斯白噪声为例,可以使用以下代码:```MATLABSNR = 10; % 信噪比y = awgn(x, SNR); % 向信号中添加高斯白噪声```3.3 进行滤波处理滤波是信号处理中常用的一种技术,用于去除信号中的噪声或者提取感兴趣的频率成份。
可以使用MATLAB提供的滤波函数,如fir1和butter等。
以设计并应用一个低通滤波器为例,可以使用以下代码:```MATLABorder = 10; % 滤波器阶数cutoff = 0.1; % 截止频率b = fir1(order, cutoff); % 设计低通滤波器filtered_y = filter(b, 1, y); % 应用滤波器```3.4 进行频谱分析频谱分析是信号处理中常用的一种技术,用于分析信号的频率成份。
matlab仿真实验总结摘要:本文旨在介绍基于Matlab的仿真实验,从基本的Matlab 代码编写开始,到分析参数变化的影响,再到定量分析实验结果。
实验结果表明,通过Matlab的仿真实验,可以很容易地理解模型的参数变化对模型性能的影响,并对模型调整做出科学决策。
关键词:Matlab;仿真实验;参数变化;定量分析Matlab仿真实验总结一、实验目标1、掌握Matlab基本的语法、操作和使用;2、掌握利用Matlab进行模型仿真及参数调优的基本方法;3、熟悉Matlab程序运行过程,熟悉Matlab调试程序的基本方法;4、通过程序仿真实验,了解系统及模型的基本特性,定性分析及定量分析系统特性;二、实验内容1、基于Matlab的程序编写:(1)建立Matlab编辑器环境,熟悉编辑环境基本操作;(2)了解Matlab程序编写的基本方法,熟悉调试Matlab程序的基本方法;(3)编写模型仿真程序。
2、Matlab仿真实验:(1)分析仿真实验结果,收集数据;(2)定性分析实验结果,观察参数变化对结果的影响;(3)计算参数变化后的结果,定量分析实验结果;(4)将实验结果以图形的形式展示,完成Matlab仿真实验报告。
三、实验结果通过本次Matlab仿真实验,可以得出:1、通过Matlab的仿真实验,可以很容易地理解模型的参数变化对模型性能的影响,从而有效地进行模型调整;2、可以定量分析实验结果,从而更好地进行科学决策;3、Matlab操作安全,程序编写简单实用,可以有效地减少实验工时。
四、实验总结本次Matlab仿真实验对于掌握Matlab程序编写及仿真实验的基本方法,了解实验结果的定性及定量分析等方面有着很大的帮助,为今后更深入的Matlab程序及仿真研究打下了基础。
设计性实验(MATLA仿真实验)3.1 MATALAB语言概述3.1.1 MATALAB 语言的发展MATALAB 是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计。
它使用方便,输入简洁,运算高效,内容丰富,并且很容易由用户自行扩展,因此,当前已成为美国和其他发达国家大学教学和科学研究中最常用而必不可少的工具。
MATLAB 是由美国Mathworks 公司与 1 984年正式推出的,从那时到现在已升级到7.x 版本。
随着版本的升级,内容不断扩充,功能更强大。
特别是在系统仿真和实时运行等方面,有很多新进展,更扩大了它的应用前景。
MATLAB 是“矩阵实验室”( MATrix Laboratoy )的缩写,它是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。
它用解释方式工作,键入程序立即得出结果,人机交互性能好,适应于多种平台。
MATLAB 语言在国外的大学工学院中,特别是数值计算用的最频繁的电子信息类学科中,已成为每个学生都掌握的工具了。
它大大提高了课程教学、解题作业、分析研究的效率。
MATLAB 语言比较好学,因为它只有一种数据类型,一种标准的输入输出语句,不用“指针”,不需编译,比其他语言少了很多内容听三、四个小时课,上机练几个小时,就可入门了。
以后自学也十分方便,通过它的演示(dem0)和求助(help)命令,人们可以方便地在线学习各种函数的用法及其内涵MATLAB 语言的难点是函数较多,仅基本部分就有700多个,其中常用的有二三百个,要尽量多记少查,可以提高编程效率。
3.1.2MATLAB 语言的特点1.矩阵运算:每个变量代表一个矩阵,它以矩阵运算见长;每个元素都看作复数,所有的运算都对矩阵和复数有效。
