PropSelection(N)比例阀选择 (含注释)
- 格式:pps
- 大小:1.51 MB
- 文档页数:62
派克比例阀参数-概述说明以及解释1.引言1.1 概述概述部分:派克比例阀是一种常用的工业控制阀,用于调节液体或气体流量。
其特点是通过改变阀门的开度来控制介质的流量,以达到精确控制的目的。
派克比例阀广泛应用于自动化控制系统中,特别是在需要准确控制流量的场合,如工厂生产线、机械加工、化工以及液压系统等领域。
派克比例阀的参数是指影响其性能和控制精度的各项指标。
常见的派克比例阀参数包括响应时间、线性度、灵敏度、控制精度等。
响应时间是指控制信号作用到阀门上所需的时间,通常以毫秒为单位。
线性度是指阀门在不同开度下流量的变化关系,通常以百分比表示,线性度越好,阀门的流量控制越精确。
灵敏度是指阀门对控制信号的响应程度,灵敏度越高,阀门的调节范围越大。
控制精度是指阀门输出流量与期望流量之间的误差,通常以百分比表示,控制精度越高,阀门的流量控制越准确。
了解派克比例阀的参数对于正确选择和使用该阀门至关重要。
根据实际需求,我们可以根据阀门参数来判断适合的使用场景和控制要求,从而保证流体系统的稳定运行和可靠性。
在接下来的文章中,我们将重点介绍派克比例阀的各项参数,并探讨其对流体控制的影响,帮助读者深入理解和应用派克比例阀。
1.2 文章结构文章结构部分的内容如下:文章结构是指整篇文章的组织方式和内容的排列顺序。
一个良好的文章结构可以使读者更容易理解和把握文章的主题和要点。
本文将按照以下结构来组织内容:引言部分(Introduction):该部分主要对派克比例阀参数进行概述,介绍派克比例阀的基本概念及其在实际应用中的重要性。
同时还会介绍文章的结构和目的,让读者对全文有一个整体的了解。
正文部分(Body):正文部分是整篇文章的核心部分,将详细介绍派克比例阀参数的相关内容。
其中,第一个要点将重点介绍派克比例阀的工作原理、结构特点以及参数的定义和计算方法;第二个要点将深入讨论派克比例阀参数在实际应用中的影响因素和调节方法。
结论部分(Conclusion):结论部分将对正文部分的内容进行总结,并提炼出文章的主要观点和结论。
液压比例阀的选用原则面对着那么多的比例阀,哪一个才是我们需要的?我们该如何选择?选择比例阀时,液压油缸定制厂家认为需遵奉以下原则:1、类型选择依据用途和被控对象,选择比例阀的类型。
比例阀可分为两种不同的基本类型,即是否配带位置电反馈电磁铁。
配用不带位置电反馈电磁铁的比例阀,其特点是比较廉价,但其功率参数、重复精度、滞环等将受到限制。
在工程机械应用领域,这种牢靠的装置获得特别好的应用效果。
配用带位置电反馈电磁铁的比例阀,能充足各种工业应用中特别高精度的要求。
将精密的比例阀应用于开环把握回路时,通常可以得到一般只在闭环调整回路才能达到的效果。
但价格较贵,用户可依据被控对象的认真要求来选择。
2、关注动静态指标正确了解比例阀的动态、静态指标,紧要有额定输出流量、起始电流、滞环、重复精度、额定压力损失、温漂、响应特性、频率特性等。
3、精度选择依据执行器的工作精度要求选择比例阀的精度,内含反馈闭环阀的稳态性、动态品质等。
假如比例阀的固有特性如滞环、非线性等无法使被控系统达到志向的效果时,可以使用软件程序改善系统的性能。
4、油液选择假如选择带先导阀的比例阀,液压油缸定制厂家建议要注意先导阀对油液污染度的要求。
一般应符合对ISO185标准,并在油路上加装过滤精度为别高精10um以下的进油过滤器。
5、通经选择比例阀的通径应按执行器在高速度时通过的流量来确定,通径选得过大,会使系统的辨别率降低。
6、放大器选择比例阀与放大器配套使用,放大器接受电流负反馈,设置斜坡信号发生器、方向器等,把握升压、减压时间或运动件速度和将速度。
断电时,能使比例阀的阀芯处于平安位置。
对比例阀放大器的基本要求是能按时产生正确、有效的把握信号,阀与放大器的距离应尽可能的短。
在选择比例阀时,有些设计者往往像选择平凡换向阀那样选择,通常不能获得充足的结果。
例如某液压设备的工作数据为供油压力120bar,工进时负载压力110bar,快进时负载压力70bar;工进时所需流量范围5~20L/min,快进时所需流量范围60~150L/min。
比例阀技术参数近几年中国钢铁工业生产规模明显扩大,年产钢1000万吨以上的企业已有8家,年产钢500万吨以上的共有17家,年产钢300万吨以上的有30多家。
2019年产钢1000万吨以上企业由2000年的1家(宝钢)上升到8家(宝钢、鞍钢、唐钢、武钢、首钢、沙钢、济钢、莱钢),合计产钢11191.9万吨,占全国钢产量的31.76%。
产钢大于500万吨小于1000万吨企业由2000年的3家(鞍钢、首钢、武钢)上升到2019年的9家(马钢、华菱钢铁、包钢、邯钢、攀钢、安阳钢铁、太钢、酒钢、建龙钢铁),合计产钢6051.21万吨,占全国钢产量的17.17%。
产钢300万吨以上企业共30家,合计产钢22079.65万吨,占全国钢产量的62.65%。
据介绍,中国钢产量已由2000年的1.28亿吨上升到2019年的3.52亿吨,钢产量占世界钢产量的比例由2000年的15.2%上升至2019年的31.1%。
减压阀>>比例式减压阀>>比例式减压阀产品名称:比例式减压阀产品型号:Y43X产品口径:DN25-200产品压力:1.6-6.4Mpa产品材质:铸钢、不锈钢、合金钢等产品概括:生产标准:国家标准GB、机械标准JB、化工标准HG、美标API、ANSI、德标DIN、日本JIS、JPI、英标BS生产。
阀体材质:铜、铸铁、铸钢、碳钢、WCB、WC6、WC9、20#、25#、锻钢、A105、F11、F22、不锈钢、304、304L、316、316L、铬钼钢、低温钢、钛合金钢等。
工作压力1.0Mpa-50.0Mpa。
工作温度:-196℃-650℃。
连接方式:内螺纹、外螺纹、法兰、焊接、对焊、承插焊、卡套、卡箍。
驱动方式:手动、气动、液动、电动。
产品详细信息Y43X比例式减压阀概述我公司生产的比例式减压阀,外形美观、质量可靠,比例准确,工作平稳,既减动压也减静压。
该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。
比例阀比例溢流阀比例阀(Proportional Valve)和比例溢流阀(ProportionalRelief Valve)都属于流体控制阀门的一种,用于调节和控制流体的流量和压力。
两者相似之处在于都可以根据输入信号来控制输出的流量或压力,并且可以实现精确的流量和压力控制。
但是,在使用和应用方面存在一些显著的差异。
首先,比例阀是通过调节阀芯的开度来控制流量的。
它通常由一个线性或非线性的电动执行器驱动,例如电磁阀或伺服阀。
通过改变执行器的输入信号,可以精确地控制阀芯的位置和开度,从而实现对流量的控制。
比例阀在工业自动化系统中广泛应用,尤其适用于液压系统和气动系统。
比例溢流阀是通过调节溢流阀口的大小来控制压力的。
它通常由一个调节阀芯和一个溢流口组成。
当流体压力超过设定压力时,阀芯会打开溢流口,从而减少压力。
通过改变阀芯的位置和溢流口的尺寸,可以精确地调节设备工作时的压力。
比例溢流阀主要应用于液压系统,特别是在需要将过剩的流体引导到油箱或回路中的应用中。
在使用方面,比例阀主要用于流量控制,特别是在流量要求变化较大的系统中。
由于比例阀对输入信号的变化较为敏感,因此可以快速响应并调整输出流量,从而满足不同工况下的流量需求。
比例阀广泛应用于自动化机械设备、工程机械和船舶等领域。
而比例溢流阀主要用于压力控制,特别是在压力稳定性要求较高的系统中。
由于比例溢流阀可以根据压力信号自动调整阀口的大小,因此可以有效地控制系统的工作压力,并防止压力过高损坏设备。
比例溢流阀广泛应用于液压机床、液压系统等领域。
总之,比例阀和比例溢流阀在流体控制方面都有重要作用,但在控制对象(流量或压力)和应用场景上有所不同。
根据具体的工况和要求,选择适合的控制阀门非常重要,可以确保系统的稳定性和正常运行。
液压比例阀的设计选型(二)在上次的比例阀设计选型中,我们强调了五大注意事项,让我们来回顾一下:1、比例阀的流量或压力名义值范围,越接近实际的流量或压力越好。
2、比例方向阀的名义流量值是在进出口压差1MPa情况下的数据,实际的流量不光取决于阀的开口量,还取决于实际的压差。
为了使通过比例阀的流量恒定,可以叠加一个压力补偿器(ZDC型)。
3、油缸有杆腔和无杆腔的面积不同,导致进出口流量不同,选择比例阀的两个开口也应做调整,型号要有体现。
4、比例阀要求的油液清洁度要比普通阀高。
下面我们接着叙述更多的比例阀选型和使用注意事项。
5、有些精度较高的比例阀产品,都会在阀芯上装配位移传感器,用来检测阀芯移动位置,从而保证阀芯开口量(或压力弹簧的压缩量),当位移传感器检测的阀芯位置与输入信号比对后,发现误差后,通过反馈信号,自动的调整输出电流,使阀芯到达正确的位置。
通常带传感器的比例阀产品,它的重复精度、频率响应都会高于不带传感器的比例阀产品,死区也相对的更小。
就拿华德的比例方向阀为例,4WRE和4WRKE产品都是带位置检测的比例阀,对应不带传感器的4WRA和4WRZ产品,性能都会更好些。
但问题来了,华德液压在产品出厂时,都会将带位置检测比例阀和相对应的传感器进行一对一的联调,用精确的输出(流量)检测来调整位置传感器的0点,因此在应用这种比例阀时,最好选择放大器集成在阀上的型号,如果不能选择集成在一起的阀,那就最好订货时注明“配套试验”,当收到货后,要将捆绑在一起的放大器和阀来使用,如果订的数量多,一定不要随机的将放大器和阀来连接,以避免出现华德厂内测试时的放大器没和测试时对应的阀连接在一起的问题,保证使用的精确度。
6、对于非集成式、带传感器的比例阀,它的电磁铁和接线必须严格按说明书进行,如果是两个电磁铁(分成A、B两个电磁铁),一定要按说明书对应A和B连接,传感器处还有4条线,对应线号1-4,这四个线一定要按线号连接。
