高等代数第三章
- 格式:ppt
- 大小:4.01 MB
- 文档页数:78
第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=ìï++-+=-ïï-+--=íï-++-=ïï++-+=-î 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=ìï--+-=ïí-+-+=ïï-+-+=î 1234234124234234433)31733x x x x x x x x x x x x x -+-=ìï-+=-ïí+++=ïï-++=-î 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=ïï-++=-î 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=-ïï-+-=î 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=ìï++-=ïï+++=íï++-=ïï++=î解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--éùéùêúêú----êúêúêúêú®------êúêú-----êúêúêúêú-----ëûëû102101100101003212000212002000002000000000000000011100010000--éùéùêúêú---êúêúêúêú®®--êúêúêúêúêúêú---ëûëû因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=ìï+=-ïí-=ïï-+=î 解得123451022x k x k x x k x k=+ìï=ïï=íï=ïï=--î 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--éùéùêúêú------êúêú®êúêú----êúêú---ëûëû 120321120321033451033451252982529800110011333333003325297000001--éùéùêúêú------êúêú®®êúêú--êúêúêúêú--êúêúëûëû因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----éùéùêúêú----êúêú®êúêú--êúêú----ëûëû1012210008011130100300201200201200482400080---éùéùêúêú--êúêú®®êúêúêúêú--ëûëû因为(()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-ìï=ïí=ïï=î 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--éùéùêúêú----êúêú®êúêú--êúêú--ëûëû 17891789017192001719200171920000003438400000--éùéùêúêú----êúêú®®êúêú-êúêú--ëûëû即原方程组德同解方程组为123423478901719200x x x x x x x +-+=ìí-+-=î由此可解得1122123142313171719201717x k k x k k x k x k ì=-ïïï=-íï=ïï=î 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--éùéùêúêú---êúêú®êúêú---êúêú---ëûëû 21111211117001470014100002100002100300001--éùéùêúêú--êúêú®®êúêúêúêú---ëûëû 因为()4()3rank A rank A =¹=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202éùéùêúêú-êúêúêúêú®êúêú-êúêúêúêúëûëû2020000000552020570211611010015555101001010000000-éùéùêúêúêúêúêúêú®®-----êúêúêúêú--êúêúêúêúëûëû即原方程组的同解方程组为23341357261550x x x x x x +=ìïï-+=-íï-+=ïî 解之得123427551655x k x k x k x k =ìïï=-ïí=ïï=-+ïî其中k 是任意常数.2.把向量b 表成1234,,,a a a a 的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)b a a a a ===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)b a a a a =====--解 1)设有线性关系11223344k k k k b a a a a =+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=ìï+--=ïí-+-=ïï--+=î 解之,得15,4k = 21,4k = 31,4k =- 414k =-因此123451114444b a a a a =+--2)同理可得13b a a =-3.证明:如果向量组12,,,r a a a L 线性无关,而12,,,,r a a a b L 线性相关,则向量可由12,,,r a a a L 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k +L 使112210r r r k k k k a a a b +++++=L显然10r k +¹.事实上,若10r k +=,而12,,,r k k k L 不全为零,使11220r r k k k a a a +++=L成立,这与12,,,r a a a L 线性无关的假设矛盾,即证10r k +¹.