煤矿软岩巷道支护技术
- 格式:doc
- 大小:25.00 KB
- 文档页数:5
深部高应力软岩巷道支护技术周俊林;林登阁;王迎东【摘要】近年来,煤炭等矿产资源的开发利用逐步向深部发展,深部软岩巷道大变形、大地压、难支护等特征表现明显,支护问题日益突出。
根据具体情况,安居煤矿千米埋深软岩硐室井下中央泵房,拱墙设计采用锚网索喷+锚注+现浇混凝土加固方案,底板采用抗让结合的反底拱及底板注浆治理方案,有效地控制了硐室变形破坏,取得了预期效果。
实践表明,以锚注为核心的锚注联合支护体系,可有效控制深部软岩巷道围岩变形,保证巷道长期稳定。
【期刊名称】《建井技术》【年(卷),期】2013(000)006【总页数】4页(P29-32)【关键词】高应力软岩巷道;深部;锚注加固技术;数值模拟【作者】周俊林;林登阁;王迎东【作者单位】冀中能源峰峰集团九龙煤矿,河北邯郸,056500;山东科技大学,山东青岛,266510;山东科技大学,山东青岛,266510【正文语种】中文【中图分类】TD353+.9深部软岩巷道稳定性控制一直是国内外矿山工程支护加固的难题之一[1]。
近年来,煤炭等矿产资源的开发利用逐步向深部发展,深部岩体的结构特征与力学性能越来越复杂。
浅部矿井开采中,表现为硬岩特征的岩体,进入深部开采后,往往表现出大变形、大地压、难支护等软岩力学特征[2],产生了一系列的工程问题。
巷道地应力增大,且水平地应力明显大于垂直地应力,形成高水平地应力[3]。
这些都加剧了软岩巷道围岩变形破坏程度,增大了支护难度[4]。
因此,开展深部高应力软岩巷道支护技术研究,势在必行。
1 深部高应力软岩巷道支护技术20世纪80年代,世界各国巷道支护大多以金属支架为主。
金属支架在浅部矿井开采中,发挥了良好的支护作用,得到了广泛应用[5]。
随着矿井开采深度的加大,深部软岩巷道采用传统的支护方式,已难以保证围岩稳定,不能适应深部开采需要。
目前,世界多数产煤国家采用各种不同类型的锚杆、锚杆桁架及锚索支护方式,其中以美国、澳大利亚尤为明显。
世上无难事,只要肯攀登
软岩巷道支护技术
(一)软岩巷道支护原理(1)巷道支护原理
软岩巷道支护时软岩进入塑性状态不可避免,应以达到其最大塑性承载能力
为最佳;同时其巨大的塑性能(如膨胀变形能)必须以某种形式释放出来。
软岩支护设计的关键之一是选择变形能释放时间和支护时间。
(2)最佳支护时间和时段
岩石力学理论和工程实际表明,硐室开挖之后,围岩变形逐渐增加。
以变形
速度区分,可划分三个阶段;即减速变形阶段、近似线性的恒速变形阶段和加速变形阶段。
最佳支护时间是以变形的形式转化的工程力PR 和围岩自撑力PD 最大,工程支护力最小的支护时间
图7-34 最佳支护时间TS
(二)软岩巷道常用支护形式
(1)锚喷网支护
锚喷网支护系列是目前软岩巷道有效、实用的支护形式。
喷射混凝土能及时
封闭围岩和隔离水。
网不仅可以支承锚杆之间的围岩,并将单个锚杆连结成整个锚杆群,和混凝土形成有一定柔性的薄壁钢筋混凝土支护圈。
锚喷网支护允许围岩有一定的变形,支护性能符合对软岩一次支护的要求。
根据围岩条件,也可以不喷射混凝土,仅选用锚网、桁架锚网、钢筋梯锚网、钢带锚网支护,也可以二次喷射混凝土支护。
(2)可缩性金属支架
U 型钢可缩性金属支架具有可缩量和承载能力在结构上的可调性,通过构件
间可缩和弹性变形调节围岩应力。
在支架变形和收缩过程中,保持对围岩的支护阻力,促进围岩应力趋于平衡状态。
我国在U 型钢可缩性金属支架架后充。