Steve Skinner, Eaton Hydraulics, Havant, UK Copyright Eaton Hydraulics 2000阀芯结构额定流量功率容量开环/ 闭环阀响应线性度重复性再现性滞环压力增益遮盖形式BP TA 20NA BTTP 进口节流和出口节流(对称)阀芯这是最常见的比例阀阀芯,这里,在给定开度情况下,所有阀口的过流面积都是相等的。
对于对称液压执行元件(如液压马达),这种阀同时可实现进口节流和出口节流控制,对于非对称液压执行元件(如液压缸),根据运动方向,进口节流或出口节流控制中的一个将占主导地位。
阀芯结构阀芯结构额定流量功率容量开环/ 闭环阀响应线性度重复性再现性滞环压力增益遮盖形式BP TA 28SA BTTP 出口节流阀芯只在A 口至T 口和B 口至T 口的流道上具有节流作用,而在P 口至A 口和P 口至B 口的流道上无节流作用(就像在普通换向阀中一样)。
出口节流阀芯可用于液压缸和液压马达,常用于控制拉力负载。
BP TA 22AA BT TP 进口节流阀芯仅在KDG4V 3S 型比例阀上使用,其在P 口至A 口和P 口至B 口的流道上具有节流作用。
BP TA 20N10A BTTP 非对称阀芯为了最优控制非对称液压执行元件,大多数比例方向阀都采用非对称阀芯结构,在这种情况下,P 口至A 口或P 口至B 口流道上的节流作用比P 口至B 口或B 口至T 口的要小,例如,若2:1的阀芯用于2:1的液压缸,则进口节流控制和出口节流控制的作用就相同。
BPTA 8 bar2 : 1在图示简单举例中,可说明对称阀芯的优点。
在该图示中,空载液压缸由比例阀和压力调节器来控制。
BPTA 8 bar2 : 1P = 8 bar当液压缸活塞杆回缩时,压力调节器将使比例阀P 口至B 口之间的流道压降保持为8bar 。
BPTA 8 bar2 : 1P = 32 bar因A 口至T 口的流量为P 口至B 口流量的两倍(对于2:1的液压缸),所以A 口至T 口之间的压降将是P 口至B 口压降的4倍(如为32bar )。
Bulletin HY11-5715-592/UK Installation Manual Series D*1FHDesign ≥ 42 Proportional DC ValveParker Hannifin GmbH & Co. KG Hydraulic Controls Division Gutenbergstr. 3841564 Kaarst, GermanyTel.: +49-181 99 44 43 0Fax: +49-2131-513-230E-mail: infohcd@Copyright © 2006,Parker Hannifin GmbH & Co. KGProportional DC Valve Series D*1FH2Installation ManualD1FH-42 592 UK.INDD CM 06.06Parker Hannifin GmbH & Co. KGHydraulic Controls DivisionContentsPage 1.Introduction3 Characteristics 42.Technical Data4 Parameters Block Diagram Valve Electronics Wiring EMV 45553.Installation6 Electrical Connection 64.Switching Circuitry7 Block Diagram Set Value Input Min/Max Setting Diagnostic Output Position Control Power Stage Enable Signal Input Voltage Monitor Control Failure Monitor 788889910105.Measuring Points10 Main (Central) Connector Diagnostic Sockets missioning11 Ambient Conditions Input Circuitry Enable Signal Zero Point Equalising 111112127.Service14 Test Unit Trouble Shooting Diagram Replacing The Electronic Unit 1415168.Ordering Code17Proportional DC Valve Series D*1FHInstallation Manual3D1FH-42 592 UK.INDD CM 06.06Parker Hannifin GmbH & Co. KG Hydraulic Controls Division1. Introduction D*1FHParker D**FH proportional directional control valves are equiped with high dynamically powered sole-noids and on-board electronics. The valve can be linked to any signal control system (i.e. PLC) by only one central plug and wiring connection.The D*1FH series have a four-hole mounting sur-face according to CETOP and a spool with four flow path edges for standard applications.Proportional DC Valve Series D*1FH4Installation ManualD1FH-42 592 UK.INDD CM 06.06Parker Hannifin GmbH & Co. KGHydraulic Controls DivisionCharacteristicsThe valve electronics described in this documenta-tion relates to the control of high response direc-tional control valves with solenoids, series D**F . The electronics is an integrad part of the valve, unifying various functions necessary for the opti-mum usage of the valve and leading to an inte-grated solution. The result is an outstanding dy-namic response, permitting the valve to be used in closed loop controls. The integrated electronics carry out the following functions:• Provides a specially designed output power stage for high dynamic control of the solenoids • Constant current control of the solenoids • Overriding main stage stroke control• Specially developed position transducer for high resolution high dynamic control •Differential input stageAll the information have been carefully selected and assembled and represents the actual knowl-edge.General OrientationOptionalTemperature drift of zero 0,005 % stroke/0 C Ambient temperature range [°C]-20 ... +60Hydraulics Hydraulic fluid Hydraulic oil according to DIN 51524 (535)Viscosity[mm²/s]30 (80)Fluid temperature max.[°C]0 (60)ElectricalSupply voltage[VDC]18 (30)Ripple max. 5% eff.; noninductiveSwitch-on current [A]7.0 for 0.5mS (typ.)Current consumption max.[A] 2.0Fuse, to be provided externally [A] 2.5 medium time lag Input signal [V]0 ... ±10V smoothed, noninductive*optional 0 ... ±20mA / 4...20mA*Input impedance [kOhm]200 (at current input 500Ohm)Resolution sensitivty [mV]5Protection standard IP 65Connection cable 7 x AWG 17 (1.0 mm 2), shielded Cable length max.