(虚部符号可用i 或j) clear %清除内存变量format short %c1=1-2i,c2=3*(2-sqrt(-1)*3),c3=6+sin(.5)*1j c4=complex(1,2) %建立复数c1 =1.0000 -2.0000ic2 =6.0000 - 9.0000ic3 =6.0000 + 0.4794i c4 =1.0000 +2.0000ic1r二real(c1),c1i二imag(c1),abs_c1二abs(c1),a ngle_c仁a ngle(c1) 结果:" "c1r =1c1i =-2abs_c1 =2.2361an gle_c1 =-1.1071注意:(1)所有的标点符号必须是在英文状态下输入。
自动实验一——典型环节的MATLAB仿真报告引言:典型环节的MATLAB仿真是一种常见的模拟实验方法,通过使用MATLAB软件进行建模和仿真,可以有效地研究和分析各种复杂的物理系统和控制系统。
本报告将介绍一个典型环节的MATLAB仿真实验,包括实验目的、实验原理、实验步骤、实验结果和讨论等内容。
一、实验目的本实验旨在通过MATLAB仿真实验,研究和分析一个典型环节的动态特性,深入了解其响应规律和控制方法,为实际系统的设计和优化提供理论支持。
二、实验原理典型环节是控制系统中的重要组成部分,一般包括惯性环节、惯性耦合和纯滞后等。
在本实验中,我们将重点研究一个惯性环节。
惯性环节是一种常见的动态系统,其特点是系统具有自身的动态惯性,对输入信号的响应具有一定的滞后效应,并且在输入信号发生变化时有一定的惯性。
三、实验步骤1.建立典型环节的数学模型。
根据实际情况,我们可以选择不同的数学模型描述典型环节的动态特性。
在本实验中,我们选择使用一阶惯性环节的传递函数模型进行仿真。
2.编写MATLAB程序进行仿真。
利用MATLAB软件的控制系统工具箱,我们可以方便地建立惯性环节的模型,并利用系统仿真和分析工具进行仿真实验和结果分析。
3.进行仿真实验。
选择合适的输入信号和参数设置,进行仿真实验,并记录仿真结果。
4.分析实验结果。
根据仿真结果,可以分析典型环节的动态响应特性,比较不同输入信号和控制方法对系统响应的影响。
四、实验结果和讨论通过以上步骤,我们成功地完成了典型环节的MATLAB仿真实验,并获得了仿真结果。
通过对仿真结果的分析,我们可以得到以下结论:1.惯性环节的响应规律。
惯性环节的响应具有一定的滞后效应,并且对输入信号的变化具有一定的惯性。
随着输入信号的变化速度增加,惯性环节的响应时间呈指数级减小。
2.稳态误差与控制增益的关系。
控制增益对稳态误差有重要影响,适当调整控制增益可以减小稳态误差。
3.不同输入信号的影响。
实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
实验一熟悉MATLAB仿真工具一、实验目的1、了解MATLAB语言环境。
2、熟悉MATLAB命令的基本操作。
3、练习m文件的基本操作。
二、实验设备PC机,MATLAB仿真软件。
三、实验内容1、了解MATLAB语言环境:MATLAB的启动,运行; MATLAB的联机帮助及实例演示。
2、熟悉MATLAB常见命令dir、type、cd等的基本操作。
3、练习m文件的基本操作:文件的建立、保存,运行。
四、实验步骤1、学习了解MATLAB语言环境开机执行程序matlab.exe(或用鼠标双击图标)即可进人 MATLAB命令窗口:“Command Window”.在命令提示符位置键人命令。
完成下述练习。
MATLAB的联机帮助:help。
MATLAB的实例演示:demo。
2、练习MATLAB常见命令MATLAB语言与DOS操作系统有如下常用的相似命令,在操作界面上练习这些命令。
dir dir c:\matlab\toolboxtype type anyprogram.mcd cd.. cd toolbox3、练习m文件的基本操作打开File菜单,其中有“New M-file”用于打开m文件。
“Open M-file”用于打开m文件。
“Run M-file”用于执行m文件。
可以自由练习上述两项操作。
注意:大部分m文件需要相应的数据才可以运行,此时命令平台上给出警告提示。
五、预习要求1、仔细阅读实验指导书。
2、有条件的可提前上机练习。