故11rii i r k k b a =+=-å即向量b 可由12,,,r a a a L 线性表出.4.12(,,,)(1,2,,)i i i in i n a a a a ==L L ,证明:如果0ij a ¹,那么12,,,n a a a L 线性无关.证 设有线性关系11220n n k k k a a a +++=L代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k a a a a a a a a a +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L L 由于0ij a ¹,故齐次线性方程组只有零解,从而12,,,n a a a L 线性无关.5.设12,,,r t t t L 是互不相同的数,r n £.证明:1(1,,,)(1,2,,)n i i i t t i r a -==L L是线性无关的.证 设有线性关系11220r r k k k a a a +++=L则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-¹ÕL LL M M O M L所以方程组有惟一的零解,这就是说12,,,r a a a L 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t b b b ---ì=ï=ïíïï=îL L L L L L L L L L L 则由上面1)的证明可知12,,,r b b b L 是线性无关的.而12,,,r a a a L 是12,,,r b b b L 延长的向量,所以12,,,r a a a L 也线性无关.6.设123,,a a a 线性无关,证明122331,,a a a a a a +++也线性无关. 证 设由线性关系112223331()()()0k k k a a a a a a +++++=则131122233()()()0k k k k k k a a a +++++=再由题设知123,,a a a 线性无关,所以13122300k k k k k k +=ìï+=íï+=î 解得1230k k k ===所以122331,,a a a a a a +++线性无关.7.已知12,,,s a a a L 的秩为r ,证明:12,,,s a a a L 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir a a a L 是12,,,s a a a L 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s a =L 都可由12,,,i i ir a a a L 线性表出就可以了.事实上,向量组12,,,,i i ir j a a a a L 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j a 可由12,,,i i ir a a a L 线性表出,再由j a 的任意性,即证.8.设12,,,s a a a L 的秩为r ,12,,,r i i i a a a L 是12,,,s a a a L 中的r 个向量,使得12,,,s a a a L 中每个向量都可被它们线性表出,证明:12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.证 由题设知12,,,r i i i a a a L 与12,,,s a a a L 等价,所以12,,,r i i i a a a L 的秩与12,,,s a a a L 的秩相等,且等于r .又因为12,,,r i i i a a a L 线性无关,故而12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量a 不能由向量组(Ⅱ)线性表出,此时将a 添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)a =-,2(0,3,1,2)a =,3(3,0,7,14)a =4(1,1,2,0)a =-,5(2,1,5,6)a =1) 证明:12,a a 线性无关.2) 把12,a a 扩充成一极大线性无关组.证 1)由于12,a a 的对应分量不成比例,因而12,a a 线性无关. 2)因为3123a a a =+,且由1122440k k k a a a ++=可解得1240k k k ===所以124,,a a a 线性无关.再令112244550k k k k a a a a +++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,a a a a 线性相关,所以5a 可由124,,a a a 线性表出.这意味着124,,a a a 就是原向量组的一个极大线性无关组.注 此题也可将1245,,,a a a a 排成54´的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)a a a a =-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)a a a a a =-===-=解 1)设12346411210234149162271013A a a a a -éùéùêúêú-êúêú==êúêú--êúêú-êúëûëû 对矩阵A 作行初等变换,可得0411192600102341023404111926004569980114223101142231A --éùéùêúêú-êúêú®®êúêú---êúêú----ëûëû 所以1234,,,a a a a 的秩为3,且234,,a a a 即为所求极大线性无关组.3) 同理可得124,,a a a 为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n a a a L 是一组维向量,已知单位向量12,,,n e e e L 可被它们线性表出,证明:12,,,n a a a L 线性无关.证 设12,,,n a a a L 的秩为r n £,而12,,,n e e e L 的秩为n . 由题设及上题结果知n r £从而r n =.故12,,,n a a a L 线性无关.14.