当代化工研究99Modern Chemical Research丿丿2019•06技术应用与研究深井软岩巷道支护技术研究*刘廷(汾西矿业正佳煤业有限责任公司山西041399)摘要:正佳煤矿巷道围岩属于软岩巷道,巷道掘进支护后围岩变形量大,且难以控制,基于此,笔者在对巷道破坏影响因素分析的基础上,对矿井的软岩巷道支护方案进行了设计,并对巷道支护效果进行监测分析,结果表明:采用锚网索喷支护+底板采用注浆锚杆联合支护方式进行巷道支护在控制围岩变形和治理软岩巷道底臓等方面具有良好的效果”关键词:煤矿;软岩巷道;底鼓;围岩控制中图分类号:T文献标识码:AStudy on Support Technology of Soft Rock Roadway in Deep MineLiu Ting(Fenxi Mining Zhengjia Coal Industry CO.,LTD.,Shanxi,041399)Abstracts The surrounding rock of Z hengjia Coal Mine roadway belongs to soft rock roadway,and the deformation of s urrounding rock after roadway excavation and support is large and difficult to control.Based on the analysis of i nfluencing f actors of r oadway damage,the author designs the supporting scheme of s oft rock roadway in mine,and monitors and analyses the supporting effect of r oadway.The roadway support with bolt-mesh-cable-shotcrete support and f loor combined with grouting-bolt support has good effect in controlling surrounding rock deformation and controlling floor heave of s oft rock roadway.Key words:coal mine;soft rock roadway;floor heave\surrounding rock control1•矿井概况正佳煤矿巷道围岩属于I类软岩,矿井主采的煤层为3号煤层,埋藏深度在600〜800m之间,平均深度在700m,矿井属于深部开采矿井,地应力较高。
煤矿巷道软岩工程特点及支护技术的探究摘要:矿山开采过程中,矿井巷道软岩石支护,特别是高应力软岩巷道深部的支撑,是矿井安全生产面临的一个重大难题。
随着煤矿生产的发展和深度的提高,煤矿巷道的软岩支护问题越来越严重。
煤矿井下的软岩石问题对矿井正常高效生产具有重要的作用。
本文阐述了软岩工程特点,对煤矿巷道软岩工程支护技术进行了分析。
关键词:煤矿巷道;软岩工程;支护技术引言目前,国内的煤炭资源多以地下采矿为主,采矿时必须在矿山下面开挖充分的巷道。
矿井的开采、施工必须确保井筒的畅通和井筒的稳定。
矿井巷道的支撑困难主要受到地应力影响,被开采工作影响,围岩破碎情况,巷道横截面等多种因素的作用。
所以,在煤矿巷道中,必须继续完善软岩支护技术。
1软岩工程特点地下施工是一种在岩层或土壤中进行的施工,其施工环境和工作状态与地表施工有很大区别。
