软岩巷道掘进支护方法研究
- 格式:pdf
- 大小:178.44 KB
- 文档页数:1
226软岩巷道支护,历来是矿山巷道工程的难题。
特别是煤层顶底板岩性均为软岩时,煤巷围岩变形量较大、控制难度较高,特别是巷道周边存在采掘作业面时,巷道在采动压力作用下围岩变形更为明显。
众多学者对动压影响软岩巷道支护进行研究,其中杨刚[1]以屯兰矿18503工作面巷道支护为工程背景,综合使用理论分析、现场实测以及数值模拟分析等技术手段,对软岩围岩变形破坏机理以及围岩变形诱因进行分析,并提出强化围岩稳定性及支护体系强度为核心的围岩支护方案,实现了巷道围岩变形有效控制;刘建功[2]以x辛置矿运输下山支护为例,通过理论分析构建动压影响软岩巷道围岩塑性区分布范围计算模型,并通过钻孔窥视技术验证理论计算模型,根据围岩塑性区分布范围提出通过全断面双壳锚注技术支护围岩,实现动压影响软岩巷道围岩变形有效控制。
本文以焦煤矿8505工作面回风巷围岩控制为工程背景,针对性提出动压软岩巷道围岩支护技术方案,实现了巷道围岩有效控制。
1 矿井概况 焦煤矿位于山西怀仁市何家堡乡石井村,井田面积4.339km 2,设计生产能力150万吨/年,8505工作面现主要开采5#煤层,煤层平均倾角4.6°平均厚度3.5m,直接顶为3.8~6.7m 泥岩、硬度1.5~2.7,基本顶为3.7~8.5m 的粉砂岩、硬度3.7~5.6;直接底为2.2~3.9m泥岩、硬度1.5~2.7,基本底为厚度 4.1~7.4 m 的石灰岩、岩体普氏硬度 3.4~6.2。
8505工作面回风巷沿着5号煤底板掘进,长度3200m,巷道顶底板均为泥岩,加之巷道周边采掘影响,巷道出现较为明显的底鼓、巷帮收敛变形。
对巷道围岩变形监测发现巷道水平收敛量介于150~580mm、底鼓量介于290~760mm,围岩变形量大给巷道正常使用带来制约。
矿井经过综合技术分析并结合工作面回风巷现场情况,提出采用注浆锚杆 + 表面喷浆方式对巷道围岩进行支护,通过注浆锚杆提高顶板、底板泥岩强度及抗变形能力,表面喷浆实现表面岩体裂隙封堵,解决围岩强度低、动压影响下巷道巷道围岩变形量大问题,为巷道使用创造良好条件。
世上无难事,只要肯攀登
软岩巷道支护技术
(一)软岩巷道支护原理(1)巷道支护原理
软岩巷道支护时软岩进入塑性状态不可避免,应以达到其最大塑性承载能力
为最佳;同时其巨大的塑性能(如膨胀变形能)必须以某种形式释放出来。
软岩支护设计的关键之一是选择变形能释放时间和支护时间。
(2)最佳支护时间和时段
岩石力学理论和工程实际表明,硐室开挖之后,围岩变形逐渐增加。
以变形
速度区分,可划分三个阶段;即减速变形阶段、近似线性的恒速变形阶段和加速变形阶段。
最佳支护时间是以变形的形式转化的工程力PR 和围岩自撑力PD 最大,工程支护力最小的支护时间
图7-34 最佳支护时间TS
(二)软岩巷道常用支护形式
(1)锚喷网支护
锚喷网支护系列是目前软岩巷道有效、实用的支护形式。
喷射混凝土能及时
封闭围岩和隔离水。
网不仅可以支承锚杆之间的围岩,并将单个锚杆连结成整个锚杆群,和混凝土形成有一定柔性的薄壁钢筋混凝土支护圈。
锚喷网支护允许围岩有一定的变形,支护性能符合对软岩一次支护的要求。
根据围岩条件,也可以不喷射混凝土,仅选用锚网、桁架锚网、钢筋梯锚网、钢带锚网支护,也可以二次喷射混凝土支护。
(2)可缩性金属支架