六、实验报告要求按照上述步骤进行实验,并按实验记录完成实验报告。
实验二 基于MATLAB 的二阶系统动态性能分析一、实验目的1、观察学习二阶控制系统的单位阶跃响应、脉冲响应。
2、记录单位阶跃响应曲线、脉冲响应曲线。
3、掌握时间响应分析的一般方法。
4、掌握系统阶跃响应曲线与传递函数参数的对应关系。
二、实验设备PC 机,MATLAB 仿真软件。
三、实验内容1、作以下二阶系统的单位阶跃响应曲线1010)(2++=s ss G2、分别改变该系统的ζ和n ω,观察阶跃响应曲线的变化。
如何在MATLAB中进行仿真实验1. 引言在科学研究和工程设计中,仿真实验是一种重要的手段和工具。
通过建立数学模型和使用计算机来模拟和分析实际系统,可以在较短时间内获得大量有效的数据和结果。
MATLAB是一个功能强大的数值计算软件,广泛应用于仿真实验中。
本文旨在介绍如何在MATLAB中进行仿真实验,并探讨一些实验技巧和注意事项。
2. 确定仿真目标和建立数学模型在进行仿真实验之前,首先需要明确仿真的目标和问题。
例如,如果要研究一个物理系统的动态特性,可以考虑建立相应的微分方程或差分方程模型。
对于控制系统的仿真,可以使用传递函数或状态空间模型。
在MATLAB中,可以使用符号计算工具箱来建立数学模型,并将其转化为可用的形式。
3. 编写仿真程序一旦数学模型建立完成,就可以开始编写仿真程序。
MATLAB提供了丰富的函数和工具箱,可以方便地进行仿真实验。
首先,可以使用ODE或PDE求解器来求解微分方程或差分方程模型。
对于控制系统的仿真,可以使用control工具箱中的函数来进行系统响应和稳定性分析。
4. 参数设置和输入规划在进行仿真实验时,需要对系统的参数和输入进行设置。
参数包括系统的初始条件、物理特性和环境因素等,可以通过改变参数的值来观察系统的响应。
输入规划可以是恒定的、随机的或基于特定函数的,可以根据实际需求进行设定。
MATLAB提供了丰富的函数和工具箱,可以方便地对参数和输入进行设置和规划。
5. 数据可视化和结果分析仿真实验的一个重要任务是对仿真数据进行可视化和结果分析。
MATLAB提供了强大的绘图函数和工具箱,可以绘制各种图表,如曲线图、散点图、三维图等。
可以使用这些功能来展示仿真数据的时域和频域特性,以及系统的稳定性和响应。
同时,还可以使用MATLAB进行数据统计和处理,如求取平均值、方差、相关性等。
6. 优化和参数调整仿真实验可以帮助优化系统设计和参数调整。
通过对仿真结果的观察和分析,可以发现系统存在的问题和改进的空间。
matlab 仿真实验报告Matlab 仿真实验报告引言:在科学研究和工程应用中,仿真实验是一种非常重要的手段。
通过在计算机上建立数学模型和进行仿真实验,我们可以更好地理解和预测现实世界中的各种现象和问题。
Matlab作为一种强大的科学计算软件,被广泛应用于各个领域的仿真实验中。
本文将介绍我进行的一次基于Matlab的仿真实验,并对实验结果进行分析和讨论。
实验背景:在电子通信领域中,信号的传输和接收是一个重要的研究方向。
而在进行信号传输时,会受到各种信道的影响,如噪声、衰落等。
为了更好地理解信道的特性和优化信号传输方案,我进行了一次关于信道传输的仿真实验。
实验目的:本次实验的目的是通过Matlab仿真,研究不同信道条件下信号传输的性能,并对比分析不同传输方案的优劣。
实验步骤:1. 信道建模:首先,我需要建立信道的数学模型。
根据实际情况,我选择了常见的高斯信道模型作为仿真对象。
通过Matlab提供的函数,我可以很方便地生成高斯噪声,并将其加入到信号中。
2. 信号传输方案设计:接下来,我需要设计不同的信号传输方案。
在实验中,我选择了两种常见的调制方式:频移键控(FSK)和相移键控(PSK)。
通过调整不同的调制参数,我可以模拟不同的传输效果。
3. 信号传输仿真:在信道模型和传输方案设计完成后,我开始进行信号传输的仿真实验。
通过Matlab提供的信号处理函数,我可以很方便地生成调制后的信号,并将其传输到信道中。
4. 信号接收和解调:在信号传输完成后,我需要进行信号接收和解调。
通过Matlab提供的信号处理函数,我可以很方便地对接收到的信号进行解调,并还原出原始的信息信号。
5. 仿真结果分析:最后,我对仿真结果进行分析和讨论。
通过对比不同信道条件下的传输性能,我可以评估不同传输方案的优劣,并得出一些有价值的结论。