所以,采用地表工程的设计理论与手段来解决这些问题,很明显无法对各种不同的力学问题进行恰当的分析,从而得出相应的支护方案。
与地表施工相比,在许多方面都表现出明显的差异。
由于煤矿的开采具有非选择性,大量的煤矿开采会使地应力的均衡状况受到破坏。
煤炭开采过程中,受其赋存条件、沉积环境、地质结构等因素的制约,导致了煤炭开采过程中存在的问题。
煤矿的采掘深度一般为500~600 m,千米以上的矿井也逐渐增多,有的矿山在浅层采矿时,软岩石问题还不突出,而到了深层,则出现了较大的地应力和动压作用。
煤矿软岩组份中存在着较多的膨胀性矿物质,在软弱的环境下,岩体的硬度较差,容易在干燥、失水时发生塑性流动,特别是遇水变形、崩解和膨胀。
矿井的使用寿命一般可以达到一百多年,而矿井的巷道由于使用寿命的差异,往往比隧洞的寿命要长,而且软岩巷道具有较大的时间限制。
2煤矿巷道软岩工程支护技术2.1支护技术理论一是加固岩体的力学性能。
在改善围岩的围岩压力、增大围压、增强围压体的受力的基础上,还改善了被锚岩体的力学特性,增强了岩体的峰值和岩体的参与强度。
煤矿井下软岩巷道施工支护技术研究应用摘要:在我国煤矿底层中软岩分布广泛,煤炭储量在1000M以下的占比55%左右,随着我国开采深度的增加,我国大部分矿井巷道基本岩层结构多为软岩,深部巷道受高应力和高温度等影响,容易出现开采困难和巷道明显变形的问题,为解决软岩巷道下出现的巷道围岩变形大、稳定性差的问题,软岩支护成为困扰我国煤矿生产的问题之一,软岩巷道支护措施不当易造成巨大的返修量,还使得整个矿区陷入困境,因此,做好巷道软岩支护工作是煤矿矿井采掘工作的关键。
关键字:煤矿井下;软岩巷道施工;支护技术;研究应用1软岩的特性1.1软岩的临界荷载临界荷载是软岩固有的一种物理属性,通过软岩的工程力学实验表明:当软岩外部压力低于临界荷载时,岩体内部结构不会发生明显改变,整个岩体呈现出相对稳定的状态,力学曲线保持平直;随后,人为增加岩体外部工程压力,使压力逐渐趋近于临界荷载,则岩体内部预应力增加;通过继续增加工程压力,当工程压力超过软岩的临界荷载时,岩体就会发生明显的变形特性。
1.2软化临界深度临界深度与临界荷载是一组相互对应的概念,从两种软岩特性的支护应用上来看,临界深度更能反映软岩的塑性变形情况:在巷道位置较浅的情况下,软化临界深度较小,软岩不会出现明显的变形,此时开展软岩巷道的支护施工较为简单;但是当巷道位置达到软化临界深度时,围岩会产生大的塑性变形,并伴随有支护难、大地压等问题。
相关技术人员应当在岩体软化临界深度之前开展支护施工,以便于降低工作难度,保证支护施工质量。
2巷道变形的原因和支护原理2.1软岩巷道变形的原因煤矿开采中面临的一大难题是在高应力作用下的软岩巷道有效支护方式,巷道顶板的不稳定情况会影响到巷道顶板的稳定性,巷道两边的移动或顶板下沉容易导致巷道断面收缩,使得两帮的变形更加严重,从地板岩层方面的受力情况看,巷道地板处于未支护状态,随着巷道的不断挖掘,原本作用于地板岩层上的应力会恢复弹性,但水平应力却增加,会出现变形的情况;若挖掘的方向处于倾斜状态,巷道顶板的岩层会受到较大水平应力影响,出现顶板破坏的现象。
软岩巷道支护技术研究摘要:软岩巷道围岩的突出特征是围岩由非均质层状岩体组成,围岩变形不协调而容易离层和失稳,表现为巷道变形破坏明显。
本文主要就软岩的一系列相关技术进行了探讨,提出采用刚柔复合支护方法对巷道进行支护,即在支护体内设置柔性层和刚性层,柔性层释放初期高应力,刚性层控制有害变形;在受力集中的顶底角采用叠加支护,使巷道整体变形耦合;为提高软岩的开采效率提供参考。