[m]502. Technical Data*max. 30VDC against Pin G (ground)• Min/Max setting for valve operation conditioning • Diagnostic output for valve stroke • Enable signal for power output stage• Low voltage monitoring of the supply voltage with indicating lights giving operation status • Standard central plug connection, EN 175201-804• Spindle operated trimpots for zero setting equal-ising • All electronics completely interchangeable• Full conformity to the European EMC standardsProportional DC Valve Series D*1FHInstallation Manual5D1FH-42 592 UK.INDD CM 06.06Parker Hannifin GmbH & Co. KGHydraulic Controls DivisionBlock Diagram Valve ElectronicsWiringEN 50081-2EN 55011EN 50082-2ENV 50140EN 61000-4-4ENV 50204EN 61000-4-5EN 61000-4-2EN 61000-4-6EMVProportional DC Valve Series D*1FH6Installation ManualD1FH-42 592 UK.INDD CM 06.06Parker Hannifin GmbH & Co. KGHydraulic Controls DivisionPower SupplyThe utilized power supply has to comply with the EMC-standards (CE-sign, certificate of conformity). Parker is offering the following power supplies:Relais and solenoids operating from the same supply circuit as the valve electronics has to be fitted by surge protection elements.Wiring Cable The wiring cable between the control cabinet and the valve has to be shielded. The central wiring hasto be installed from a 7wire cable that utilizes a common shielding and a cross section of min. AWG17. The capacity should not exceed a value of approx. 130pF/m (wire/wire). The maximum cable length is 50m. No power current lines may be placed in parallel to the valve´s wiring cables. The cable shield has to be connected to earth ground at both ends (see also chapter “Ground-ing“). Please be aware of ground-loops.INSTALLATION GUIDETO PROVISION OF ELECTROMAGNETIC COMPATIBILITYConnectorsThe central connection of the valve electronics needs a connector 6pin+E according EN 175201-804 featuring metal case and integrated cable shield coupling. Parker can provide suitable connectors:5004072 (Connector 6pin+E)The connectors have to be installed according theconnection diagram, the cable shield has to be tiedon the whole periphery to the provided coupling clamp.GroundingThe mounting plate of the valve has to be con-nected to the grounded metal machine frame. The Earth wire to pin G of the central wire cable as well as the cable shields of the valve connection cables should be tied to earth ground at the control cabi-net. A low-ohmic potential compensation wire has to be provided between the control cabinet and the machine frame (cable wire >AWG7 cross section)to prevent ground loops.The connecting cable has to comply to the follow-ing specification:Cable type control cable, flexible,7 conductors, overall braidshieldCross section min. AWG16Outer dimension 8...12 mm Cable lengthmax. 50 mFor cable lengths > 50 m consult factory.The connection cable is coupled to the female connector by solder joints.Skinning lengths for the connecting cable:3. Installation Electrical ConnectionThe electrical connection of the valve takes place by one common cable, which is coupled to the in-tegrated electronic driver by a central connector assembly.The connection requires a 6 + PE female connec-tor EN 175201-804.The female connector has to be ordered separately under article nr. 5004072. A female connector with metal housing is required! Plastic made models may create function problems due to insufficient EMC-characteristics.Proportional DC Valve Series D*1FHInstallation Manual7D1FH-42 592 UK.INDD CM 06.06Parker Hannifin GmbH & Co. KGHydraulic Controls DivisionProportional DC Valve Series D*1FH8Installation ManualD1FH-42 592 UK.INDD CM 06.06Parker Hannifin GmbH & Co. KGHydraulic Controls DivisionSignal-InputThe command signal input of the valve has been wired from the connector terminals D and E to the differential input of the onboard electronic. The valve stroke is acting proportional to the value of the signal. According to the valve model there are different command signal options available, which are separately described below. More details are obvious from the technical data. The input signal must be filtered as well as free of surges andmodulations. Due to the resolution sensitivity a high signal quality is recommended, to avoid function disturbances.Improper high signal amplitudes may lead to function disturbances or damaging depend-ing of the exceeding value.The explanation of functionality assumes junction E as point of reference potential.Wiring example of voltage input option +10...0...