U 型钢可缩性金属支架具有可缩量和承载能力在结构上的可调性,通过构件
间可缩和弹性变形调节围岩应力。
在支架变形和收缩过程中,保持对围岩的支护阻力,促进围岩应力趋于平衡状态。
我国在U 型钢可缩性金属支架架后充。
当代化工研究99Modern Chemical Research丿丿2019•06技术应用与研究深井软岩巷道支护技术研究*刘廷(汾西矿业正佳煤业有限责任公司山西041399)摘要:正佳煤矿巷道围岩属于软岩巷道,巷道掘进支护后围岩变形量大,且难以控制,基于此,笔者在对巷道破坏影响因素分析的基础上,对矿井的软岩巷道支护方案进行了设计,并对巷道支护效果进行监测分析,结果表明:采用锚网索喷支护+底板采用注浆锚杆联合支护方式进行巷道支护在控制围岩变形和治理软岩巷道底臓等方面具有良好的效果”关键词:煤矿;软岩巷道;底鼓;围岩控制中图分类号:T文献标识码:AStudy on Support Technology of Soft Rock Roadway in Deep MineLiu Ting(Fenxi Mining Zhengjia Coal Industry CO.,LTD.,Shanxi,041399)Abstracts The surrounding rock of Z hengjia Coal Mine roadway belongs to soft rock roadway,and the deformation of s urrounding rock after roadway excavation and support is large and difficult to control.Based on the analysis of i nfluencing f actors of r oadway damage,the author designs the supporting scheme of s oft rock roadway in mine,and monitors and analyses the supporting effect of r oadway.The roadway support with bolt-mesh-cable-shotcrete support and f loor combined with grouting-bolt support has good effect in controlling surrounding rock deformation and controlling floor heave of s oft rock roadway.Key words:coal mine;soft rock roadway;floor heave\surrounding rock control1•矿井概况正佳煤矿巷道围岩属于I类软岩,矿井主采的煤层为3号煤层,埋藏深度在600〜800m之间,平均深度在700m,矿井属于深部开采矿井,地应力较高。
深部矿井软岩巷道布置及支护技术研究摘要:大采深矿井最大的特点就是矿压大,地质条件复杂,支护难度大,特别是对于深部软岩巷道的支护,一直是近年来煤矿技术工作者研究的重点。
软围岩强度和稳定性较差,在开采扰动和较大的矿压作用下易发生变形和破碎,巷道维护工作量很大,对深井煤矿开采带来了很大影响。
生产实践证明,对于大采深软岩巷道,某种单一的支护方式是难以起到有效支护作用的。