设12,,,n a a a L 是一组n 维向量,证明:12,,,n a a a L 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n a a a L 线性无关,但是1n +个n 维向量12,,,,n a a a b L 必线性相关,于是对任意n 维向量b ,它必可由12,,,n a a a L 线性表出.充分性.任意n 维向量可由12,,,n a a a L 线性表出,特别单位向量12,,,n e e e L 可由12,,,n a a a L 线性表出,于是由上题结果,即证12,,,n a a a L 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 对任何12,,,n b b b L 都有解的充分必要条件是系数行列式0ij a ¹.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b a a a a b ===L L L则原方程组可表示为1122n n x x x b a a a =+++L由题设知,任意向量b 都可由线性12,,,n a a a L 表出,因此由上题结果可知12,,,n a a a L 线性无关.进而,下述线性关系12220n n k k k a a a +++=L仅有惟一零解,故必须有0ij A a =¹,即证.16.已知12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,证明: 与121,,,,,,r r s a a a a a +L L 等价.证 由于12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r a a a L 的极大线性无关组也必为121,,,,,,r r s a a a a a +L L 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r b a a a b a a a =+++=+++L L L 121r r b a a a -=+++L证明:12,,,r b b b L 与12,,,r a a a L 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r b b b L 可由12,,,r a a a L 线性表出.现在把这些等式统统加起来,可得12121()1r r r b b b a a a +++=+++-L L 于是121111(1)1111i i r r r r r a b b b b =+++-++----L L (1,2,,)i r =L即证12,,,r a a a L 也可由12,,,r b b b L 线性表出,从而向量组12,,,r b b b L 与12,,,r a a a L 等价.18.计算下列矩阵的秩:1)01112022200111111011-éùêú--êúêú--êú-ëû 2)11210224203061103001-éùêú--êúêú-êúëû3)141268261042191776341353015205éùêúêúêúêúëû 4)10014010250013612314324563277éùêúêúêúêúêúêúëû5)1010011000011000011001011éùêúêúêúêúêúêúëû解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b l 取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x l l l l lì++=ï++=íï++=î 2)122123123(3)(1)23(1)(3)3x x x x x x x x x l l l l l l l l +++=ìï+-+=íï++++=î3)1221231234324ax x x x bx x x bx x ++=ìï++=íï++=î解 1)因为方程组的系数行列式21111(1)(2)11D l l l l l==-+所以当1l =时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--ìï=íï=î 其中12,k k 为任意常数.当2l =-时,原方程组无解.当1l ¹且2l ¹-时,原方程组有惟一解.且12231212(1)2x x x l l l l l +ì=-ï+ïï=í+ïï+=ï=î2)因为方程组的系数行列式231211(1)333D l l l l l l l l +=-=-++所以当0l =时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1l =时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0l ¹,且1l ¹时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x l l l l l l l l l l l l l l ì+-+=ï-ïï-+ï=í-ïï--+=ï-ïî3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ¹时,即1a ¹且0b ¹时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -ì=ï-ïï=íï+-ï=ï-î当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。
用一非零的数乘某一个方程把一个方程的倍数加到另一个方程互换两个方程的位置用初等变换将线性方程组化成阶梯形方程组把最后的一些恒等式如果剩下的是一些在齐次线性方程组中,如果s<n,那么必有非零解所谓数域P上一个n维向量就是由数域P个数组成的有序数组(),称为向量(对应分量相等,则向量相等向量可相加减加法交换律,结合律k(a+b)=ka+kb(k+l)a=ka+lak(la1a=a向量a称为向量组的一个线性组合,如果有数域(维向量都是向量组的一个线性组合,因为,向量称为自反性对称性传递性如果向量组(称为线性相关任意一个包含零向量的向量组一定是线性相关的三个向量线性相关的几何意义就是他们共面向量组(s³1)称为线性相关,如果有数域使部分相关,则整体相关;整体无关,则部分无关两个成比例的向量是线性相关向量组n维单位向量组成的向量组是线性无关的向量组线性无关的充分必要条件是齐次线性方程组只有零解设与是两个向量组,推论:如果向量组可以经线可以经线性表出性表出,且向量组线性无关,那么必线性相关任意两个线性无关的等价的向量组,必含有相同的个数的向量A矩阵的初等列变换和初等行变换皆不改变该矩阵的秩,列秩和行秩矩阵设,则关的充分必要条件是|A|=0,线性无关的充分必要条件是线性方程组(件为它的系数矩阵与增广矩阵有相同的秩两个解的和还是方程组的解一个解的倍数还是方程组的解)奇次线性方程组的任一个解都能表成的线性组合)线性无关如果是线性方程组(以表成线解线解。