-10 VWiring example of current input option 4...12...20 mAWiring example of current input option +20...0...-20 mACommand signal option 4...20 mA uses the “0 mA“ - condition as failure information. This means that an evaluable failure information is provided for an interrupted command signal circuit. In the present case the solenoid drive thereby will be switched off.The drive will be activated if the input signal ex-ceeds a value of 3,8 mA and will be disabled below 3,6 mA. This definition follows the NAMUR standard NE43.Proportional DC Valve Series D*1FHInstallation Manual9D1FH-42 592 UK.INDD CM 06.06Parker Hannifin GmbH & Co. KGHydraulic Controls DivisionMin/Max-SettingThe min/max-setting option achieves a conditioning of the valve operating range to a certain application.The min-setting is used for valves with overlapped main spools, it compensates for the mechanical overlap by an offset-feature.The max-setting limits the stroke of the valve spool, equally the full input signal range will be preserved and can be used with full resolution.Both settings are provided separately for both valve operating directions.Diagnostic Output T o make available measurements for the momen-tary position of the valve spool the valve electron-ics unit provides a diagnostic output. This is avail-able at the main connector between pin F and supply zero (pin B) as well as on the printed circuit board of the valve electronics unit which providestwo diagnostic sockets. The sockets take 2mm plugs and can e.g. be used in the setting up of the zero point.The output is a 0...±10V signal where the value of 10V normally represents the maximum permitted stroke of the valve spool.The diagnostic output is short circuit proofed and is fully operative up to a load of at least 2kOhms or 5mA.Position Control The purpose of the position controller is to compare the actual value of the spool as given by the valve electronics sensor with the set value and provide signals to the actuating solenoids to ensure that the set position is achieved and maintained. The sketch below shows the operating principle of the control circuit.Power StageIn the output stage the output signal of the position controller is converted into an activating signal for the operating solenoids.Keeping the power relationships at the solenoid constant as well as the need for rapid excitation of the solenoids is achieved with controlled current from a constant current control stage.The solenoidcurrent is measured in the valve electronic unit and compared with the set-value for current in theconstant current controller. As long as there is a difference between set and actual current valuesthe output stage will change the solenoid currentin order to equalise them.The solenoid also has a superimposed dither signal which has been care-fully matched with the mechanics of the valve to compensate for mechanical friction so that the hysteresis will not influence the dynamics of the valve.Enable Signal InputTo switch-off the output stage the valve electronics unit is fitted with an enable signal input which canat any time be used to interrupt the solenoid current irrespective of transducer signal or set value. In this case the main spool takes up - without any delay - the spring centered position in the valve.A further function of the enable signal input is to limit the output of the position control. Normally onswitching off the activated solenoid the output ofthe controller would be driven into saturation by the Integral part of the PID system. Because of this, if the solenoid is immediately switched on again the valve spool is for a short period of time operated indefinetily. To avoid this, the integral part of the controller is switched out and a limit is placed on the controller output for as long as the enable inputis switched off. When the enable signal is switched on again the valve spool will immediately move from it's central position and