实验结果与讨论:通过对不同信道条件下的信号传输仿真实验,我得到了一些有价值的结果。
首先,我观察到在高斯噪声较大的信道条件下,PSK调制比FSK调制具有更好的抗干扰性能。
实验名称:自动控制系统的MATLAB仿真分析一、实验目的1.熟悉MATLAB在自动控制系统仿真中的应用;2.对自动控制系统进行仿真研究;3.掌握用MATLAB绘制自动控制系统根轨迹及对数频率特性的方法,掌握根据系统根轨迹及对数频率特性分析自动控制系统性能的方法。
二、实验设备1.计算机2.MATLAB软件三、实验内容1.用MATLAB提供的Simulink仿真软件工具对实验一中的各个典型环节及二阶系统进行阶跃响应仿真研究,将仿真获得的阶跃响应结果与模拟电路获得的阶跃响应结果进行比较。
(1)比例环节传递函数为200 ()51 G s=建立仿真模型,得到的输出结果如图所示:(2)积分环节传递函数为9.8 ()G ss=建立仿真模型,得到的输出结果如图所示:(3)一阶惯性环节传递函数为3.9 ()0.21G ss=+建立仿真模型,得到的输出结果如图所示:(4)比例积分环节传递函数为0.39781 ()0.102sG ss+=建立仿真模型,得到的输出结果如图所示:(5)比例微分环节传递函数为10 ()220s G ss=++建立仿真模型,得到的输出结果如图所示:(6)比例微分积分环节传递函数为51050 ()220sG ss s+=+++建立仿真模型,得到的输出结果如图所示:(7) 二阶系统的阶跃响应 ①0.325K ξ==传递函数为2()250()10250C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:②0.510K ξ==传递函数为2()100()10100C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:③0.75K ξ==传递函数为2()50()1050C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:2. 单位负反馈系统的开环传递函数为:(1)()()(21)k s G s H s s s +=+仿真绘制K 从0~∞变化时的根轨迹,分析系统的稳定性。
如何利用Matlab技术进行模拟实验引言:模拟实验是一种基于计算机仿真的方法,通过对系统的数学建模及仿真模拟,来了解和研究实际问题。
MATLAB作为一种功能强大的数学软件,提供了丰富的工具和函数,可以用于各种领域的模拟实验。
本文将介绍如何利用MATLAB技术进行模拟实验,并分析其优势和应用案例。
一、使用MATLAB进行数学建模数学建模是模拟实验的基础,通过数学模型的建立,可以将实际问题转化为数学表达式,进而进行仿真模拟分析。
在MATLAB中,有一些常用的数学建模工具和函数可以帮助我们完成这个过程。
1.符号计算工具包(Symbolic Math Toolbox):该工具包提供了符号化数学计算的功能,可以进行符号运算、求解方程、求导、积分等操作。
通过符号计算,可以将数学问题抽象为符号表达式,方便后续的建模和仿真。
2.方程求解器(Solver):MATLAB中内置了多种求解方程的算法和函数,可以快速准确地求解各种数学模型中的方程。
例如,可以使用fsolve函数来求解非线性方程组,使用ode45函数来求解常微分方程等。
3.优化工具箱(Optimization Toolbox):该工具箱提供了多种优化算法和函数,可以用于求解最优化问题。
例如,使用fmincon函数可以进行约束最优化,使用linprog函数可以进行线性规划等。
二、MATLAB的仿真建模功能MATLAB不仅可以进行数学建模,还提供了强大的仿真建模功能,可以根据建立的数学模型进行仿真实验,并得到模拟结果。
1.图形化建模界面(Simulink):MATLAB中的Simulink是一个图形化建模和仿真环境,可以用于构建动态系统的模型。
用户可以通过将各种功能块组合在一起,建立整个系统的模型。
Simulink支持各种类型的信号和系统,包括连续时间、离散时间、混合时间等。
通过Simulink可以直观地展示系统的动态行为,并进行仿真和分析。
2.系统动态仿真:MATLAB提供了一系列用于系统动态仿真的函数和工具箱。
自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
