牛二定律应用——连接体专题
- 格式:pdf
- 大小:299.05 KB
- 文档页数:8
专题: 牛顿第二定律的应用――― 连接体【知识讲解】一、连接体与隔离体(系统与质点)两个或两个以上物体,靠绳或接触面或电磁作用相互联系组成的物体系统,称为连接体(系统,多质点)。
如果把其中某个物体隔离出来,该物体即为隔离体(单质点)。
二、外力和内力如果以物体系为研究对象,受到系统之外的物体施加的作用力,这些力是系统受到的外 力,而系统内各物体间的相互作用力为内力。
应用牛顿第二定律列方程求合力时不考虑内力。
如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。
三、连接体问题的分析方法1.整体法:整体法是物理中常用的一种思维方法。
它是将几个物体看作一个整体来作为研究对象即系统,这样就暂时回避了这些物体间的相互作用的内力,只考虑整体受到的外力,整体法列出的方程数目较少,解题变的简明快捷。
(1)连接体中的各物体如果加速度相同,求解时可以把连接体作为一个整体。
运用F 合=(m 1+m 2+m 3…..)a 列方程求解;题目只涉及内外力关系不需要求加速度时,也可以用牛顿定律在加速度相同情况下的推论:总合合合m m m 2211F F F ==(动力分配原理,即系统内各部分的合力与其质量成正比)。
(2)连接体中的各物体如果加速度不同,若系统内有几个物体,这几个物体的质量分别为m 1,m 2,m 3………m n ,,加速度分别为a 1,a 2,a 3......a n ,这个系统受到的合外力为F 合外,则对这个系统应用牛顿第二定律的表达式为1122n nF m a m a m a =++⋅⋅⋅+合外其正交分解表示式为11221122x x n nxy y n nyy F m a m a m a F m a m a m a=++⋅⋅⋅+=++⋅⋅⋅+x 外外(3)当系统内各个物体加速度均为零时,有的静止有的匀速运动,整个系统处于平衡状态,此时可用F 合外=0进行求解。
或者:0F 0F y x ==外外,联立求解。
牛顿运动定律的应用-牛顿运动定律的应用之连接体问题一、连接体概述两个或两个以上物体相互连接参与运动的系统称为连接体。
如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起。
如下图所示:还有各种不同形式的连接体的模型图,不一一描述。
只以常见的模型为例。
连接体一般具有相同的运动情况(速度、加速度)。
二、连接体的分类根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
1. 接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
2. 绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;3. 弹簧连接:两个物体通过弹簧的作用连接在一起;三、连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。
轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
四、处理连接体问题的基本方法1. 内力和外力(1)系统:相互作用的物体称为系统。
系统由两个或两个以上的物体组成。
(2)系统内部物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力叫外力。
2. 整体法(1)含义:所谓整体法就是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析研究的方法。
(2)理解:牛顿第二定律F=ma,F是指研究对象所受的合外力,将连接体作为整体看待,简化了受力情况,因为连接体间的相互作用力是内力.如图所示,用水平力F拉A使A、B保持相对静止沿粗糙水平面加速滑动时,若求它们的加速度,便可把它们看做一个整体,这样它们之间相互作用的静摩擦力便不需考虑。
题目不涉及连接体的内力问题时,应优先选用整体法(3)运用整体法解题的基本步骤:①明确研究的系统或运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.3. 隔离法(1)含义:所谓隔离法就是将所研究的对象--包括物体、状态和某些过程,从系统或全过程中隔离出来进行研究的方法。
牛顿运动定律的应用——连接体问题一、连接体概述相互连接并且有共同的加速度的两个或多个物体组成的系统可以看作连接体。
如下图所示:还有各种不同形式的连接体的模型图,不一一描述。
只以常见的模型为例。
二、问题分类1.已知外力求内力(先整体后隔离)如果已知连接体在合外力的作用下一起运动,可以先把连接体系统作为一个整体,根据牛顿第二定律求出他们共同的加速度;再隔离其中的一个物体,求相互作用力。
2.已知内力求外力(先隔离后整体)如果已知连接体物体间的相互作用力,可以先隔离其中一个物体,根据牛顿第二定律求出他们共同的加速度;再把连接体系统看成一个整体,求解外力的大小。
2、木块A 和B 置于光滑的水平面上它们的质量分别为m m A B 和。
如图所示当水平力F 作用于左端A 上,两物体一起加速运动时,AB 间的作用力大小为N 1。
当同样大小的力F 水平作用于右端B 上,两物体一起加速运动时,AB 间作用力大小为N 2,则(ACD )A .两次物体运动的加速度大小相等;B .N N F 12+<;C .N N F 12+=;D .N N m m B A 12::= 18、如图所示,光滑水平桌面上,有甲、乙两个用细线相连的物体在水平拉力F 1和F 2的作用下运动,已知F 1<F 2,则以下说法中正确的有( ABD )A .若撤去F 1,则甲的加速度一定变大B .若撤去F 1,则细线上的拉力一定变小C .若撤去F 2,则乙的加速度一定变大D .若撤去F 2,则细线上的拉力一定变小6、在粗糙水平面上放一个三角形木块a ,有一滑块b 沿木块斜面匀速下滑,则下列说 F 图1 F 图2 θ 图3 θ 图4法中正确的是(A)a 保持静止,且没有相对于水平面运动的趋势;(B)a 保持静止,但有相对水平面向右运动的趋势;(C)a 保持静止,但有相对水平面向左运动的趋势;(D)没有数据,无法通过计算判断.4、质量为M 的斜面静止在水平地面上。
牛顿第二定律的应用(连接体问题)
对于两个或多个相互连接的物体组成的物体系,若它们具有共同大小的加速度,则求出加速度往往是解决这类问题的关键。
既可以对单个物体使用隔离法运用牛顿第二定律求出加速度,也可以对整体运用牛顿第二定律求出加速度。
【例1】 光滑水平地面上有A 、B 两个滑
块,之间用细线相连,A 质量为2Kg ,B
质量为3Kg ,现用F=20N 的水平拉力拉
A ,求:
(1)A 、B 间细绳的张力。
(2)若把F 改为向左方向拉B ,A 、B 间细绳的张力又为多少?