关键词:软岩;巷道;支护;技术软岩巷道围岩属于差异性较大的非均质层状赋存,表现为围岩难以形成承载结构、强烈的两帮移近、片帮和围岩不均匀的整体下沉。
而顶板控制技术是确保支护安全的前提,顶板控制不好会给安全造成极大的被动影响,而且会造成边掘边修的现象,造成极大的人力物力的浪费,所以必须加强软岩巷道支护技术的研究。
1软岩巷道施工存在的问题巷道在施工中发现巷道矿山压力显现快,下肩窝掉包、脱层、钢带撕裂、个别铁托板变形、锚杆拔断,巷道上帮整体内敛,部分玻璃钢锚杆拉断,底臌等问题,严重影响工作面回采期间的安全。
2 巷道破坏原因分析2.1 围岩特性影响岩层松软呈粉末状,顶底板多为泥岩、砂质泥岩及灰质泥岩,巷道围岩强度低,变形量大,变形速度快,巷道施工时极易出现底鼓,从而使两帮及顶板变形加剧,松动范围扩大,矿压显现明显。
2.2 碎胀作用影响岩层中夹矸为固化程度很低的泥岩,夹矸及岩遇水变软,发生膨胀,在上覆岩层的作用下,夹矸及岩被挤压出,从而造成棚式支护的变形。
2.3 支护结构与参数不合理锚杆受力不均,在巷道的整体支护中,托板变形、杆体断裂的始终是个体。
在锚杆安装初期,由于施工机具、操作等因素的影响,锚杆施加给围岩的力就表现为大小不一,造成巷道围岩变形、运动不均,从而引起锚杆受力不均,导致个别托板变形、杆体断裂。
3软岩巷道的支护原理一般情况下,软岩巷道围岩破坏具有以下几个特点:时间效应明显、初期变形速率大、环境感知敏感和对应力扰动,所以在软岩的最大塑性承载能力下,进行巷道支护,可以取得最好支护效果。
深部软岩巷道支护技术研究引言:随着矿业和工程的发展,深部软岩巷道的建设和支护技术成为了一个重要的研究领域。
由于深部软岩具有可塑性强、容易发生塌方等特点,因此如何有效地进行巷道支护成为了一个亟待解决的问题。
本文将从深部软岩巷道支护技术的现状和挑战出发,对相关技术进行研究和分析,以期为巷道支护技术的改进和完善提供一定的参考。
1.1 巷道支护技术的主要挑战深部软岩巷道作为地下工程中较为常见的一种工程类型,其支护技术面临着多方面的挑战。
深部软岩具有较大的围岩变形和塌方的倾向,因此巷道支护需要具备较高的变形能力和抗塌方能力。
巷道支护技术需要考虑到深部软岩的高地应力、高地温以及地下水等地质条件,这为巷道支护技术的选择和应用带来了一定的困难。
深部软岩巷道通常会受到地震、爆破等外力的影响,这也给巷道支护技术带来了不小的挑战。
1.2 巷道支护技术的应用现状目前,针对深部软岩巷道支护技术的研究主要集中在钢筋混凝土支护、锚杆网支护、喷锚锚杆支护、加固型钢丝网支护等方面。
这些技术在不同程度上可以有效地改善深部软岩巷道支护的情况,但在实际应用中仍然存在一些问题,例如支护效果难以保证、施工难度大等。
如何提高深部软岩巷道支护技术的适用性和可靠性,是当前亟待解决的问题。
2.1 巷道支护材料的研究针对深部软岩巷道支护技术的研究,可以首先集中在巷道支护材料的性能改进和研究上。
有针对性地研发新型的支护材料,如新型的聚合物材料、高分子材料等,以提高支护材料的变形能力和抗压能力,从而改善巷道支护的效果。
2.2 巷道支护结构的研究可以针对深部软岩巷道支护结构进行研究。
通过改进巷道支护结构的设计和布置,提高支护结构的可靠性和耐久性,从而保证巷道的长期稳定和安全。
2.3 巷道支护技术的智能化研究也可以开展深部软岩巷道支护技术的智能化研究。
利用现代化的传感器技术和智能控制技术,实时监测巷道变形和支护结构的受力情况,提前发现巷道支护存在的问题并采取相应的措施。
浅议软岩巷道的支护技术张百强软岩,目前任无统一的定义,一般来讲,软岩是软弱、破碎、膨胀、流变、强风化及高应力岩体的总称。