第三章 线性方程组的进一步理论§3.1 n 维向量空间Kn取定数域K ,令}{12(,,,)|,1,2,,n n i K a a a a K i =∈=""n )用α、β、γ、…表示中的元素,并且规定nK1212(,,,)(,,,n n a a a b b b =""当且仅当 。
1122,,,n n a b a b a b ==="在中定义两种运算:加法与数量乘法n K加法 对任意 ,规定1212(,,,),(,,,)n n n a a a b b b K ∈""12121122(,,,)(,,,)(,,,n n a a a b b b a b a b a b +=++""")n n +数量乘法 对任意 12(,,,),nn a a a K k K ∈∈",规定1212(,,,)(,,,n n k a a a ka ka ka )=""可证这两种运算满足以下性质:(1)α +β = β +α(2)(α + β)+ γ = α +(β + γ)(3)把元素 (0,0,…,0) 记为θ 或0 ,则 α + θ = α, 称θ 为零元素(4)对 α = (),令n a a a ,,,21"-α = (12,,,n a a a −−−")则 α +(-α)= θ ,称 -α 为α 的负元素(5)1α = α(6)(k l )α = k (l α)(7)(k + l )α = k α + l α(8)k (α + β)= k α + k β这里 。
,,,,nK k l αβγ∈∈K定义 由数域K 上的全部n 元有序数组构成的集合,连同其上定义的加法与数量乘法两种运算及8条运算性质称为数域K 上的n 维向量空间,称中的nK n K)元素 12(,,,n a a a α="为n 元(n 维)向量,其中i a 称为该向量的第i 个分量,称θ为零向量,称α−为α的负向量。
第三章知识要点一.摘要:简要介绍了第三章重要的知识要点,以数域上的线性空间为基础,引申到线性相关、线性无关、秩、基、同构等知识点,最后应用到解多元一次方程组的通解。
二.关键词:(数域、线性空间、线性相关、线性无关、线性组合、秩、基、同构)三.正文:数域是一个有四则运算且其运算封闭的数集。
假设K是一个数域,V是一个集合,在集合V上定义一个加法与数乘,且上述加法与数乘满足下列八个运算法则:1)加法结合律:α+β=β+α2)加法分配律:(α+β)+γ=α+(β+γ) 3 )(零元素)在V中有一元素0,对于V中任一元素α都有α+0=α4)(负元素)对于V中每一个元素α,都有V中的元素β,使得α+β=0 5)α*1=α6)k(α+β)=kα+kβ7)(k+l)α=kα+lα8)klα=lkα,则称集合V是数域K的线性空间。
以此为基础,可以寻找出集合中元素的线性关系,即线性相关性与线性无关性。
设V是数域K上的线性空间,α1α2…αn是V中n个元素,若存在k1,k2…kn是K中的n个数,且其不同时为零,则称V中的α1α2…αn线性相关;反之则V中的α1α2…αn线性无关或线性独立。
对于α1α2…αn β是V中元素,k1,k2…kn是K中的n个数,β=k1α1+k2α2+…knαn称β是α1α2…αn的线性表示。
而对于某线性空间V中有一族向量S,在S族存在一组向量{α1α2…αr}适合条件1) α1α2…αr线性无关2)这族向量中的任意一个向量都可以用α1α2…αr线性表示,则称{α1α2…αr}为极大线性无关组。
极大线性无关组所含的向量个数称为该向量族的秩,记作r(S)或rank(S),矩阵的秩在进行初等变化时不变,故可利用把矩阵转化为标准型来求矩阵的秩。
对于n个未知数,m个方程式组成的线性方程组,可根据其系数组成的矩阵和其增广矩阵的秩来判断该方程组根的个数,并利用解其奇次方程组的基础解和其非奇次方程组的特解来获得该方程组的通解。
第三章线性方程组3.1主要方法3.1.1线性相关性的判别线性关系:α1,α2,···,αs线性无关⇐⇒α1,α2,···,αs不线性相关⇐⇒不存在不全为零的数k1,k2,···,k s使成立k1α1+k2α2+···+k sαs=0⇐⇒若k1,k2,···,k s不全为零,则k1α1+k2α2+···+k sαs=0⇐⇒若k1α1+k2α2+···+k sαs=0,则k1=k2=···=k s=0.因此,判断向量组α1,α2,···,αs是否线性相关的方法:令k1α1+k2α2+···+k sαs=0,若k1,k2,···,k s有非零解,则α1,α2,···,αs线性相关;若k1,k2,···,k s只有零解,则α1,α2,···,αs无关。
3.1.2求矩阵与向量组的秩的方法求矩阵秩的方法:A初等行变换−−−−−−→B(阶梯形矩阵)则r(A)=r(B)=B的非零行的行数.求向量组的秩的方法:以α1,α2,···,αs为列做成矩阵A,A=(αT1,αT2,···,αTs)初等行变换−−−−−−→B(阶梯形矩阵)则•r(α1,α2,···,αs)=r(A)=r(B)=B的非零行的行数.•若B的非零行的第一个非零元分别位于i1,i2,···,i r,则αi1,αi2,···,αir就是α1,α2,···,αs的一个极大线性无关组。