对此应采取“锚、网、索、喷”联合支护的方式,以维持大埋深巷道掘进软围岩的稳定。
关键词:深部矿井;软岩巷道;布置;支护软岩是地质岩体的中的一部分,是特定环境下的具有显著塑性变形的复杂岩石力学介质。
按照软岩的自然特性和工程力学作用下的变形机理,软岩可分为以下几类:即节理化软岩、高应力软岩、膨胀性软岩和复合型软岩。
相比于硬岩,软岩具有更强的可塑性、膨胀性、崩解性、流变性和易扰动性特征,软岩不仅质地松软、强度低,而且易于受到风、水、开采扰动等因素的影响而发生软化、膨胀、裂隙和变形,物理特性不稳定。
软岩的以上特性给软岩巷道的掘进和支护带来了很大的困难,特别是在大采深、高地应力的作用下,巷道围岩易产生失稳变形,掘进期间易出现冒顶和片帮。
1软岩的工程特性1.1软岩的力学属性软岩中泥质矿物成分和结构面决定了软岩的力学特性。
显示出可塑性、膨胀性、崩解性、流变性和易扰动性的特点。
软岩的膨胀性质是在物理、化学、力学等因素的作用下,产生体积变化的现象,其膨胀机理有:内部膨胀、外部膨胀和应力扩容膨胀三种。
工程中的软岩膨胀为复合膨胀形式。
1.2软岩的临界载荷随着应力水平的提高,特别是围压的增大,岩石产生的塑性变形明显增加,使得在低应力水平下表现为硬岩特性的岩石,在提高了应力水平下显示出显著的塑性变形。
1.3软岩的临界深度与软化临界荷载相对应,岩石亦存在着一个软化临界深度。
对给定矿区,软化临界深度也是一个客观量。
当地下工程埋深大于软化临界深度时,围岩出现大变形,大地压和难支护现象;当地下工程埋深小于该临界深度时,则围岩的大变形,大地压现象消失,巷道支护容易。
煤矿巷道软岩工程特点及支护技术的探究摘要:矿山开采过程中,矿井巷道软岩石支护,特别是高应力软岩巷道深部的支撑,是矿井安全生产面临的一个重大难题。
随着煤矿生产的发展和深度的提高,煤矿巷道的软岩支护问题越来越严重。
煤矿井下的软岩石问题对矿井正常高效生产具有重要的作用。
本文阐述了软岩工程特点,对煤矿巷道软岩工程支护技术进行了分析。
关键词:煤矿巷道;软岩工程;支护技术引言目前,国内的煤炭资源多以地下采矿为主,采矿时必须在矿山下面开挖充分的巷道。
矿井的开采、施工必须确保井筒的畅通和井筒的稳定。
矿井巷道的支撑困难主要受到地应力影响,被开采工作影响,围岩破碎情况,巷道横截面等多种因素的作用。
所以,在煤矿巷道中,必须继续完善软岩支护技术。
1软岩工程特点地下施工是一种在岩层或土壤中进行的施工,其施工环境和工作状态与地表施工有很大区别。
所以,采用地表工程的设计理论与手段来解决这些问题,很明显无法对各种不同的力学问题进行恰当的分析,从而得出相应的支护方案。
与地表施工相比,在许多方面都表现出明显的差异。
由于煤矿的开采具有非选择性,大量的煤矿开采会使地应力的均衡状况受到破坏。
煤炭开采过程中,受其赋存条件、沉积环境、地质结构等因素的制约,导致了煤炭开采过程中存在的问题。
煤矿的采掘深度一般为500~600 m,千米以上的矿井也逐渐增多,有的矿山在浅层采矿时,软岩石问题还不突出,而到了深层,则出现了较大的地应力和动压作用。
煤矿软岩组份中存在着较多的膨胀性矿物质,在软弱的环境下,岩体的硬度较差,容易在干燥、失水时发生塑性流动,特别是遇水变形、崩解和膨胀。
矿井的使用寿命一般可以达到一百多年,而矿井的巷道由于使用寿命的差异,往往比隧洞的寿命要长,而且软岩巷道具有较大的时间限制。
