高等代数答案-第三章
- 格式:pdf
- 大小:187.86 KB
- 文档页数:29
高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。
2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。
第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=ìï++-+=-ïï-+--=íï-++-=ïï++-+=-î 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=ìï--+-=ïí-+-+=ïï-+-+=î 1234234124234234433)31733x x x x x x x x x x x x x -+-=ìï-+=-ïí+++=ïï-++=-î 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=ïï-++=-î 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=-ïï-+-=î 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=ìï++-=ïï+++=íï++-=ïï++=î解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--éùéùêúêú----êúêúêúêú®------êúêú-----êúêúêúêú-----ëûëû102101100101003212000212002000002000000000000000011100010000--éùéùêúêú---êúêúêúêú®®--êúêúêúêúêúêú---ëûëû因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=ìï+=-ïí-=ïï-+=î 解得123451022x k x k x x k x k=+ìï=ïï=íï=ïï=--î 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--éùéùêúêú------êúêú®êúêú----êúêú---ëûëû 120321120321033451033451252982529800110011333333003325297000001--éùéùêúêú------êúêú®®êúêú--êúêúêúêú--êúêúëûëû因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----éùéùêúêú----êúêú®êúêú--êúêú----ëûëû1012210008011130100300201200201200482400080---éùéùêúêú--êúêú®®êúêúêúêú--ëûëû因为(()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-ìï=ïí=ïï=î 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--éùéùêúêú----êúêú®êúêú--êúêú--ëûëû 17891789017192001719200171920000003438400000--éùéùêúêú----êúêú®®êúêú-êúêú--ëûëû即原方程组德同解方程组为123423478901719200x x x x x x x +-+=ìí-+-=î由此可解得1122123142313171719201717x k k x k k x k x k ì=-ïïï=-íï=ïï=î 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--éùéùêúêú---êúêú®êúêú---êúêú---ëûëû 21111211117001470014100002100002100300001--éùéùêúêú--êúêú®®êúêúêúêú---ëûëû 因为()4()3rank A rank A =¹=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202éùéùêúêú-êúêúêúêú®êúêú-êúêúêúêúëûëû2020000000552020570211611010015555101001010000000-éùéùêúêúêúêúêúêú®®-----êúêúêúêú--êúêúêúêúëûëû即原方程组的同解方程组为23341357261550x x x x x x +=ìïï-+=-íï-+=ïî 解之得123427551655x k x k x k x k =ìïï=-ïí=ïï=-+ïî其中k 是任意常数.2.把向量b 表成1234,,,a a a a 的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)b a a a a ===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)b a a a a =====--解 1)设有线性关系11223344k k k k b a a a a =+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=ìï+--=ïí-+-=ïï--+=î 解之,得15,4k = 21,4k = 31,4k =- 414k =-因此123451114444b a a a a =+--2)同理可得13b a a =-3.证明:如果向量组12,,,r a a a L 线性无关,而12,,,,r a a a b L 线性相关,则向量可由12,,,r a a a L 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k +L 使112210r r r k k k k a a a b +++++=L显然10r k +¹.事实上,若10r k +=,而12,,,r k k k L 不全为零,使11220r r k k k a a a +++=L成立,这与12,,,r a a a L 线性无关的假设矛盾,即证10r k +¹.故11rii i r k k b a =+=-å即向量b 可由12,,,r a a a L 线性表出.4.12(,,,)(1,2,,)i i i in i n a a a a ==L L ,证明:如果0ij a ¹,那么12,,,n a a a L 线性无关.证 设有线性关系11220n n k k k a a a +++=L代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k a a a a a a a a a +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L L 由于0ij a ¹,故齐次线性方程组只有零解,从而12,,,n a a a L 线性无关.5.设12,,,r t t t L 是互不相同的数,r n £.证明:1(1,,,)(1,2,,)n i i i t t i r a -==L L是线性无关的.