take up the required set position.The enable signal input is, as far as circuitry is concerned, completely isolated from the rest of the electronics to keep interference from peripheral equipment away from valve electronic unit. It re-quires a signal in the region of 5 to 30VDC with a current supply of about 10mA. The enable signal is fed into the unit via the central connector between pins B and C.Proportional DC Valve Series D*1FH10Installation ManualD1FH-42 592 UK.INDD CM 06.06Parker Hannifin GmbH & Co. KGHydraulic Controls Division5. Measuring Points NotePosition Of The Measuring PointsThe enable signal should preferably be switched off together with the hydraulic pressure source in order that the solenoid spools have no circulating current when the hydraulic system is switched off. This reduces energy loss and unnecessary heat generation in the solenoid spools.NoteThe enable signal does not provide security against unwanted operation of a valve in the sense of theaccident prevention regulations. To block all pos-sibility of a valve functioning under any circum-stances, further steps are necessary, e.g the fitting of safety lock valves.Voltage MonitorThe supply voltage may therefore lie between 18 and 30V , with a ripple of no more than 5%. These voltages are valid on load i.e. with valve electronics and enable signal connected.The value of the supply voltage is supervised by an integrated voltage monitoring.Control Failure MonitorIf a failure >2% occurs within the position control loop of the valve a control failure signal is given. This is the case, if the valve spool does not reach the predetermined position. The most important reasons for this behaviour could be:• No or too low pilot presssure• Blocking or defective valve mechanics by dirt • No enable signal• Input signal failure (only for option 4...20mA)The operating condition of the monitoring is indi-cated by a dual color LED within the valve electron-ics cover.An explanation of the light indicator is printed on the placard on the cover.FunctionPin B: 0V Pin C: 0V Output disabled Pin B: 0VPin C: 5 (30V)Output enabledIndicator green Normal operationIndicator offSupply voltage is outside the normal rangeIndicator redControl failurePin Signal levelrepresentingMeasurement/rangeA Plus levelSupply voltage+18 (30V)measured againstpin BB Reference potential ReferenceC Enable signal+5 (30V)measured againstpin BD Command signal+0 (10V)measured againstpin EE Command signal-0 (10V)measured againstpin DF Diagnostic signalvalve stroke±0 (10V)measured againstpin BG Connection toground –Main (Central) ConnectorThe normal operating voltage levels for the valve electronic unit are available through the central connector.In particular, the following individual possibilities are available:6. CommissioningAmbient ConditionsThe valve electronics unit has been designed to work reliably together with the hydraulic valve as a unit under normal industry conditions. It is pro-tected against environmental influences by its cast iron housing which also prevents the entry of for-eign particles and is sealed against the entry of water.The electronics are partly encapsulated and have a protective coating of varnish.Even so, mechanical loading of the electronics box as well as its use outside of the following installation conditions is not allowed as permanent damage or a reduction in working life cannot be ruled out. It is advisable to install the unit directly by the machine, protected from extreme environmental influences. Input CircuitryThe differential input of the valve electronic unit ensures a freedom from input problems with the user’s set value signals.Command Signal Control SystemThere are three basic variations on set value con-trol:•Take the set value signal from a programmable logic control unit (PLC).•Set value control through interface electronics.