2煤矿巷道软岩工程支护技术2.1支护技术理论一是加固岩体的力学性能。
在改善围岩的围岩压力、增大围压、增强围压体的受力的基础上,还改善了被锚岩体的力学特性,增强了岩体的峰值和岩体的参与强度。
国内外在深井\软岩巷道支护方面的研究综述摘要:理论是实践进行的基础。
本文在查阅相关文献的基础上,对国内外在深井、软岩巷道支护方面的研究进行了理论上的综述,为今后这方面的工作开展奠定基础。
关键词:巷道支护深井研究随着煤矿资源开发的进行,采矿工程的深度也在日益提升,深埋地下的深井、软岩巷道也是越来越普遍,进而使得开采难度不断加大。
很多研究表明:深度开采失败的原因在于巷道支护没有考虑到深井及软岩特点,导致其深压结构变形所致。
本文对国内外在深井、软岩巷道支护方面的研究进行了理论上的论述,为今后这方面的工作开展奠定基础。
一、国内在深井、软岩巷道支护方面的研究一般的巷道支护多采用锚喷网技术,仅对于深井、软岩巷道,往往单一的锚喷网尚不能解决问题。
经过几十年的努力,我国深井、软岩巷道的支护技术有了较大的进展,对软岩巷道的支护机理也有了一定认识。
近年来着重研究试验了锚网喷索、锚网喷索注浆加固、锚网喷索二次支护、u型钢支架锚索、u型钢支架喷注、混凝土(料石)碹注浆加固、架后充填全断面封闭式u型钢可缩支架、架后充填钢管支架、架后充填大弧板支护、网壳支架及上述部分支护形式和卸压等组成的联合支护技术,并取得了一定的效果。
基本上形成了锚网喷或u型钢支架一次让压支护,二次加强支护围岩稳定性的支护思想。
典型的深井、软岩巷道支护技术、理论有:1.联合支护理论其主要观点概括为:对巷道支护,不能一味地强调支护刚度,要先柔后刚,先让后抗,柔让适度,稳定支护,由此发展起米的支护形式有锚喷网索、锚喷网架、锚带网架、锚带喷架、锚喷弧板等联合支护技术。
2.锚杆围岩强度强化理论侯朝炯教授、勾攀峰教授深入地进行了锚杆支护控制围岩稳定的实验室及理论研究,提出锚杆与围岩相互作用组成锚固体,锚杆可改善锚固体力学参数,提高锚固体的强度,使岩体强度,特别是峰后强度和残余强度得到强化,形成共同承载结构,充分发挥围岩自承能力。
锚固体随锚杆支护强度的增加而提高;锚同体强度得到强化,达到一定程度就可保持围岩稳定。
强风化软岩巷道支护及其稳定性阐述随着人类对地下资源的深入开采和利用,地下巷道工程在各种领域中得到了广泛的应用,如煤矿、石油、地铁等。
而在巷道工程中,软岩地层的存在给巷道的支护和稳定性带来了巨大的挑战。
强风化软岩是指在长期风化作用和水的侵蚀下形成的一种特殊的软岩,其物理力学性质和稳定性明显降低。
对强风化软岩巷道的支护及稳定性的研究成为了地下巷道工程领域的热点之一。
一、强风化软岩的特点1. 抗压强度低:强风化软岩因长期风化,岩体中胶结物质流失,颗粒间的卸荷作用增大,导致了岩石内部的抗压强度大幅下降,使得软岩的抗压强度普遍较低。
2. 蠕变性大:强风化软岩由于长期受到地下水的侵蚀和渗透,在高温高湿环境下容易发生蠕变,即在较小的应力作用下,岩石会发生较大的变形。
3. 破碎性强:强风化软岩岩体容易出现开裂和破碎,使得岩体的整体稳定性明显下降。
4. 渗透性高:长期的水分侵蚀会导致强风化软岩的渗透性明显增加,易发生水文地质灾害。
二、强风化软岩巷道支护方法针对强风化软岩巷道的特点,我们需要采取相应的支护方法来保障巷道的安全稳定,主要包括以下几种:1. 喷射混凝土支护:在软岩巷道的开挖过程中,可以采用喷射混凝土来进行支护,通过喷射混凝土来形成一层坚固的支护壁,从而增强巷道的整体稳定性。