证 设有线性关系11220r r k k k a a a +++=L则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-¹ÕL LL M M O M L所以方程组有惟一的零解,这就是说12,,,r a a a L 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t b b b ---ì=ï=ïíïï=îL L L L L L L L L L L 则由上面1)的证明可知12,,,r b b b L 是线性无关的.而12,,,r a a a L 是12,,,r b b b L 延长的向量,所以12,,,r a a a L 也线性无关.6.设123,,a a a 线性无关,证明122331,,a a a a a a +++也线性无关. 证 设由线性关系112223331()()()0k k k a a a a a a +++++=则131122233()()()0k k k k k k a a a +++++=再由题设知123,,a a a 线性无关,所以13122300k k k k k k +=ìï+=íï+=î 解得1230k k k ===所以122331,,a a a a a a +++线性无关.7.已知12,,,s a a a L 的秩为r ,证明:12,,,s a a a L 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir a a a L 是12,,,s a a a L 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s a =L 都可由12,,,i i ir a a a L 线性表出就可以了.事实上,向量组12,,,,i i ir j a a a a L 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j a 可由12,,,i i ir a a a L 线性表出,再由j a 的任意性,即证.8.设12,,,s a a a L 的秩为r ,12,,,r i i i a a a L 是12,,,s a a a L 中的r 个向量,使得12,,,s a a a L 中每个向量都可被它们线性表出,证明:12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.证 由题设知12,,,r i i i a a a L 与12,,,s a a a L 等价,所以12,,,r i i i a a a L 的秩与12,,,s a a a L 的秩相等,且等于r .又因为12,,,r i i i a a a L 线性无关,故而12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量a 不能由向量组(Ⅱ)线性表出,此时将a 添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)a =-,2(0,3,1,2)a =,3(3,0,7,14)a =4(1,1,2,0)a =-,5(2,1,5,6)a =1) 证明:12,a a 线性无关.2) 把12,a a 扩充成一极大线性无关组.证 1)由于12,a a 的对应分量不成比例,因而12,a a 线性无关. 2)因为3123a a a =+,且由1122440k k k a a a ++=可解得1240k k k ===所以124,,a a a 线性无关.再令112244550k k k k a a a a +++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,a a a a 线性相关,所以5a 可由124,,a a a 线性表出.这意味着124,,a a a 就是原向量组的一个极大线性无关组.注 此题也可将1245,,,a a a a 排成54´的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)a a a a =-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)a a a a a =-===-=解 1)设12346411210234149162271013A a a a a -éùéùêúêú-êúêú==êúêú--êúêú-êúëûëû 对矩阵A 作行初等变换,可得0411192600102341023404111926004569980114223101142231A --éùéùêúêú-êúêú®®êúêú---êúêú----ëûëû 所以1234,,,a a a a 的秩为3,且234,,a a a 即为所求极大线性无关组.3) 同理可得124,,a a a 为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n a a a L 是一组维向量,已知单位向量12,,,n e e e L 可被它们线性表出,证明:12,,,n a a a L 线性无关.证 设12,,,n a a a L 的秩为r n £,而12,,,n e e e L 的秩为n . 由题设及上题结果知n r £从而r n =.故12,,,n a a a L 线性无关.14.设12,,,n a a a L 是一组n 维向量,证明:12,,,n a a a L 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n a a a L 线性无关,但是1n +个n 维向量12,,,,n a a a b L 必线性相关,于是对任意n 维向量b ,它必可由12,,,n a a a L 线性表出.充分性.任意n 维向量可由12,,,n a a a L 线性表出,特别单位向量12,,,n e e e L 可由12,,,n a a a L 线性表出,于是由上题结果,即证12,,,n a a a L 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 对任何12,,,n b b b L 都有解的充分必要条件是系数行列式0ij a ¹.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b a a a a b ===L L L则原方程组可表示为1122n n x x x b a a a =+++L由题设知,任意向量b 都可由线性12,,,n a a a L 表出,因此由上题结果可知12,,,n a a a L 线性无关.进而,下述线性关系12220n n k k k a a a +++=L仅有惟一零解,故必须有0ij A a =¹,即证.16.已知12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,证明: 与121,,,,,,r r s a a a a a +L L 等价.证 由于12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r a a a L 的极大线性无关组也必为121,,,,,,r r s a a a a a +L L 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r b a a a b a a a =+++=+++L L L 121r r b a a a -=+++L证明:12,,,r b b b L 与12,,,r a a a L 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r b b b L 可由12,,,r a a a L 线性表出.