【例2】 如图,质量为M 的光滑楔形小车在水平恒力F 的作用下向右做匀加速运动,斜面上相对静止一
质量为m 的光滑小球,倾斜角为θ,求F 的
大小
【例3】 质量为m 的重物通过细线与
质量为M 的小车连接,
求:
(1)小车加速度
(2)细线中的拉力
1
、光滑水平地面上有A 、B 两个滑块紧靠在一起,A 质量为3Kg ,B 质量为5Kg ,先用水平力F 向右
推B ,F 再改为向左推A ,求两种情况下A B 间的弹力大小之比。
2、如图,光滑水平地面上质量为M=5Kg 的小车在水平恒力F 的作用下向右匀加速运动,桅杆上用细线悬挂着质量为m=2Kg 的小球,细线与竖直方向的夹角为θ=370,求:
(1)细线拉力的大小。
(2)F 的大小
3、如图,物块A 、B 质量分别为3Kg 和2Kg ,不计摩擦,求:
(1)两物块加速度的大小
(2)绳中张力的大小。
专题辅导:牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则系统各物体运动状态不同 隔离法问题涉及物体间的内力 三、连接体题型:1、连接体整体运动状态相同:(这类问题可以采用整体法求解)【例1】如图所示,木块A 、B 质量分别为m 、M ,用一轻绳连接,在水平力F 的作用下沿光滑水平面加速运动,求A 、B 间轻绳的张力T。
【练1】如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力F a 和F b 的变化情况是( ) A.T a 增大 B.T b 增大 C.T a 变小D.T b 不变【例2】两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( ) A.F m m m 211+ B.F m m m 212+ C.FD.F m 21【练2】如图所示,五个木块并排放在水平地面上,它们的质量相同,与地面的摩擦不计。
当用力F 推第一块使它们共同加速运动时,第2块对第3块的推力为__________。
【练3】A、B两物体靠在一起,放在光滑水平面上,它们的质量分别为kgmA3=,kgmB6=,今用水平力NFA6=推A,用水平力NFB3=拉B,A、B间的作用力有多大?【例3】如图所示,质量为M的斜面A置于粗糙水平地面上,动摩擦因数为μ,物体B与斜面间无摩擦。
在水平向左的推力F作用下,A与B一起做匀加速直线运动,两者无相对滑动。
已知斜面的倾角为θ,物体B的质量为m,则它们的加速度a及推力F的大小为()A.)sin()(,sinθμθ++==gmMFga B. θθcos)(,cos gmMFga+==C.)tan()(,tanθμθ++==gmMFga D. gmMFga)(,cot+==μθ【练4】如图所示,质量为2m的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为1m的物体,与物体1相连接的绳与竖直方向成θ角,则()A. 车厢的加速度为θsing B. 绳对物体1的拉力为θcos1gmC. 底板对物体2的支持力为gmm)(12- D. 物体2所受底板的摩擦力为θtan2gm【练5】如图所示,物体M、m紧靠着置于摩擦系数为μ的斜面上,斜面的倾角为θ,现施加一水平力F作用于M,M、m共同向上作加速运动,求它们之间相互作用力的大小。
牛顿第二定律——连接体问题(整体法与隔离法)
命题:熊亮
一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统
二、处理方法——整体法与隔离法
系统运动状态相同 整体法
问题不涉及物体间的内力
使用原则
系统各物体运动状态不同
隔离法
问题涉及物体间的内力
三、连接体题型:
1、连接体整体运动状态相同:(这类问题可以采用整体法求解)
【例1】A、B两物体靠在一起,放在光滑水平面上,它们的质量分别为
,
,今用水平力
推A,用水平力
拉B,A、B间的作用力有多大?