•Set value signals from preswitched controller.Connection Signal levelrepresentingMeasurementvalue/rangeTestpoint 1 yellowouter Diagnostic signalvalve stroke±0 (10V)measured againsttestpoint 2Testpoint 2 yellowinner referencepotential–Diagnostic socketsThe diagnostic sockets are for the purpose of measuring the actual stroke of the valve. A correla-tion table.D1FH-42 592 UK.INDD CM 06.06D1FH-42 592 UK.INDD CM 06.06Adjustment Of The Mechanical Zero Point(zero lap spools only)ToolsAllen Key SW6Wrench SW19ConditionsValve electronics unit switched off, hydraulics work-ing.Adjustment 1. L oosen locking cover nut of the adjusting spindle.2. A djust the zero point until the actuator is in the neutral position or takes up the desired creep position.3. R eplace cover nut.The following command signal value results in theelectrical zero point of the valve:Enable SignalThe valve electronic unit uses an “enable” signal function in the range of 5...30V at pin C of the main connector (see chapter “Enable Signal Input“).There are two different ways of controlling the en-able signal input:• Using the 24V supply voltage through an enable switch provided by the user.• Feeding the enable signal from a control systemof the user with the reference (zero) point of the user's control connected to pin B of the central connector and the enable signal is connected to pin C.The enable signal must only be switched on to the valve electronics unit when the valve is to be used; all other times should be off.Example: Start-up of a hydraulic control system As against the supply voltage, which will be switched on at the same time as the hydraulic system, the enable signal should preferably not be switched on until the hydraulic system has reached full pressure. This will prevent any system disturbance.Zero Point EqualisingThe main valve spool takes up the spring-centred position if the power fails or the enable signal has not been given. Valves with overlap spools have a factory adjusted zero point. Valves with zero lap spools usually have mechanical centering. In this case there is a possibility of the operating condi-tions allowing the activated device e.g a cylinder, to creep in an uncontrolled direction; the valve electronics unit takes account of this possibility and allows the creeping movement in a predefined di-rection only.Valves with overlapping type spools are factory-preset to null. In the case of valves with zero lap spools it is necessary for the user to adjust the electrical zero point in accordance with its require-ments. The adjusting can be done via a selflocking spindle trimmer in the valve electronic unit. The position of the trimmer is shown on the placard on the cover.Electronic variation B E S Command signal0V0mA12mAEqualising The Electrical Zero Point ConditionsMechanical zero point adjustment has been done. Valve electronic unit is working. Enable signal has been applied. Hydraulics working.AdjustmentUsing the zero point spindle-trimmer until the drive remains in the rest position.Set Up Of The Min/Max-Setting (overlapped spools only)ToolsAllen Key SW3Screwdriver 2mmFirst remove the locked cover of the valve elec-tronic unit. The position of the trimpots is shown on a sticker on the internal side of the valve electron-ics cover.Adjustment1. Feed in a command signal:2. Adjust offset for corresponding valve side by potentiometer “min b“ (P5). (increasing = turn clockwise).3. Feed in a command signal:Electronic variation B E S Command signal0V0mA12mAElectronic variation B E S Command signal+50mV+0.1mA11.96mAElectronic variation B E SCommand signal+10V+20mA+4mAElectronic variation B E SCommand signal+10V+20mA+4mAElectronic variation B E SCommand signal-10V-20mA+20mA 4. Adjust the required spool stroke for correspond-ing valve side by potentiometer “max b“ (P7). (increasing = turn clockwise).5. Repeat that procedure for opposite valve side. Feeding in negative command signals with the same set up procedure by using potentiometers “min a“ (P6) as well as “max a“ (P8).6. Take into account that min has to be adjusted before max.Set Up Of The Max-Setting(zero lap spools only)The position of the trimpots is shown on a sticker on the internal side of the valve electronics cover.1. Check if the potentiometers “min a“ (P6) and “min b“ (P7) are in their end position (fully counter-clockwise).2. Feed in a command signal:3. Adjust the required spool stroke for correspond-ing valve side by potentiometer “max b“ (P7) (increasing = turn clockwise).4. Feed in a command signal:5. Adjust the required spool stroke for opposite