现在把这些等式统统加起来,可得12121()1r r r b b b a a a +++=+++-L L 于是121111(1)1111i i r r r r r a b b b b =+++-++----L L (1,2,,)i r =L即证12,,,r a a a L 也可由12,,,r b b b L 线性表出,从而向量组12,,,r b b b L 与12,,,r a a a L 等价.18.计算下列矩阵的秩:1)01112022200111111011-éùêú--êúêú--êú-ëû 2)11210224203061103001-éùêú--êúêú-êúëû3)141268261042191776341353015205éùêúêúêúêúëû 4)10014010250013612314324563277éùêúêúêúêúêúêúëû5)1010011000011000011001011éùêúêúêúêúêúêúëû解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b l 取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x l l l l lì++=ï++=íï++=î 2)122123123(3)(1)23(1)(3)3x x x x x x x x x l l l l l l l l +++=ìï+-+=íï++++=î3)1221231234324ax x x x bx x x bx x ++=ìï++=íï++=î解 1)因为方程组的系数行列式21111(1)(2)11D l l l l l==-+所以当1l =时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--ìï=íï=î 其中12,k k 为任意常数.当2l =-时,原方程组无解.当1l ¹且2l ¹-时,原方程组有惟一解.且12231212(1)2x x x l l l l l +ì=-ï+ïï=í+ïï+=ï=î2)因为方程组的系数行列式231211(1)333D l l l l l l l l +=-=-++所以当0l =时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1l =时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0l ¹,且1l ¹时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x l l l l l l l l l l l l l l ì+-+=ï-ïï-+ï=í-ïï--+=ï-ïî3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ¹时,即1a ¹且0b ¹时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -ì=ï-ïï=íï+-ï=ï-î当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。
高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++ (3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x --6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+-- 7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩ 8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
《高等代数课后答案》(邱著)高等代数之后的答案(秋微写的)《高等代数》的内容由浅入深,循序渐进,符合当前两位学生的教学实践。
可作为高校数学与应用数学、信息与计算科学专业的教材,也可作为相关专业的教师、学生和自学者的参考。
以下是阳光网编著的《高等代数》答案(邱著)阅读地址。
希望你喜欢!点击进入:高等代数课后答案地址(邱执笔)高等代数(秋微著)目录前言(一)第一章决定因素(1)1.1一些预备知识(1)1.2二阶和三阶行列式(3)1.3n n阶行列式(7)1.4行列式的计算(18)1.5克莱姆法则(28)1.6行列式的一些应用(31)练习1(A)(35)练习1(B)(38)第二章矩阵(41)2.1矩阵的概念(41)2.2矩阵运算(44)2.3初等变换和初等矩阵(54)2.4可逆矩阵(67)2.5矩阵的秩(76)2.6分块矩阵及其应用(79)练习2(A)(90)练习2(B)(93)第三章线性空间(95)3.1矢量(96)3.2向量的线性相关性(98)3.3向量组的秩(103)3.4矩阵的行秩和列秩(106)3.5线性空间(111)3.6基础、尺寸和坐标(114)3.7基变换和转移矩阵(118)3.8子空间(122)3.9同构(131)3.10线性方程(135)练习3(A)(147)练习3(B)(150)第四章线性变换(152)4.1线性变换及其运算(152)4.2线性变换矩阵(156)4.3线性变换的范围和核心(165)4.4不变子空间(169)练习4(A)(173)练习4(B)(175)第五章多项式(176)5.1一元多项式(176)5.2多项式可整除(178)5.3倍大公因数(181)5.4因式分解定理(186)5.5重因子(189)5.6多项式函数(191)5.7复系数和实系数多项式的因式分解(195) 5.8有理系数多项式(198)5.9多元多项式(202)5.10对称多项式(206)练习5(A)(211)练习5(B)(213)第六章特征值(216)6.1特征值和特征向量(216)6.2特征多项式(221)6.3对角化(225)练习6(A)(231)练习6(B)(232)第七章-矩阵(234)7.1-矩阵及其初等变换(234)7.2-矩阵的标准型(238)7.3不变因子(242)7.4矩阵相似性的确定(245)7.5基本因素(247)7.6乔丹范式(251)7.7x小多项式(256)练习7(A)(259)第八章二次型(261)8.1二次型及其矩阵表示(261)8.2将二次型转化为标准型(264)8.3惯性定理(271)8.4正定二次型(274)练习8(A)(279)练习8(B)(280)第九章欧几里得空间(282)9.1欧氏空间的定义和基本性质(282) 9.2标准正交基(285)9.3正交子空间(291)9.4正交变换和对称变换(293)9.5实对称方阵的正交相似性(297)练习9(A)(303)练习9(B)(306)练习答案(308)参考文献312。
第三章线性方程组3.1主要方法3.1.1线性相关性的判别线性关系:α1,α2,···,αs线性无关⇐⇒α1,α2,···,αs不线性相关⇐⇒不存在不全为零的数k1,k2,···,k s使成立k1α1+k2α2+···+k sαs=0⇐⇒若k1,k2,···,k s不全为零,则k1α1+k2α2+···+k sαs=0⇐⇒若k1α1+k2α2+···+k sαs=0,则k1=k2=···=k s=0.因此,判断向量组α1,α2,···,αs是否线性相关的方法:令k1α1+k2α2+···+k sαs=0,若k1,k2,···,k s有非零解,则α1,α2,···,αs线性相关;若k1,k2,···,k s只有零解,则α1,α2,···,αs无关。