第三章 线性空间习题精解1. 把向量β表成1234,,,αααα的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)βαααα===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)βαααα=====--解 1)设有线性关系11223344k k k k βαααα=+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=⎧⎪+--=⎪⎨-+-=⎪⎪--+=⎩ 解之,得15,4k =21,4k = 31,4k =- 414k =- 因此123451114444βαααα=+--2)同理可得13βαα=-2.证明:如果向量组12,,,r ααα 线性无关,而12,,,,r αααβ 线性相关,则向量可由12,,,r ααα 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k + 使112210r r r k k k k αααβ+++++=显然10r k +≠.事实上,若10r k +=,而12,,,r k k k 不全为零,使11220r r k k k ααα+++=成立,这与12,,,r ααα 线性无关的假设矛盾,即证10r k +≠.故11rii i r k k βα=+=-∑即向量β可由12,,,r ααα 线性表出.3.12(,,,)(1,2,,)i i i in i n αααα== ,证明:如果0ij α≠,那么12,,,n ααα 线性无关.证 设有线性关系11220n n k k k ααα+++=代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k ααααααααα+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 由于0ij α≠,故齐次线性方程组只有零解,从而12,,,n ααα 线性无关.4.设12,,,r t t t 是互不相同的数,r n ≤.证明:1(1,,,)(1,2,,)n i i i t t i r α-==是线性无关的.证 设有线性关系11220r r k k k ααα+++=则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-≠∏所以方程组有惟一的零解,这就是说12,,,r ααα 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t βββ---⎧=⎪=⎪⎨⎪⎪=⎩ 则由上面1)的证明可知12,,,r βββ 是线性无关的.而12,,,r ααα 是12,,,r βββ 延长的向量,所以12,,,r ααα 也线性无关.5.设123,,ααα线性无关,证明122331,,αααααα+++也线性无关. 证 设由线性关系112223331()()()0k k k αααααα+++++=则131122233()()()0k k k k k k ααα+++++=再由题设知123,,ααα线性无关,所以13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩ 解得1230k k k ===所以122331,,αααααα+++线性无关.6.已知12,,,s ααα 的秩为r ,证明:12,,,s ααα 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir ααα 是12,,,s ααα 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s α= 都可由12,,,i i ir ααα 线性表出就可以了.事实上,向量组12,,,,i i ir j αααα 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j α可由12,,,i i ir ααα 线性表出,再由j α的任意性,即证.7.设12,,,s ααα 的秩为r ,12,,,r i i i ααα 是12,,,s ααα 中的r 个向量,使得12,,,s ααα 中每个向量都可被它们线性表出,证明:12,,,ri i i ααα 是12,,,s ααα 的一个极大线性无关组.证 由题设知12,,,r i i i ααα 与12,,,s ααα 等价,所以12,,,r i i i ααα 的秩与12,,,s ααα 的秩相等,且等于r .又因为12,,,ri i i ααα 线性无关,故而12,,,ri i i ααα 是12,,,s ααα 的一个极大线性无关组.8.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组. 证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量α不能由向量组(Ⅱ)线性表出,此时将α添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.9.设向量组为1(1,1,2,4)α=-,2(0,3,1,2)α=,3(3,0,7,14)α=4(1,1,2,0)α=-,5(2,1,5,6)α=1) 证明:12,αα线性无关.2) 把12,αα扩充成一极大线性无关组.证 1)由于12,αα的对应分量不成比例,因而12,αα线性无关. 2)因为3123ααα=+,且由1122440k k k ααα++=可解得1240k k k ===所以124,,ααα线性无关.再令112244550k k k k αααα+++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,αααα线性相关,所以5α可由124,,ααα线性表出.这意味着124,,ααα就是原向量组的一个极大线性无关组.注 此题也可将1245,,,αααα排成54⨯的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.10.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)αααα=-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)ααααα=-===-=解 1)设12346411210234149162271013A αααα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦ 对矩阵A 作行初等变换,可得0411192600000102341023404111926004569980114223101142231A --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→→⎢⎥⎢⎥---⎢⎥⎢⎥----⎣⎦⎣⎦所以1234,,,αααα的秩为3,且234,,ααα即为所求极大线性无关组.3) 同理可得124,,ααα为所求极大线性无关组,且向量组的秩为3.11.