2. 钢拱支护:在软岩地层中,可以采用钢拱支护来增强巷道的整体稳定性,通过设置钢拱来分担地压,减轻软岩的应力,提高巷道的承载能力。
3. 锚杆网支护:在软岩巷道中,可以采用锚杆网支护来进行加固,通过在软岩中设置锚杆和钢网来加固岩体,从而增强巷道的抗压强度。
4. 土钉喷锚支护:土钉喷锚支护是一种有效的软岩支护方法,通过在软岩中设置土钉和喷锚来固化岩体,提高软岩的抗压和抗拉性能。
三、强风化软岩巷道稳定性分析对于强风化软岩巷道的稳定性分析,我们需要考虑以下几个方面:1. 岩体力学特性:首先需要对软岩的岩体力学特性进行详细的测试和分析,包括软岩的抗压强度、抗拉强度、弹性模量等参数,以便进行合理的巷道支护设计。
松软岩层巷道掘进支护若干技术问题探讨随着矿井开采水平不断延深,采动影响和地应力不断增大,松软岩石巷道的破坏程度也逐渐变大。
本文首先得介绍了松软岩层的基本类型以及矿压的特点,紧接着松软岩层巷道掘进支护若干技术问题探讨。
标签:松软岩层;巷道;支护技术引言:随着开采规模的加大,矿井开采向纵深化的发展,巷道施工过程中会经常遇到能够产生显著塑性变形和流变的工程软岩。
由于松软岩层的强度较低,产生的空隙度较大,衔接程度较差等弱点,因此在掘进时遇到松软岩层支护起来比较困难,不能采用常规的方法来施工。
因此很有必要探索松软岩层中的巷道支护技术,来确保松软岩层的安全生产。
1、松软岩层的基本类型及矿压特点松软岩层具有松、散、软、弱四种不同属性。
松,是指岩石结构疏松、密度小、孔隙度大的岩层;散,是指岩石胶结程度很差或未胶结的颗粒状岩层;软,是指岩石强度很低、塑性大或黏土矿物质易膨胀的岩层;弱,则指受地质构造的破坏,形成许多弱面(如节理、片理、裂隙等)破坏原有的岩体强度,使岩层成为易破坏、易滑落的不稳定岩层,但其岩石单轴抗压强度还很高。
但是随着开采的深度逐渐的增加,深部地压也会明显的增加巷道变形的破坏也就开始变得频繁,巷道挖掘之后不久之后就会产生严重的变形破坏,其使用的时间就会明显的缩短,还得需要经常性的翻修,在松软层之中的巷道支护也是相对比较困难的,来压也就会更快,是的返修的工作量变大、成本也就会加大,这样一来也就严重的影响到了矿井的正常生产。
2、松软岩层巷道支护若干技术问题探讨对于松软岩层来说,掘进容易,维护困难,若还采用传统的支护方法和支护结构就不会产生效果。
由于各矿区松软岩层的组成、结构和性质差异很大,迄今为止还没有一种能适应各个矿区的施工方法和支护方法。
根据多年的实践经验,逐步探索出一些关于松软岩层巷道支护的先进技术,可以根据岩层的性质和特点选择合理的巷道位置,并要选择合适的巷道断面形状,采取正确的支护方式,加强巷道底板的管理,这些措施的实施对于维护软岩巷道,使巷道处于稳定状态有着重要的作用。
煤矿井下软岩巷道施工支护技术研究应用摘要:在我国煤矿底层中软岩分布广泛,煤炭储量在1000M以下的占比55%左右,随着我国开采深度的增加,我国大部分矿井巷道基本岩层结构多为软岩,深部巷道受高应力和高温度等影响,容易出现开采困难和巷道明显变形的问题,为解决软岩巷道下出现的巷道围岩变形大、稳定性差的问题,软岩支护成为困扰我国煤矿生产的问题之一,软岩巷道支护措施不当易造成巨大的返修量,还使得整个矿区陷入困境,因此,做好巷道软岩支护工作是煤矿矿井采掘工作的关键。