valve side by potentiometer “max a“ (P8).6. At last replace cover and seal.D1FH-42 592 UK.INDD CM 06.06D1FH-42 592 UK.INDD CM 06.06Test Unit EX00-M03The test unit EX00-M03 is usable for the control of proportional valves incorporating integrated elec-tronics. It provides commissioning and function test independently from the machine control system. The test unit is provided with all necessary signal and measurement taps, making it possible to pro-ceed initial operation and diagnosis.Technical Data• Control of valves incorporating integrated elec-tronics and central plug acc. to EN 175201-804 (6pin+PE)• Main connection selectable 230/115VAC • Build-in fuses • Cordset included• Integrated digital voltmeter with test point selec-tor switch • Test jacks•Rugged metal enclosure with handles7. ServiceCommissioning HelpWhen commissioning a valve installed on a ma-chine control unit the following question is fre-quently asked:How can we operate the valve by hand independ-ently of the overall control system to e.g. to adjust the zero point or to set-up a newly installed cylin-der?An appropriate test unit is available by order no.EX00-M03.Operator Panel1 Voltage readout2 Test point selector switch3 Switch enable on/off4 Command signal potentiometer V+5 Command input selector switch6 Command signal potentiometer V-7 Fuse 3A 24VDC8 Power indicator9 Test jacks10 Main input 230/115VAC 11 Main switch12 Voltage selector / main fuse13 Valve control output socketTrouble Shooting DiagramD1FH-42 592 UK.INDD CM 06.06Replacing The Electronic UnitIn case of a fault in the electronic unit the complete unit must be replaced.Replacing The Electronic Printed Circuit BoardToolsAllen key SW3ConditionsHydraulics switched off.Remove central connector; ensure unit voltage supply is off.Exercise great care when taking parts out and keep them safe.Replacement1. Remove the closing cover on the back end of the electronic box2. Loosen plug s1 (Fig. 1)3. Using the Allen key SW3 remove the fixing nut of the displacement transducer. Keep the fixings safe. (Fig. 2)4. R emove the printed circuit board from the box without using force5. Install the new printed circuit board. The type can be seen on a type label6. Install in reverse order to the dismantling proce-dure7. Re-do the electrical zero point as well as the min/max-setting8. Apply the closing cover including the seal. Tighten the bolts M4/DIN912-8.8 so that the cover fits tightly on the box Fig. 1Transducer And Connecting Socket Fig. 2Fixing Components Of TransducerD1FH-42 592 UK.INDD CM 06.06D1FH-42 592 UK.INDD CM 06.068. Ordering Code D*1FHFlowValve accessoriesPilot oil guideSealElectronic variationDesign seriesCentral connector not included3) only for spools with positiveoverlappingnot for D111FH4) only for E50 / B60CodeFlow [l/min] at ∆p 5bar per flow path D31 4)D31D41D81/91D111A 20/3355–––B ––105––C 32/5580140––E ––190 250–F ––240 310–H –––400500L––––1000Code Valve accessories 0Standard 8 3)Monitor switchCode Inlet Drain 1internal external 2external external 4internal internal 5externalinternalCode Electronic variation BVoltage input0...±10V standard E Current input 0...±20mA SCurrent input 4...20mACode Seal N NBR VFPM。
SMC比例阀使用SMC比例阀(Proportional Valve)是一种通过改变控制信号的大小,来调节阀的开启程度的电动阀门。
它广泛应用于工业自动化控制系统中,通过精确调节液压系统中的液压流量和压力,实现对执行器的精确控制。
1.控制信号:通过输入模拟电压或电流信号来控制比例阀的开度。
控制信号通常是由PLC或其他系统发出的,可以根据系统需要进行调整。
2.增益调节:通过调整比例阀的增益参数来控制阀的灵敏度和响应速度。
增益调节可以根据具体的应用要求进行调整,以达到最佳的控制效果。
3.电磁线圈:比例阀通过电磁线圈来控制阀门的开启程度。
当电磁线圈通电时,产生的磁场会改变阀门或阀门芯的位置,从而调节液压系统中的流量和压力。
1.精确控制:通过改变控制信号的大小,可以实现对阀门的精确控制。
这样可以确保执行器的工作效果和准确性,提高系统的稳定性和可靠性。
2.高响应速度:比例阀的开启和关闭速度可以非常快,从而实现对执行器的快速控制。
这对一些需要快速响应的应用非常重要,例如机械加工、成型和包装等。
3.灵活性:比例阀的控制信号可以通过调节电压或电流来实现,这使得它适用于各种不同类型的控制系统。
通过简单的参数调整,可以适应不同应用场景的需求。
4.可靠性:SMC比例阀采用优质的材料和精密的制造工艺,具有良好的耐磨损性和耐腐蚀性。
这使得比例阀具有较长的使用寿命和较高的可靠性。
1.工业自动化:比例阀在工业自动化领域中被广泛应用,用于控制液压系统中的流量和压力。
比例阀可以准确地控制机械运动、液压夹紧、液压顶升等操作。
2.机床加工:比例阀可以用于控制机械加工中的气动和液压系统,如切削、冲压、成型等。
通过控制流量和压力,可以实现加工过程中的精确控制和调节。
3.包装和物流:比例阀可以被应用在包装和物流系统中,用于控制输送带、装置的运动和速度。
通过精确控制流量和压力,可以确保产品的稳定输出和准确分拣。
4.冶金和矿业:比例阀在冶金和矿业领域中被广泛应用,用于控制冶金炉、矿石输送等。
Steve Skinner, Eaton Hydraulics, Havant, UK Copyright Eaton Hydraulics 2000阀芯结构额定流量功率容量开环/ 闭环阀响应线性度重复性再现性滞环压力增益遮盖形式BP TA 20NA BTTP 进口节流和出口节流(对称)阀芯这是最常见的比例阀阀芯,这里,在给定开度情况下,所有阀口的过流面积都是相等的。