3.1.2求矩阵与向量组的秩的方法求矩阵秩的方法:A初等行变换−−−−−−→B(阶梯形矩阵)则r(A)=r(B)=B的非零行的行数.求向量组的秩的方法:以α1,α2,···,αs为列做成矩阵A,A=(αT1,αT2,···,αTs)初等行变换−−−−−−→B(阶梯形矩阵)则•r(α1,α2,···,αs)=r(A)=r(B)=B的非零行的行数.•若B的非零行的第一个非零元分别位于i1,i2,···,i r,则αi1,αi2,···,αir就是α1,α2,···,αs的一个极大线性无关组。
第三章 线性方程组习题解答1.用消元法解下列方程组:⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-++=-++-=--+--=+-++=-++12343212231453543215432154321543214321x x x x x x x x x x x x x x x x x x x x x x x x ⑵⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+-=-+--=+-+2521669972543223312325432154321543215421x x x x x x x x x x x x x x x x x x x⑶⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x ⑷⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x ⑸⎪⎪⎩⎪⎪⎨⎧=-+--=+-+=-+-=+++43212523223124321432143214321x x x x x x x x x x x x x x x x ⑹⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-++=+++=-++=-++225512221321231323214321432143214321x x x x x x x x x x x x x x x x x x x 解:⑴对它的增广矩阵作初等行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------00101000000000020*********1001001110000000000200212300101201001110007770005750212300104531213410215470213450212300104531111121311141311121112231104531即⎪⎪⎩⎪⎪⎨⎧=+-=--=+=-0022214235441x x x x x x x ,得⎪⎪⎩⎪⎪⎨⎧--====+=k x x k x x k x 220153421 k 为任意常数 ⑵无解⑶0,6,3,84321===-=x x x x⑷任意43432431,,17201719,1713173x x x x x x x x -=-=⑸无解 ⑹651,671,651434241x x x x x x +=-=+=2.把向量β表成4321αααα,,,的线性组合:⑴()()()()()1,1-1-11-1,1-11-1-,1,11,1,1,111,2,14321,,,,,,,,,,=====ααααβ ⑵()()()()()1-1-1,00,0,1,11,3,1,21,0,1,11,0,0,04321,,,,,,=====ααααβ 解:⑴令44332211ααααβk k k k +++=得方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++,1,1,2,14321432143214321k k k k k k k k k k k k k k k k 解得,41,41,41,454321-=-===k k k k 所以432141414145ααααβ--+=⑵仿上,可得31-ααβ=3.证明:如果向量组r ααα,,, 21线性无关,而βααα,21r ,,, 线性相关,则向量β可由r ααα,,, 21线性表出。
第三章习题3-11. 设s =12gt 2,求2d d t s t=.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==-- 21lim (2)22t g t g →=+= 2. 设f (x )=1x,求f '(x 0) (x 0≠0). 解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠ 3.试求过点(3,8)且与曲线2y x =相切的直线方程。
解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x xx -=-。
由已知直线过点(3,8),得 00082(3)y x x -=- (1)又点00(,)x y 在曲线2y x =上,故200y x = (2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。
也即440x y --=或8160x y --=。
4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1) 0limx ∆→00()()f x x f x x-∆-∆=A ;(2) f (x 0)=0, 0limx x →0()f x x x-=A ; (3) 0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x x x→-→--+--'=-=--0()A f x '∴=- (2)00000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=---0()A f x '∴=-(3)000()()limh f x h f x h h→+--00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h→-→+-+--=+-000()()2()f x f x f x '''=+= 02()A f x '∴=5. 求下列函数的导数: (1) y (2) y ;(3) y 322x .解:(1)12y x x ==11221()2y x x -''∴=== (2)23y x -=225133322()33y x x x ----''∴==-=-=(3)2152362y xx xx -==15661()6y x x-''∴===6. 讨论函数y x =0点处的连续性和可导性. 解:30lim 0(0)x x f →==000()(0)0lim lim 0x x x f x f x x →→→-===∞-∴函数y =0x =点处连续但不可导。