关键字:煤矿井下;软岩巷道施工;支护技术;研究应用1软岩的特性1.1软岩的临界荷载临界荷载是软岩固有的一种物理属性,通过软岩的工程力学实验表明:当软岩外部压力低于临界荷载时,岩体内部结构不会发生明显改变,整个岩体呈现出相对稳定的状态,力学曲线保持平直;随后,人为增加岩体外部工程压力,使压力逐渐趋近于临界荷载,则岩体内部预应力增加;通过继续增加工程压力,当工程压力超过软岩的临界荷载时,岩体就会发生明显的变形特性。
1.2软化临界深度临界深度与临界荷载是一组相互对应的概念,从两种软岩特性的支护应用上来看,临界深度更能反映软岩的塑性变形情况:在巷道位置较浅的情况下,软化临界深度较小,软岩不会出现明显的变形,此时开展软岩巷道的支护施工较为简单;但是当巷道位置达到软化临界深度时,围岩会产生大的塑性变形,并伴随有支护难、大地压等问题。
相关技术人员应当在岩体软化临界深度之前开展支护施工,以便于降低工作难度,保证支护施工质量。
2巷道变形的原因和支护原理2.1软岩巷道变形的原因煤矿开采中面临的一大难题是在高应力作用下的软岩巷道有效支护方式,巷道顶板的不稳定情况会影响到巷道顶板的稳定性,巷道两边的移动或顶板下沉容易导致巷道断面收缩,使得两帮的变形更加严重,从地板岩层方面的受力情况看,巷道地板处于未支护状态,随着巷道的不断挖掘,原本作用于地板岩层上的应力会恢复弹性,但水平应力却增加,会出现变形的情况;若挖掘的方向处于倾斜状态,巷道顶板的岩层会受到较大水平应力影响,出现顶板破坏的现象。
深部软岩巷道支护技术研究引言:随着矿业和工程的发展,深部软岩巷道的建设和支护技术成为了一个重要的研究领域。
由于深部软岩具有可塑性强、容易发生塌方等特点,因此如何有效地进行巷道支护成为了一个亟待解决的问题。
本文将从深部软岩巷道支护技术的现状和挑战出发,对相关技术进行研究和分析,以期为巷道支护技术的改进和完善提供一定的参考。
1.1 巷道支护技术的主要挑战深部软岩巷道作为地下工程中较为常见的一种工程类型,其支护技术面临着多方面的挑战。
深部软岩具有较大的围岩变形和塌方的倾向,因此巷道支护需要具备较高的变形能力和抗塌方能力。
巷道支护技术需要考虑到深部软岩的高地应力、高地温以及地下水等地质条件,这为巷道支护技术的选择和应用带来了一定的困难。
深部软岩巷道通常会受到地震、爆破等外力的影响,这也给巷道支护技术带来了不小的挑战。
1.2 巷道支护技术的应用现状目前,针对深部软岩巷道支护技术的研究主要集中在钢筋混凝土支护、锚杆网支护、喷锚锚杆支护、加固型钢丝网支护等方面。
这些技术在不同程度上可以有效地改善深部软岩巷道支护的情况,但在实际应用中仍然存在一些问题,例如支护效果难以保证、施工难度大等。
如何提高深部软岩巷道支护技术的适用性和可靠性,是当前亟待解决的问题。
2.1 巷道支护材料的研究针对深部软岩巷道支护技术的研究,可以首先集中在巷道支护材料的性能改进和研究上。
有针对性地研发新型的支护材料,如新型的聚合物材料、高分子材料等,以提高支护材料的变形能力和抗压能力,从而改善巷道支护的效果。
2.2 巷道支护结构的研究可以针对深部软岩巷道支护结构进行研究。
通过改进巷道支护结构的设计和布置,提高支护结构的可靠性和耐久性,从而保证巷道的长期稳定和安全。
2.3 巷道支护技术的智能化研究也可以开展深部软岩巷道支护技术的智能化研究。
利用现代化的传感器技术和智能控制技术,实时监测巷道变形和支护结构的受力情况,提前发现巷道支护存在的问题并采取相应的措施。