对于对称液压执行元件(如液压马达),这种阀同时可实现进口节流和出口节流控制,对于非对称液压执行元件(如液压缸),根据运动方向,进口节流或出口节流控制中的一个将占主导地位。
阀芯结构阀芯结构额定流量功率容量开环/ 闭环阀响应线性度重复性再现性滞环压力增益遮盖形式BP TA 28SA BTTP 出口节流阀芯只在A 口至T 口和B 口至T 口的流道上具有节流作用,而在P 口至A 口和P 口至B 口的流道上无节流作用(就像在普通换向阀中一样)。
出口节流阀芯可用于液压缸和液压马达,常用于控制拉力负载。
BP TA 22AA BT TP 进口节流阀芯仅在KDG4V 3S 型比例阀上使用,其在P 口至A 口和P 口至B 口的流道上具有节流作用。
BP TA 20N10A BTTP 非对称阀芯为了最优控制非对称液压执行元件,大多数比例方向阀都采用非对称阀芯结构,在这种情况下,P 口至A 口或P 口至B 口流道上的节流作用比P 口至B 口或B 口至T 口的要小,例如,若2:1的阀芯用于2:1的液压缸,则进口节流控制和出口节流控制的作用就相同。
BPTA 8 bar2 : 1在图示简单举例中,可说明对称阀芯的优点。
在该图示中,空载液压缸由比例阀和压力调节器来控制。
BPTA 8 bar2 : 1P = 8 bar当液压缸活塞杆回缩时,压力调节器将使比例阀P 口至B 口之间的流道压降保持为8bar 。
BPTA 8 bar2 : 1P = 32 bar因A 口至T 口的流量为P 口至B 口流量的两倍(对于2:1的液压缸),所以A 口至T 口之间的压降将是P 口至B 口压降的4倍(如为32bar )。
BPTA 8 bar2 : 1P = 32 bar32 bar64 bar72 bar对称阀芯1)无杆腔背压为32bar ,有杆腔的压力就应为64bar 。
2)因此,为使空载液压缸移动,P 口最小压力应为72bar 。
B PTA 8 bar2 : 1P = 8 bar2:1 SPOOL若将比例阀阀芯变为非对称式(比例为2:1),P 口至B 口的压降则为8bar ,其由压力调节器设定。
B PTA 8 bar2 : 1P = 8 bar2:1 SPOOL不过,若2:1的阀芯控制2:1的液压缸,则A 口至T 口的压降也为8bar 。
B PTA 8 bar2 : 1P = 8 bar8 bar16 bar24 bar2:1 SPOOL无杆腔的背压力为8bar ,有杆腔的压力为16bar ,P 口的最小压力为24bar 。
使用非对称阀芯将会使P 口最小压降从72bar 降至为24bar 。
20N A B T T P 20N10ABT TP 28S A BTTP 22AABT T P 阀芯选择因此,选择阀芯节流特性是由执行元件类型和负载性质所决定的。
B P T A2CBP TA33CBP TA5C阀芯中位机能对于大多数比例方向阀而言,也可以使用不同的中位机能。
中位机能的正确选择主要取决于负载特性和系统中其它控制阀,例如,若比例阀用于防止执行元件运动,则中位机能应选择为O型(2C),但若使用电磁阀或先导式单向阀,则选用Y型(33C)中位机能更合适。
阀芯结构额定流量功率容量开环/ 闭环阀响应线性度重复性再现性滞环压力增益遮盖形式BPTA 5 bar Pl / minQ R 3 l/min550 l/minQ R 1)额定流量可以定义为阀口压降为5bar (最大开口度)时,比例阀所通过的流量。
2)通过改变阀芯节流槽的大小、形状或数量,可获得不同的额定流量。
3)目前,比例阀的额定流量范围为3~550l/min 。
流量计算A1V1Q1Q R= ?正确确定比例阀大小是非常重要的,若比例阀太小,则将不能保证执行元件的运动速度,若比例阀太大,则需要产生很小的阀口开度,这样就很难控制。
A 1A 2FP S P 1P 2P T压力计算然而,因比例阀可以控制进入和流出液压执行元件的流量,所以,正确选择比例阀大小并不像选择普通换向阀那样简单。
A 1A 2FP S P 1P 2P TP 1.A 1P 2.A 2P 1.A 1= P 2.A 2+ F为了确定比例阀的阀口压降,有必要估算压力P 1和P 2,这可以通过液压缸活塞的力平衡方程...A 1A 2FP SP 1P 2P TQQ. A 2A 1P S –P 1P 2–P T =A 2A 12P 1.A 1= P 2.A 2+ F ∆P ∝Q 2...和阀口流量与压降之间的关系来完成。
比例阀大小选择软件不过,最方便的办法就是使用计算机软件来完成计算过程。
阀芯结构额定流量功率容量开环/ 闭环阀响应线性度重复性再现性滞环压力增益2)对于无反馈的比例阀,当比例电磁铁通电时,就会产生电磁力,其将压缩弹簧推动阀芯。
1)当选择比例阀的最佳流量时,也应考虑其功率容量,即为了防止液动力将阀口关闭,比例阀应具有将阀芯保持在期望位置的能力。
PP1)然后,阀口开启,直至电磁力与弹簧力相平衡。
2)在最大开度处,阀口流量将与阀口压降的平方根成正比。
3)然而,随着液体流过比例阀,液动力也作用在阀芯上,以抵消电磁力。
P 1)液动力的影响将部分关闭阀口... 2)...这会导致实测曲线与理论曲线不一致,且限制了比例阀的最大通流能力。
一旦达到了流量饱和,则曲线或者变为垂直,或者变为向后弯曲,这表明增加压降将会减小阀口流量大小。
不过,垂直曲线表明阀口压降变化不会产生流量变化,即压力补偿影响。
P因此,功率容量曲线决定了比例阀在最大输入信号下的工作范围,即比例阀不可能工作在阴影处。
P带反馈的比例阀也有功率容量限制,但其通常比同种规格的无反馈比例阀的功率容量要高许多。
PP1)若液动力试图将阀口关闭,则反馈传感器的信号将指示阀芯要偏离期望位置,这样比例电磁铁电流就会自动增大。
2)这使得阀芯将克服较大的液动力,从而允许比例阀可以通过较大的流量。
不过,液动力最终会变得很大,以克服电磁力,然后,阀芯向关闭阀口方向移动。
P因此,对于带反馈的比例阀,其功率容量曲线要比同种规格的无反馈的比例阀大,即带反馈的比例阀可控流量范围更大。
P开环和闭环控制阀芯结构额定流量功率容量开环/ 闭环阀响应线性度重复性再现性滞环压力增益电压电流流量速度斜坡加速度位置2)然而,执行元件负载或系统压力的变化可引起执行元件速度变化。
通过使用功率放大器上的斜坡发生器来改变输出电流的变化速度,可以实现执行元件的加速度和减速度控制。
3)对于开环系统,为了控制执行元件位置,可使用感测开关,以断开至功率放大器的输入信号电压(因而将执行元件速度选择为零)。
不过,执行元件的定位精度将取决于许多因素(如负载惯性、比例阀响应快速性和执行元件运动速度等),任何超调都将被校正。
1)在开环控制系统中,输入至功率放大器的电压可对比例阀产生相应的输出电流,从而调节流入或流出液压执行元件的流量,即控制液压执行元件的速度。
电压电流压力力斜坡力变化速度采用比例溢流阀或比例减压阀可以实现压力的开环控制,在这种情况下,输入至功率放大器的电压可对比例阀产生相应的输出电流,因此可无级调节执行元件压力。
使用功率放大器上的斜坡发生器可以控制压力上升或下降的速度。
电压电流流量速度加速度电压+_电压 速度P I D闭环速度控制系统需要一个传感器,以给出与执行元件速度成比例的反馈信号。
当误差信号为零(反馈信号等于输入信号)时,为了产生输出电流(和执行元件流量),功率放大器应为积分形式。
闭环系统的速度控制精度(负载变化等)比开环系统要高许多。
与开环控制一样,使用功率放大器上的斜坡发生器可以实现加速度和减速度控制。
电压电流流量位置速度电压+_电压 位置P I D3)然而,在有些情况下,也可以使用功率放大器的积分和微分功能,以提高系统的控制性能。
不过,这时需要较高水平的专业技术。
在执行元件从一个位置运动到另一个位置期间,也可以使用功率放大器上的斜坡发生器来控制执1)闭环位置控制系统需要一个传感器,以给出与执行元件位置成比例的反馈信号。
2)在大多数应用场合,功率放大器都将简单产生与位置误差(输入信号与反馈信号之差)成比例的输出电流,因此,闭环系统的定位精度比开环系统高许多。
电压电流压力输出力斜坡输出力变化速度闭环控制–力电压+_输出力 电压P I D闭环力控制系统可以使用压力或力传感器,以提供反馈信号。
如果采用比例方向阀来实现闭环力控制,那么,功率放大器将产生一个包含比例和积分项的输出。
如前述,也可以使用功率放大器上的斜坡发生器来控制执行元件输出力的变化速度。
阀响应阀芯结构额定流量功率容量开环/ 闭环阀响应线性度重复性再现性滞环压力增益输入输出时间流量在高性能系统中,比例阀响应时间是很重要的因素,其可通过比例阀跟踪阶跃信号的响应来确定(在有些情况下,如图所示),即确定输出与输入相等所需的时间。
输入流量时间100%90%T输出在另一些情况下,输出也许有振荡,即很难确定输出与输入相等的点,为避免这种不确定性,响应时间通常定义为输出达到稳态值的90%所需要的时间。
100%50%75%25%流量(P 口至A 口流量(P 口至B 口)输入输出时间有时,采用正弦波作为输入信号来考核比例阀响应性能。
在约阀口最大开度的一半处,让阀芯作振荡运动,振幅为其阀口最大开度的±25%。
在低频段,比例阀输出将能精确地跟随输入信号。
100%50%75%25%流量(P 口至A 口流量(P 口至B 口)时间输入输出A 2A 1L幅值比(dB) = 20 log A 2A 1()相角(º) = L360º1)但是,当输入信号频率增加时,输出信号的幅值将降低,且输出信号也将滞后输入信号。
2)幅值比和相角可以定量说明上述两个影响。
幅值比(d B )110100频率(Hz)相角(º)110100频率(Hz)4590135截止频率带宽-31)在不同频率下测量出幅值比和相角,绘制出对数坐标图,即伯德图。
2)输出下降-3dB (50%)的频率称之为带宽,截止频率是相角为90º的频率,带宽或截止频率常用来定义阀响应。