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.12.设12,,,n ααα 是一组维向量,已知单位向量12,,,n εεε 可被它们线性表出,证明:12,,,n ααα 线性无关.证 设12,,,n ααα 的秩为r n ≤,而12,,,n εεε 的秩为n . 由题设及上题结果知n r ≤从而r n =.故12,,,n ααα 线性无关.13.设12,,,n ααα 是一组n 维向量,证明:12,,,n ααα 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n ααα 线性无关,但是1n +个n 维向量12,,,,n αααβ 必线性相关,于是对任意n 维向量β,它必可由12,,,n ααα 线性表出.充分性.任意n 维向量可由12,,,n ααα 线性表出,特别单位向量12,,,n εεε 可由12,,,n ααα 线性表出,于是由上题结果,即证12,,,n ααα 线性无关.14.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 对任何12,,,n b b b 都有解的充分必要条件是系数行列式0ij a ≠.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b ααααβ===则原方程组可表示为1122n n x x x βααα=+++由题设知,任意向量β都可由线性12,,,n ααα 表出,因此由上题结果可知12,,,n ααα 线性无关.进而,下述线性关系12220n n k k k ααα+++=仅有惟一零解,故必须有0ij A a =≠,即证.15.已知12,,,r ααα 与121,,,,,,r r s ααααα+ 有相同的秩,证明: 与121,,,,,,r r s ααααα+ 等价.证 由于12,,,r ααα 与121,,,,,,r r s ααααα+ 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r ααα 的极大线性无关组也必为121,,,,,,r r s ααααα+ 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 16.设123213,,,r r βαααβααα=+++=+++121r r βααα-=+++证明:12,,,r βββ 与12,,,r ααα 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r βββ 可由12,,,r ααα 线性表出. 现在把这些等式统统加起来,可得12121()1r r r βββααα+++=+++- 于是121111(1)1111i i r r r r r αββββ=+++-++---- (1,2,,)i r =即证12,,,r ααα 也可由12,,,r βββ 线性表出,从而向量组12,,,r βββ 与12,,,r ααα 等价.17.计算下列矩阵的秩:1)01112022200111111011-⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥-⎣⎦ 2)11210224203061103001-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥⎣⎦3)141268261042191776341353015205⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 4)10014010250013612314324563277⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5)1010011000011000011001011⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.18.讨论,,a b λ取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩ 2)122123123(3)(1)23(1)(3)3x x x x x x x x x λλλλλλλλ+++=⎧⎪+-+=⎨⎪++++=⎩3)1221231234324ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩解 1)因为方程组的系数行列式21111(1)(2)11D λλλλλ==-+所以当1λ=时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--⎧⎪=⎨⎪=⎩ 其中12,k k 为任意常数.当2λ=-时,原方程组无解.当1λ≠且2λ≠-时,原方程组有惟一解.且12231212(1)2x x x λλλλλ+⎧=-⎪+⎪⎪=⎨+⎪⎪+=⎪=⎩2)因为方程组的系数行列式231211(1)333D λλλλλλλλ+=-=-++所以当0λ=时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1λ=时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0λ≠,且1λ≠时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x λλλλλλλλλλλλλλ⎧+-+=⎪-⎪⎪-+⎪=⎨-⎪⎪--+=⎪-⎪⎩3) 因为方程组的系数行列式1111(1)121a Db b a b ==-- 所以当0D ≠时,即1a ≠且0b ≠时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -⎧=⎪-⎪⎪=⎨⎪+-⎪=⎪-⎩当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。