第三章 线性空间习题精解1. 把向量β表成1234,,,αααα的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)βαααα===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)βαααα=====--解 1)设有线性关系11223344k k k k βαααα=+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=⎧⎪+--=⎪⎨-+-=⎪⎪--+=⎩ 解之,得15,4k =21,4k = 31,4k =- 414k =- 因此123451114444βαααα=+--2)同理可得13βαα=-2.证明:如果向量组12,,,r ααα 线性无关,而12,,,,r αααβ 线性相关,则向量可由12,,,r ααα 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k + 使112210r r r k k k k αααβ+++++=显然10r k +≠.事实上,若10r k +=,而12,,,r k k k 不全为零,使11220r r k k k ααα+++=成立,这与12,,,r ααα 线性无关的假设矛盾,即证10r k +≠.故11rii i r k k βα=+=-∑即向量β可由12,,,r ααα 线性表出.3.12(,,,)(1,2,,)i i i in i n αααα== ,证明:如果0ij α≠,那么12,,,n ααα 线性无关.证 设有线性关系11220n n k k k ααα+++=代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k ααααααααα+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 由于0ij α≠,故齐次线性方程组只有零解,从而12,,,n ααα 线性无关.4.设12,,,r t t t 是互不相同的数,r n ≤.证明:1(1,,,)(1,2,,)n i i i t t i r α-==是线性无关的.证 设有线性关系11220r r k k k ααα+++=则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-≠∏所以方程组有惟一的零解,这就是说12,,,r ααα 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t βββ---⎧=⎪=⎪⎨⎪⎪=⎩ 则由上面1)的证明可知12,,,r βββ 是线性无关的.而12,,,r ααα 是12,,,r βββ 延长的向量,所以12,,,r ααα 也线性无关.5.设123,,ααα线性无关,证明122331,,αααααα+++也线性无关. 证 设由线性关系112223331()()()0k k k αααααα+++++=则131122233()()()0k k k k k k ααα+++++=再由题设知123,,ααα线性无关,所以13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩ 解得1230k k k ===所以122331,,αααααα+++线性无关.6.已知12,,,s ααα 的秩为r ,证明:12,,,s ααα 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir ααα 是12,,,s ααα 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s α= 都可由12,,,i i ir ααα 线性表出就可以了.事实上,向量组12,,,,i i ir j αααα 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j α可由12,,,i i ir ααα 线性表出,再由j α的任意性,即证.7.设12,,,s ααα 的秩为r ,12,,,r i i i ααα 是12,,,s ααα 中的r 个向量,使得12,,,s ααα 中每个向量都可被它们线性表出,证明:12,,,ri i i ααα 是12,,,s ααα 的一个极大线性无关组.证 由题设知12,,,r i i i ααα 与12,,,s ααα 等价,所以12,,,r i i i ααα 的秩与12,,,s ααα 的秩相等,且等于r .又因为12,,,ri i i ααα 线性无关,故而12,,,ri i i ααα 是12,,,s ααα 的一个极大线性无关组.8.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组. 证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量α不能由向量组(Ⅱ)线性表出,此时将α添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.9.设向量组为1(1,1,2,4)α=-,2(0,3,1,2)α=,3(3,0,7,14)α=4(1,1,2,0)α=-,5(2,1,5,6)α=1) 证明:12,αα线性无关.2) 把12,αα扩充成一极大线性无关组.证 1)由于12,αα的对应分量不成比例,因而12,αα线性无关. 2)因为3123ααα=+,且由1122440k k k ααα++=可解得1240k k k ===所以124,,ααα线性无关.再令112244550k k k k αααα+++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,αααα线性相关,所以5α可由124,,ααα线性表出.这意味着124,,ααα就是原向量组的一个极大线性无关组.注 此题也可将1245,,,αααα排成54⨯的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.10.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)αααα=-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)ααααα=-===-=解 1)设12346411210234149162271013A αααα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦ 对矩阵A 作行初等变换,可得0411192600000102341023404111926004569980114223101142231A --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→→⎢⎥⎢⎥---⎢⎥⎢⎥----⎣⎦⎣⎦所以1234,,,αααα的秩为3,且234,,ααα即为所求极大线性无关组.3) 同理可得124,,ααα为所求极大线性无关组,且向量组的秩为3.11.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.12.设12,,,n ααα 是一组维向量,已知单位向量12,,,n εεε 可被它们线性表出,证明:12,,,n ααα 线性无关.证 设12,,,n ααα 的秩为r n ≤,而12,,,n εεε 的秩为n . 由题设及上题结果知n r ≤从而r n =.故12,,,n ααα 线性无关.13.设12,,,n ααα 是一组n 维向量,证明:12,,,n ααα 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n ααα 线性无关,但是1n +个n 维向量12,,,,n αααβ 必线性相关,于是对任意n 维向量β,它必可由12,,,n ααα 线性表出.充分性.任意n 维向量可由12,,,n ααα 线性表出,特别单位向量12,,,n εεε 可由12,,,n ααα 线性表出,于是由上题结果,即证12,,,n ααα 线性无关.14.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 对任何12,,,n b b b 都有解的充分必要条件是系数行列式0ij a ≠.