软岩巷道围岩强度等级低,结构松软,易吸水膨胀,因而巷道围岩变形大,易发生底鼓,软岩巷道支护是煤矿巷道支护的难点和重点。
王洼煤矿600万吨/年改扩建项目11采区轨道下山全长1283m,巷道净宽4.4m,净高4.0m。
巷道揭露地层主要是侏罗系延安组,岩性以粗砂岩为主。
岩石呈灰白色,夹黄色条带,巨厚层状,粗粒砂状结构,成分:石英85﹪左右,长石10﹪左右,其他矿物5﹪左右,分选性差,次棱角状,局部含石英颗粒。
巷道掘进后,围岩变形快,矿压显现明显,流变性显著,岩石遇水泥化。
该巷道经过长期的现场观测观察后,通过科学论证,现场实践,采用多种联合支护方法,取得了显著的成果。
下面首先对软岩巷道的压力特征、软岩巷道的支护要点做一简单总结。
1.软岩巷道的围岩变形和压力特征分析软岩的力学性质对围岩稳定性有重要的影响,根据井下观测表明,软岩巷道的围岩变形有以下特征:(1)围岩变形有明显的时间效应。
初始变形速度很快,变形趋向稳定后仍以较大速度产生流变,且持续时间较长,如不采取有效的支护措施,则由于围岩变形急剧加大,势必巷道失稳破坏。
(2)围岩变形有明显的空间效应。
首先表现为围岩与掘进工作面的相应位置对其力学状态的影响,通常在距工作面1倍巷宽远的地方就基本上不受工作面掘进的制约;其次表现为巷道所在深度不仅对围岩的变形或稳定状态有明显的影响,而且影响程度比坚硬岩石大得多。
(3)围岩变形对应力扰动和环境变化非常敏感。
表现为当软岩巷道受临近开掘或修复巷道、水的侵蚀、支架折损失效,爆破震动以及采动等的影响时,都会引起巷道围岩变形的急剧增长。
(4)软岩巷道不仅顶板下沉量大和容易冒落,而且地板也强烈鼓起,并伴随两帮强烈位移,尤其是黏土层,受流水侵蚀引起的泥化导致鼓底更为明显。
(5)软岩巷道的自稳时间短。
松软岩石的自稳时间通常为几十分钟到十几小时,有的顶板一暴露就立即冒落,这主要取决于围岩暴露面的形状和面积、岩体的残余强度和原岩应力。
煤矿软岩巷道支护技术
摘要:本文主要对煤矿软岩巷道支护技术进行了分析,概述了软岩的概念和分类以及软岩的工程特征,并探讨了煤矿软岩巷道支护存在的问题,最后从三个方面对煤矿软岩巷道支护技术问题进行了研究,具体包括软岩巷道支付的技术关键分析,最佳支护时间分析以及软岩巷道支护的对策。
关键词:软岩巷道联合支护巷道变形
1 软岩的基本概念
1.1 软岩的基本概念
工程软岩是指在工程力作用下能产生显著塑性变形的工程岩体。
目前流行的软岩定义强调了软岩的软、弱、松、散等低强度的特点,同时应强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。
该定义的主题词是工程力、显著变形和工程岩体。
工程岩体是软岩工程研究的主要对象,是巷道、边坡、基坑开挖扰动影响范围之内的岩体,包含岩块、结构面及其空间组合特征。
工程力是指作用在工程岩体上的力的总和,它可以是重力、构造残余应力、水的作用力和工程扰动力以及膨胀应力等;显著塑性变形是指以塑性变形为主体的变形量超过了工程设计的允许变形值并影响了工程的正常使用,显著
塑性变形包含显著的弹塑性变形、黏弹塑性变形,连续性变形和非连续性变形等。
此定义揭示了软岩的相对性实质,即取决于工程力与岩体强度的相互关系。
当工程力一定时,不同岩体,强度高于工程力水平的大多表现为硬岩的力学特性,强度低于工程力水平的则可能表现为软岩的力学特性;对同种岩石,在较低工程力作用下,表现为硬岩的变形特性,在较高工程力的作用下则可能表现为软岩的变形特性。
1.2 软岩的工程特性