《信号与系统》matlab仿真实验综合实验一《信号与系统》的MATLAB仿真实验一.实验目的1.熟悉MA TLAB软件平台、工具箱、高效的数值计算及符号计算功能。
2.熟悉MATLAB软件的信号处理编程方法和结果的可视化3.了解数字信号处理的计算机仿真方法4.进一步加深对信号与系统的基本原理、方法及应用的理解。
二.实验软件MATLAB 6.5 界面三.实验内容1.基本信号的表示及可视化2.连续信号的时域运算与时域变换3.线性系统的时域分析及Matlab实现4.连续时间信号的频域分析及Matlab实现四.实验原理方法及相关MATLAB函数1.基本信号的表示及可视化1.1 连续时间信号(1)表示出连续信号f(t)=Sa(t)=sin(t)/tMatlab命令如下:t=-10:1.5:10;%向量t时间范围t=t1:p:t2,p为时间间隔f=sin(t)./t;plot(t,f); %显示该信号的时域波形title(‘f(t)=Sa(t)’);xlabel(‘t’)axis([-10,10,-0.4,1.1])注:改变p可使信号波形更平滑,同学们可以试一试。
(2)单位阶跃信号定义阶跃函数function f=Heaviside(t)f=(t>0)调用阶跃函数t=-1:0.01:3;f=Heaviside(t)plot(t,f);axis([-1,3,-0.2,1.2]);(2)单位冲击信号 (t)定义冲击函数functionchongji(t1,t2,t0)dt=0.01;t=t1:dt:t2;n=length(t);x=zeros(1,n);x(1,(-t0-t1)/dt+1)=1/dt;stairs(t,x);axis([t1,t2,0,1.2/dt])title('单位冲击信号δ(t)')调用的是chongji(-1,5,0);可以试着给别的t1,t2,t0.1.2离散时间信号(1)单位阶跃序列ε(k)定义阶跃序列function jyxulie(k1,k2,k0)k=k1:-k0-1;kk=-k0:k2;n=length(k);nn=length(kk);u=zeros(1,n); %k0前信号赋值为零uu=ones(1,nn);%k0后信号赋值为一stem(kk,uu,’filled’)hold onstem(k,u,’filled’)holdofftitle(‘单位阶跃序列’)axis([k1 k20 1.5])调用阶跃序列函数jyxulie(-2,6,0)(3)单位序列δ(k)定义单位序列函数functiondwxulie(k1,k2,k0)k=k1:k2;n=length(k);f=zeros(1,n);f(1,-k0-k1+1)=1;stem(k,f,’filled’)axis([k1,k2,0,1.5])title(‘单位序列δ(k)’)调用单位序列函数dwxulie(-3,5,0)2.连续信号的时域运算与时域变换运算、变换的符号运算方法:相加、相乘、移位、反折、尺度变换、倒相已知信号)]2()2([)21()(--+⨯+=ttttfεε,用matlab求f(t+2),f(t-2),f(-t),f(2t),-f(t),并绘出时域波形。
《计算机控制技术及仿真》实验指导攀枝花学院机电工程学院二○○八年十月实验1 Matlab环境语法及数学运算(验证性实验)一、实验目的1、掌握 Matlab 软件使用的基本方法;2、熟悉 Matlab 的数据表示、基本运算方法;3、熟悉 Matlab 绘图命令及基本绘图控制。
二、实验仪器与软件1. PC机 1台2. MATLAB6.X环境三、实验原理MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。
MATLAB有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。
1.命令窗口(The Command Window)当MATLAB启动后,出现的最大的窗口就是命令窗口。
用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。
在MATLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。
在命令窗口中输入该文件名,这一连串命令就被执行了。