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b ααααβ===则原方程组可表示为1122n n x x x βααα=+++由题设知,任意向量β都可由线性12,,,n ααα 表出,因此由上题结果可知12,,,n ααα 线性无关.进而,下述线性关系12220n n k k k ααα+++=仅有惟一零解,故必须有0ij A a =≠,即证.15.已知12,,,r ααα 与121,,,,,,r r s ααααα+ 有相同的秩,证明: 与121,,,,,,r r s ααααα+ 等价.证 由于12,,,r ααα 与121,,,,,,r r s ααααα+ 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r ααα 的极大线性无关组也必为121,,,,,,r r s ααααα+ 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 16.设123213,,,r r βαααβααα=+++=+++121r r βααα-=+++证明:12,,,r βββ 与12,,,r ααα 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r βββ 可由12,,,r ααα 线性表出. 现在把这些等式统统加起来,可得12121()1r r r βββααα+++=+++- 于是121111(1)1111i i r r r r r αββββ=+++-++---- (1,2,,)i r =即证12,,,r ααα 也可由12,,,r βββ 线性表出,从而向量组12,,,r βββ 与12,,,r ααα 等价.17.计算下列矩阵的秩:1)01112022200111111011-⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥-⎣⎦ 2)11210224203061103001-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥⎣⎦3)141268261042191776341353015205⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 4)10014010250013612314324563277⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5)1010011000011000011001011⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.18.讨论,,a b λ取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩ 2)122123123(3)(1)23(1)(3)3x x x x x x x x x λλλλλλλλ+++=⎧⎪+-+=⎨⎪++++=⎩3)1221231234324ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩解 1)因为方程组的系数行列式21111(1)(2)11D λλλλλ==-+所以当1λ=时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--⎧⎪=⎨⎪=⎩ 其中12,k k 为任意常数.当2λ=-时,原方程组无解.当1λ≠且2λ≠-时,原方程组有惟一解.且12231212(1)2x x x λλλλλ+⎧=-⎪+⎪⎪=⎨+⎪⎪+=⎪=⎩2)因为方程组的系数行列式231211(1)333D λλλλλλλλ+=-=-++所以当0λ=时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1λ=时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0λ≠,且1λ≠时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x λλλλλλλλλλλλλλ⎧+-+=⎪-⎪⎪-+⎪=⎨-⎪⎪--+=⎪-⎪⎩3) 因为方程组的系数行列式1111(1)121a Db b a b ==-- 所以当0D ≠时,即1a ≠且0b ≠时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -⎧=⎪-⎪⎪=⎨⎪+-⎪=⎪-⎩当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。
第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=ìï++-+=-ïï-+--=íï-++-=ïï++-+=-î 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=ìï--+-=ïí-+-+=ïï-+-+=î 1234234124234234433)31733x x x x x x x x x x x x x -+-=ìï-+=-ïí+++=ïï-++=-î 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=ïï-++=-î 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=-ïï-+-=î 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=ìï++-=ïï+++=íï++-=ïï++=î解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--éùéùêúêú----êúêúêúêú®------êúêú-----êúêúêúêú-----ëûëû102101100101003212000212002000002000000000000000011100010000--éùéùêúêú---êúêúêúêú®®--êúêúêúêúêúêú---ëûëû因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=ìï+=-ïí-=ïï-+=î 解得123451022x k x k x x k x k=+ìï=ïï=íï=ïï=--î 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--éùéùêúêú------êúêú®êúêú----êúêú---ëûëû 120321120321033451033451252982529800110011333333003325297000001--éùéùêúêú------êúêú®®êúêú--êúêúêúêú--êúêúëûëû因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----éùéùêúêú----êúêú®êúêú--êúêú----ëûëû1012210008011130100300201200201200482400080---éùéùêúêú--êúêú®®êúêúêúêú--ëûëû因为(()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-ìï=ïí=ïï=î 