软岩有两个工程特性:软岩临界载荷和软化临界深度,它揭示了软岩的相对性实质。
(1)软化临界深度:与软化临界荷载相对应的存在着软化临界深度。
一般来讲,软化临界深度也是一个客观量。
当巷道的位置大于某一开采深度时,围岩产生明显的塑性大变形、大地压和难支护的现象;但当巷道位置较浅,小于某一深度时,大变形、大地压的现象明显消失。
这一临界深度被称为岩石软化临界深度。
(2)软岩临界荷载:软岩的蠕变试验表明,当所施加的荷载小于某一荷载水平时,岩石处于稳定的变形状态,蠕变曲线趋于某一变形值,随时间延伸而不再变化;当所施加的荷载大于某一荷载水平时,岩石出现明显的塑性变形加速现象,即产生不稳定变形,这一荷载称为软岩的软化临界荷载,亦即能使岩石产生明显变形的最小荷载。
当岩石所受荷载水平低于临界荷载时,该岩石属于硬岩范畴;当荷载水平高于软化
临界荷载时,岩石表现出软岩的大变形特性,此时称之为软岩。
2 煤矿软岩巷道支护存在的问题
2.1 软岩巷道变形破坏的特点
(1)软岩巷道的变形呈现蠕变变形三阶段的规律,并且具有明显的时间效应。
初期来压快、变形量大,巷道自稳能力很差,如果不加以控制很快就会发生岩块冒落,直至造成巷道破坏。
如果用钢性支架强行支护而不适应软岩的大变形特性,则巷道也难以维护,造成支架被压坏、巷道垮落。
(2)软岩巷道多为环向受压,且非对称,巷道开挖后不仅顶板变形易于冒落,底板也将产生强烈的底鼓,如果对巷道底鼓不加以控制,则会出现严重的底鼓并导致两帮破坏,顶板冒落。
(3)软岩巷道变形一般随矿井深度加大而增大,不同矿区、不同地质条件下都存在一个软化临界深度,超过临界深度,支护的难度明显增大,且软岩巷道变形在不同的应力作用下,具有明显的方向性。
2.2 软岩巷道支护存在的问题
软岩巷道支护问题,尤其是软岩回采巷道的支护问题,是矿业工程中的一大顽疾,以往对软岩巷道的支护问题,在理论认识和支护方法上
存在一定问题,主要表现在以下几个方面:
(1)围岩变形破坏机理,支护是一个过程,要使这一过程与围岩变形过程相协调,必须充分而深入地研究围岩的变形机理,只有在此基础上,才能选择适当的软岩的支护时机、支护型式以及确定合适的支护参数。
(2)支护对策,软岩巷道与硬岩巷道变形破坏特征不同,应采取适应于软岩巷道的支护对策。
(3)支护参数,支护参数选择是影响巷道稳定性的一个非常重要的因素。
以往对支护参数的选取基本上采用工程类比法。
当工程地质条件简单,此法基本满足要求;当地质条件复杂是不能满足要求的,再加上目前很少有软岩巷道支护成功事例,无法进行工程类比。
对于软岩巷道,单纯的采用常规的锚喷支护、U型钢支架
3 结语
20世纪60年代以后,我国煤矿软岩工程技术在理论、支护技术和设计理论都取得了长足进展,取得了一系列科技成果,为我国煤炭工业发展做出了卓越的贡献。
但是由于各方面原因,我国煤矿软岩技术在理论上、设计上、支护技术及配套设备上仍然存在一些问题。
诸如在软岩工程技术推广方面还有待于进一步加强;项目设计地质资料不足,
工程勘察规范陈旧;对大深度高应力、强膨胀复合型岩体,以及受采动影响后的流变时间效应,支护和围岩相互作用机理的研究仍需深化;软岩地应力测试方法还有待加强等方面。
回顾20世纪软岩工程技术的发展历程,针对世纪之交仍然存在的问题,在大力推广软岩工程技术的同时,进一步加强软岩工程力学的理论研究,从而将软岩工程技术信息化、系统化、产业化。
参考文献
[1]臧明甫.中空注浆锚索在软岩巷道中应用[J].科技创新导报,2011,17.
[2]刘正宾.峻德矿二水平南三区南部皮带巷过F7、F40号断层及软岩支护方式探索[J].科技创新导报,2008,26.。