因为这样的文件都是以“.m”为后缀,所以称为m-文件。
2.m-文件编辑窗口(The Edit Window)我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。
在MATLAB主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。
四、实验内容:1、帮助命令使用 help 命令,查找 sqrt(开方)函数的使用方法;2、矩阵运算(1)矩阵的乘法已知 A=[1 2;3 4]; B=[5 5;7 8];求 A^2*B(2)矩阵除法已知 A=[1 2 3;4 5 6;7 8 9];B=[1 0 0;0 2 0;0 0 3];A\B,A/B(3)矩阵的转置及共轭转置已知 A=[5+i,2-i,1;6*i,4,9-i];求 A.', A'(4)使用冒号选出指定元素已知: A=[1 2 3;4 5 6;7 8 9];求 A 中第 3 列前 2 个元素;A 中所有列第 2,3 行的元素;(5)方括号[]用 magic 函数生成一个 4 阶魔术矩阵,删除该矩阵的第四列3、多项式(1)求多项式 p(x) = x3 + 2x+ 4的根(2)已知 A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵 A 的特征多项式;求特征多项式中未知数为 20 时的值;把矩阵 A 作为未知数代入到多项式中;4、基本绘图命令(1)绘制余弦曲线 y=cos(t),t∈[0,2π](2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5),t∈[0,2π]5、基本绘图控制绘制[0,4π]区间上的 x1=10sint 曲线,并要求:(1)线形为点划线、颜色为红色、数据点标记为加号;(2)坐标轴控制:显示范围、刻度线、比例、网络线(3)标注控制:坐标轴名称、标题、相应文本;6、分别用函数fix()、round()、ceil()、floor()计算x=4.52、4.17的输出值。
7、简述函数collect()、expand()、simplify()、factor()的作用。
五、实验要求利用所学知识,完成上述各项实验内容,并将实验过程和实验步骤和结果写在报告中。
实验2 MATLAB数值运算与绘图(验证性实验)一、实验目的l. 熟悉Matlab中各类数据,尤其是矩阵的定义、赋值和运用。
2. 了解Matlab的矩阵分析函数以及求线性方程组的数值解;3.熟悉多项式运算函数、数值插值。
二、实验仪器与软件1. PC机 1台2. MATLAB6.X环境三、实验原理1.创建矩阵的方法a.直接输入法规则:矩阵元素必须用[ ]括住;矩阵元素必须用逗号或空格分隔;在[ ]内矩阵的行与行之间必须用分号分隔。
逗号和分号的作用:逗号和分号可作为指令间的分隔符,matlab允许多条语句在同一行出现。
分号如果出现在指令后,屏幕上将不显示结果。
b.用matlab函数创建矩阵:空阵 [ ] — matlab允许输入空阵,当一项操作无结果时,返回空阵;rand ——随机矩阵;eye ——单位矩阵;zeros ——全部元素都为0的矩阵;ones ——全部元素都为1的矩阵。
c.矩阵的修改:可用↑键找到所要修改的矩阵,用←键移动到要修改的矩阵元素上即可修改;指令修改:可以用A(*,*)= *来修改。
2.矩阵运算a.矩阵加、减(+,-)运算规则:(1)相加、减的两矩阵必须有相同的行和列两矩阵对应元素相加减。
(2)允许参与运算的两矩阵之一是标量。
标量与矩阵的所有元素分别进行加减操作。
b. 矩阵乘(.*,./,.\)运算规则:A矩阵的列数必须等于B矩阵的行数标量可与任何矩阵相乘。
c.矩阵乘方—— a^n,a^p,p^aa^p —— a 自乘p次幂,对于p的其它值,计算将涉及特征值和特征向量,如果p是矩阵,a是标量,a^p使用特征值和特征向量自乘到p次幂;如a,p都是矩阵,a^p则无意义。
d.多项式运算matlab语言把多项式表达成一个行向量,该向量中的元素是按多项式降幂排列的。
f(x)=an ×n+an-1×(n-1)+……+a可用行向量 p=[an an-1…… a1+a]表示;poly ——产生特征多项式系数向量e.代数方程组求解matlab中有两种除运算左除和右除。