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--éùéùêúêú----êúêú®êúêú--êúêú--ëûëû 17891789017192001719200171920000003438400000--éùéùêúêú----êúêú®®êúêú-êúêú--ëûëû即原方程组德同解方程组为123423478901719200x x x x x x x +-+=ìí-+-=î由此可解得1122123142313171719201717x k k x k k x k x k ì=-ïïï=-íï=ïï=î 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--éùéùêúêú---êúêú®êúêú---êúêú---ëûëû 21111211117001470014100002100002100300001--éùéùêúêú--êúêú®®êúêúêúêú---ëûëû 因为()4()3rank A rank A =¹=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202éùéùêúêú-êúêúêúêú®êúêú-êúêúêúêúëûëû2020000000552020570211611010015555101001010000000-éùéùêúêúêúêúêúêú®®-----êúêúêúêú--êúêúêúêúëûëû即原方程组的同解方程组为23341357261550x x x x x x +=ìïï-+=-íï-+=ïî 解之得123427551655x k x k x k x k =ìïï=-ïí=ïï=-+ïî其中k 是任意常数.2.把向量b 表成1234,,,a a a a 的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)b a a a a ===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)b a a a a =====--解 1)设有线性关系11223344k k k k b a a a a =+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=ìï+--=ïí-+-=ïï--+=î 解之,得15,4k = 21,4k = 31,4k =- 414k =-因此123451114444b a a a a =+--2)同理可得13b a a =-3.证明:如果向量组12,,,r a a a L 线性无关,而12,,,,r a a a b L 线性相关,则向量可由12,,,r a a a L 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k +L 使112210r r r k k k k a a a b +++++=L显然10r k +¹.事实上,若10r k +=,而12,,,r k k k L 不全为零,使11220r r k k k a a a +++=L成立,这与12,,,r a a a L 线性无关的假设矛盾,即证10r k +¹.故11rii i r k k b a =+=-å即向量b 可由12,,,r a a a L 线性表出.4.12(,,,)(1,2,,)i i i in i n a a a a ==L L ,证明:如果0ij a ¹,那么12,,,n a a a L 线性无关.证 设有线性关系11220n n k k k a a a +++=L代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k a a a a a a a a a +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L L 由于0ij a ¹,故齐次线性方程组只有零解,从而12,,,n a a a L 线性无关.5.设12,,,r t t t L 是互不相同的数,r n £.证明:1(1,,,)(1,2,,)n i i i t t i r a -==L L是线性无关的.证 设有线性关系11220r r k k k a a a +++=L则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-¹ÕL LL M M O M L所以方程组有惟一的零解,这就是说12,,,r a a a L 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t b b b ---ì=ï=ïíïï=îL L L L L L L L L L L 则由上面1)的证明可知12,,,r b b b L 是线性无关的.而12,,,r a a a L 是12,,,r b b b L 延长的向量,所以12,,,r a a a L 也线性无关.6.设123,,a a a 线性无关,证明122331,,a a a a a a +++也线性无关. 证 设由线性关系112223331()()()0k k k a a a a a a +++++=则131122233()()()0k k k k k k a a a +++++=再由题设知123,,a a a 线性无关,所以13122300k k k k k k +=ìï+=íï+=î 解得1230k k k ===所以122331,,a a a a a a +++线性无关.7.已知12,,,s a a a L 的秩为r ,证明:12,,,s a a a L 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir a a a L 是12,,,s a a a L 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s a =L 都可由12,,,i i ir a a a L 线性表出就可以了.事实上,向量组12,,,,i i ir j a a a a L 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j a 可由12,,,i i ir a a a L 线性表出,再由j a 的任意性,即证.8.设12,,,s a a a L 的秩为r ,12,,,r i i i a a a L 是12,,,s a a a L 中的r 个向量,使得12,,,s a a a L 中每个向量都可被它们线性表出,证明:12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.证 由题设知12,,,r i i i a a a L 与12,,,s a a a L 等价,所以12,,,r i i i a a a L 的秩与12,,,s a a a L 的秩相等,且等于r .又因为12,,,r i i i a a a L 线性无关,故而12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量a 不能由向量组(Ⅱ)线性表出,此时将a 添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)a =-,2(0,3,1,2)a =,3(3,0,7,14)a =4(1,1,2,0)a =-,5(2,1,5,6)a =1) 证明:12,a a 线性无关.2) 把12,a a 扩充成一极大线性无关组.