【练1】如图所示,质量为M的斜面A置于粗糙水平地面上,动摩擦因数
为
,物体B与斜面间无摩擦。
在水平向左的推力F作用下,A与B一起做匀加速直线运动,两者无相对滑动。
已知斜面的倾角为
,物体B的质量为m,则它们的加速度a及推力F的大小为多少
【练2】如图所示,质量为
的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为
的物体,与物体1相连接的绳与竖直方向成
角,则( )
A. 车厢的加速度为
B. 绳对物体1的拉力为
C. 底板对物体2的支持力为
D. 物体2所受底板的摩擦力为
2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)
【例2】如图所示,一个箱子放在水平地面上,箱内有一固定的竖直
杆,在杆上套有一个环,箱和杆的总质量为M,环的质量为m。
已知环沿着杆向下加速运动,当加速度大小为a时(a<g),则箱对地面的压力为多大?
【练3】如图所示,一只质量为m的小猴抓住用绳吊在天花板上的一根质量为M的竖直杆。
当悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面的高度不变。
则杆下降的加速度为大?
【练4】如图所示,在托盘测力计的托盘内固定一个倾角为30°的光滑斜面,现将一个重4 N的物体放在斜面上,让它自由滑下,那么测力计因4 N物体的存在,而增加的读数是()
A.4 N
B.2 N
C.0 N
D.3 N
【练5】如图所示,A、B的质量分别为m A=0.2kg,m B=0.4kg,盘C的质量m C=0.6kg,现悬挂于天花板O处,处于静止状态。
当用火柴烧断O处的细线瞬间,木块A的加速度a A多大?木块B对盘C的压力F BC多大?(g取
10m/s2)
A
B
C
O
【练6】水平桌面上放着质量为M的滑块,用细绳通过定滑轮与质量为m
的物体相连,滑块向右加速运动。
已知滑块与桌面间的动摩擦因数为
μ.试求滑块运动的加速度和细绳中的张力。
M
m
连接体作业
1、如图所示,小车质量均为M,光滑小球P的质量为m,绳的质量不计,
水平地面光滑。
要使小球P随车一起匀加速运动(相对位置如图所
示),则施于小车的水平拉力F各是多少?(θ已知)
球刚好离开斜面 球刚好离开槽底
F= F= F= F=
2、如图所示,A、B质量分别为m1,m2,它们在水平力F的作用下均一起
加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平
面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A、B间的摩擦力和弹力。
f= f= F AB=
F AB=
F
a
b
c
3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( )
A.a最大 B.c最大 C.同样大 D.b最小
4、如图所示,小车的质量为M,正在向右加速运动,一个质量为m的木块紧靠在车的前端相对于车保持静止,则下列说法正确的是( )
A.在竖直方向上,车壁对木块的摩擦力与物体的重力平衡
B.在水平方向上,车壁对木块的弹力与物体对车壁的压力是一对平衡力
C.若车的加速度变小,车壁对木块的弹力也变小
D.若车的加速度变大,车壁对木块的摩擦力也变大
5、物体A、B叠放在斜面体C上,物体B的上表面水平,如图所示,在水平力F的作用下一起随斜面向左匀加速运动的过程中,物体A、B相对静止,设物体B给物体A的摩擦力为
,水平地面给斜面体C的摩擦力为
,(
),则( )
A.
B.
水平向左
C.
水平向左 D.
水平向右
6、如图3所示,质量为M的斜劈形物体放在水平地面上,质量为m的粗糙物块以某一初速度沿劈的斜面向上滑,至速度为零后加速返回,而物体M始终保持静止,则在物块m上、下滑动的整个过程中( )
A. 地面对物体M的摩擦力方向没有改变;
B. 地面对物体M的摩擦力先向左后向右;
C. 物块m上、下滑时的加速度大小相同;
D. 地面对物体M的支持力总小于
7、如图所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=
0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小.(g取10m/s2)
8、如图所示,质量为
的物体A沿直角斜面C下滑,质量为
的物体B上升,斜面与水平面成θ角,滑轮与绳的质量及一切摩擦均忽略不计,求斜面作用于地面凸出部分的水平压力的大小。
9、如图所示,质量为M的滑块C放在光滑的桌面上,质量均为m两物体A 和B用细绳连接,A平放在滑块上,与滑块间动摩擦因数为
,细绳跨过滑轮后将B物体竖直悬挂,设绳和轮质量不计,轮轴不受摩擦力作用,水平推力F作用于滑块,为使A和B与滑块保持相对静止,F至少应为多大?
10、在粗糙的水平面上有一质量为M的三角形木块,两底角分别为
、
,在三角形木块的两个粗糙斜面上,有两个质量为
、
的物体分别以
、
的加速度沿斜面下滑。
三角形木块始终是相对地面静止,求三角形木块受到静摩擦力和支持力?。