四、实验内容1. 输入下列向量(矩阵)>> g = [1 2 3 4];h = [4 3 2 1]; 2. 分别执行以下数组点运算>> s1 = g+h, s2 = g.*h, s3 = g.^h, s4 = g.^2, s5 = 2.^h 3. 输入下列特殊矩阵 〉〉A=[ ] 〉〉A=eye(10) 〉〉A=ones(5,10) >> A=rand(10,15) >> A=randn(5,10) >> A=zeros(5,10)4.输入下列矩阵及矩阵函数>> A=[2 0 –1;1 3 2]; B=[1 7 –1;4 2 3;2 0 1];>> M = A*B % 矩阵A 与B 按矩阵运算相乘 >> det_B = det(B) % 矩阵A 的行列式 >> rank_A = rank (A ) % 矩阵A 的秩 >> inv_B = inv (B ) % 矩阵B 的逆矩阵 >> [V,D] = eig(B) % 矩阵B 的特征值矩阵V 与特征向量构成的矩阵D >> X = A/B % A/B = A*B-1,即XB=A ,求X >> Y = B\A % B\A = B-1*A ,即BY=A ,求Y 5.多项式运算>> p=[1 2 0 -5 6] % 表示多项式652)(34+-+=x x x x p >> rr=roots(p) % 求多项式p 的根>> pp=poly(rr) % 由根的列向量求多项式系数 >> s=[0 0 1 2 3] % 表示多项式32)(2++=x x x s >> c=conv(p,s) % 多项式乘积 >> d=polyder(p) % 多项式微分 >> x=-1:0.1:2; >> y=polyval(p,x) % 计算多项式的值6. 有理多项式:)3)(1()3(10)(2++++=s s s s s G >> n=conv([10],[1 3]) % 定义分子多项式 >> d=conv([1 1],[1 1 3]) % 定义分母多项式 >> [r,p,k]=residue(n,d) % 进行部分分式展开>> p1=[1-p(1)],p2=[1-p2] % 定义两个极点多项式p1(s)=s-p(1), p2(s)=s-p(2)>> den=conv(p1,p2) % 求分母多项式den=p1(s)*p2(s) >> num=conv(r1,p2)+conv(r2,p1) % 求分子多项式 〉〉[num,den]=residue(r,p,k) % 根据r ,p ,k 的值求有理多项式 7.函数插值运算(1)线形样条插值 〉〉x=0:10 >> y=sin(x)>> x0=[ 3.4 4.7 6.5 8.2]>> y0=interp1(x,y,x0) % 线形插值>> x1=0:0.1:10>> y1=sin(x1)>> plot(x1,y1,'r:',x,y,'b*',x0,y0,'g.') % 插值比较五、实验要求利用所学知识,完成上述1至7项实验内容,并将实验结果写在实验报告上。
六、实验思考题1.矩阵建立与有哪几种方法?2.矩阵的加、减、乘、除运算规则是什么?实验3 Matlab 基本编程方法(设计性实验)一、实验目的1、掌握 Matlab 软件使用的基本方法;2、熟悉 Matlab 程序设计的基本方法二、实验仪器与软件1. PC机 1台2. MATLAB6.X环境三、实验原理根据MATLAB基本数值计算、数据分析和图形函数的功能,按程序设计数学要求完成对象计算的MATLAB程序。
四、实验内容1、编写命令文件:计算 s=1+2+…+n(s<2000) 时的最大 n 值;2、编写函数文件:分别用 for 和 while 循环结构编写程序,求 2 的 0 到 15 次幂的和。
3、求信号y=12cos(20t+pi/4)+5sin(45t+pi/6)的频谱。
五、实验要求利用所学知识,完成上述3项实验内容,并将实验用程序和结果写在实验报告上。
六、实验思考题1.用FOR和WHILE语句有何要求?2.用户数据的输入有那几种函数?实验4 控制系统仿真(一)(综合性实验)一、实验目的1、掌握如何使用 Matlab 进行系统的时域分析2、掌握如何使用 Matlab 进行系统的频域分析3、掌握如何使用 Matlab 进行系统的根轨迹分析二、实验仪器与软件1. PC机 1台2. MATLAB6.X环境三、实验原理根据Matlab控制系统常用函数编写出仿真软件,也可以根据SIMULINK完成实验。