证 1)由于12,a a 的对应分量不成比例,因而12,a a 线性无关. 2)因为3123a a a =+,且由1122440k k k a a a ++=可解得1240k k k ===所以124,,a a a 线性无关.再令112244550k k k k a a a a +++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,a a a a 线性相关,所以5a 可由124,,a a a 线性表出.这意味着124,,a a a 就是原向量组的一个极大线性无关组.注 此题也可将1245,,,a a a a 排成54´的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)a a a a =-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)a a a a a =-===-=解 1)设12346411210234149162271013A a a a a -éùéùêúêú-êúêú==êúêú--êúêú-êúëûëû 对矩阵A 作行初等变换,可得0411192600102341023404111926004569980114223101142231A --éùéùêúêú-êúêú®®êúêú---êúêú----ëûëû 所以1234,,,a a a a 的秩为3,且234,,a a a 即为所求极大线性无关组.3) 同理可得124,,a a a 为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n a a a L 是一组维向量,已知单位向量12,,,n e e e L 可被它们线性表出,证明:12,,,n a a a L 线性无关.证 设12,,,n a a a L 的秩为r n £,而12,,,n e e e L 的秩为n . 由题设及上题结果知n r £从而r n =.故12,,,n a a a L 线性无关.14.设12,,,n a a a L 是一组n 维向量,证明:12,,,n a a a L 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n a a a L 线性无关,但是1n +个n 维向量12,,,,n a a a b L 必线性相关,于是对任意n 维向量b ,它必可由12,,,n a a a L 线性表出.充分性.任意n 维向量可由12,,,n a a a L 线性表出,特别单位向量12,,,n e e e L 可由12,,,n a a a L 线性表出,于是由上题结果,即证12,,,n a a a L 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 对任何12,,,n b b b L 都有解的充分必要条件是系数行列式0ij a ¹.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b a a a a b ===L L L则原方程组可表示为1122n n x x x b a a a =+++L由题设知,任意向量b 都可由线性12,,,n a a a L 表出,因此由上题结果可知12,,,n a a a L 线性无关.进而,下述线性关系12220n n k k k a a a +++=L仅有惟一零解,故必须有0ij A a =¹,即证.16.已知12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,证明: 与121,,,,,,r r s a a a a a +L L 等价.证 由于12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r a a a L 的极大线性无关组也必为121,,,,,,r r s a a a a a +L L 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r b a a a b a a a =+++=+++L L L 121r r b a a a -=+++L证明:12,,,r b b b L 与12,,,r a a a L 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r b b b L 可由12,,,r a a a L 线性表出.现在把这些等式统统加起来,可得12121()1r r r b b b a a a +++=+++-L L 于是121111(1)1111i i r r r r r a b b b b =+++-++----L L (1,2,,)i r =L即证12,,,r a a a L 也可由12,,,r b b b L 线性表出,从而向量组12,,,r b b b L 与12,,,r a a a L 等价.18.计算下列矩阵的秩:1)01112022200111111011-éùêú--êúêú--êú-ëû 2)11210224203061103001-éùêú--êúêú-êúëû3)141268261042191776341353015205éùêúêúêúêúëû 4)10014010250013612314324563277éùêúêúêúêúêúêúëû5)1010011000011000011001011éùêúêúêúêúêúêúëû解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b l 取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x l l l l lì++=ï++=íï++=î 2)122123123(3)(1)23(1)(3)3x x x x x x x x x l l l l l l l l +++=ìï+-+=íï++++=î3)1221231234324ax x x x bx x x bx x ++=ìï++=íï++=î解 1)因为方程组的系数行列式21111(1)(2)11D l l l l l==-+所以当1l =时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--ìï=íï=î 其中12,k k 为任意常数.当2l =-时,原方程组无解.当1l ¹且2l ¹-时,原方程组有惟一解.且12231212(1)2x x x l l l l l +ì=-ï+ïï=í+ïï+=ï=î2)因为方程组的系数行列式231211(1)333D l l l l l l l l +=-=-++所以当0l =时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1l =时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0l ¹,且1l ¹时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x l l l l l l l l l l l l l l ì+-+=ï-ïï-+ï=í-ïï--+=ï-ïî3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ¹时,即1a ¹且0b ¹时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -ì=ï-ïï=íï+-ï=ï-î当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。