实习报告:基于单片机的数字时钟
- 格式:doc
- 大小:149.00 KB
- 文档页数:14
摘要近年来随着计算机在社会领域的渗透和大规模集成电路的发展,单片机的应用正在不断地走向深入,由于它具有功能强,体积小,功耗低,价格便宜,工作可靠,使用方便等特点,因此特别适合于与控制有关的系统,越来越广泛地应用于自动控制,智能化仪器,仪表,数据采集,军工产品以及家用电器等各个领域,单片机往往是作为一个核心部件来使用,在根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善本次做的数字钟是以单片机(AT89C51)为核心,结合相关的元器件(3个2位共阳数码管,一个发光二极管和一个蜂鸣器)和应用程序(proteus软件和KEIL编译软件),构成相应的应用系统。
关键词:单片机AT89C51 共阳数码管发光二极管蜂鸣器 proteus软件 KEIL编译软件目录1.课题设计目的 (4)2. AT89C51的单片机简介 (4)2.1 LED显示电路 (7)2.2键盘控制电路 (7)3.课程设计报告内容 (8)3.1.方案设计要求 (8)3.2系统设计流程图 (8)3.3绘制数字时钟电路Protues仿真原理图 (9)3.4运行程序 (10)4.总结 (10)5.数字时钟源程序............ 10-19数字时钟设计1. 课题设计目的数字电子钟具有走时准确,一钟多用等特点,在生活中已经得到广泛的应用本文主要介绍用单片机内部的定时/计数器来实现电子时钟的方法,本设计由单片机AT89C51芯片和3个两位一体的共阳极的数码管为核心,辅以必要的电路,构成了一个单片机数字时钟。
2. AT89C51的单片机简介(一)AT89C51的介绍AT89C51单片机是在一块芯片中集成了CPU、RAM、ROM、定时器/计数器和多种功能的I/O接口电路等一台计算机所需要的基本功能部件,AT89C51单片机内包含下列几个部件:(1)一个8位CPU;(2)一个片内振荡器及时钟电路;(3)4K字节ROM程序存储器;(4)128字节RAM数据存储器;(5)两个16位定时器/计数器;(6)可寻址64K外部数据存储器和64K外部程序存储器空间的控制电路;(7)32条可编程的I/O线(四个8位并行I/O端口);(8)一个可编程全双工串行口;(9)具有五个中断源、两个优先级嵌套中断结构。
数字时钟实验报告一、实验目的1、熟悉单片机的结构和各引脚的的功能以及如何用程序控制。
2、学习用单片机对数字时钟控制、按键扫描及LED数码管显示的设计方法。
3、了解键盘的结构以及工作原理,通过单片机的定义实现对数码管时钟的调整。
二、实验要求1、可以正常准确的显示时间.2、可以通过键盘输入来对时间进行调整.3、能够以两种时钟表示方式显示时间.4、自由发挥其他功能.三、实验基本原理利用单片机定时器完成计时功能,定时器0计时中断程序每隔0.05s中断一次并当作一个计数,设定定时1秒的中断计数初值为0,每中断一次中断计数初值加1,当加到20时,则表示1s到了,秒变量加1,同理再判断是否1min钟到了,再判断是否1h到了。
采用动态显示法实现LED显示,通过对每位数码管的依次扫描,使对应数码管亮,同时向该数码管送对应的字码,使其显示数字。
由于数码管扫描周期很短,由于人眼的视觉暂留效应,使数码管看起来总是亮的,从而实现了各种显示。
利用键盘实现对时钟的调整,定义四个按键,按下第一个按键位置跳变到“分”,在按定义的第二个键每按一次数字加一,当数字到59时再按一次,直接跳变到00;用第三个键控制“时”的12小时制还是24小时制,对键盘扫描,如果发现该键被按下,则表示为12进制,每按一次第四个按键数字加一,当到达12时,再按一次直接跳到1,如果没有发现该按键,则默认为24小时制,当数字是23时,再按一次跳变到00,再按一下第一个键退出对事件的调整。
四、实验设计分析针对要实现的功能,采用AT89S51单片机进行设计,AT89S51 单片机是一款低功耗,高性能CMOS8位单片机,片内含4KB在线可编程(ISP)的可反复擦写1000次的Flash只读程序存储器,器件采用高密度、非易失性存储技术制造,兼容标准MCS- 51指令系统及80C51引脚结构。
这样,既能做到经济合理又能实现预期的功能。
在程序方面,采用分块设计的方法,这样既减小了编程难度、使程序易于理解,又能便于添加各项功能。
一、实训背景随着科技的不断发展,单片机技术得到了广泛应用。
单片机具有体积小、成本低、功能强大等特点,因此在电子设备中得到了广泛的应用。
本实训旨在通过设计一个基于单片机的时钟显示系统,让学生了解单片机的原理、编程方法和接口电路设计,提高学生的实践能力和创新意识。
二、实训目的1. 掌握单片机的原理和编程方法;2. 熟悉单片机的接口电路设计;3. 学会使用LCD液晶显示器和按键进行人机交互;4. 提高学生的实践能力和创新意识。
三、实训内容1. 硬件设计(1)硬件组成:本实训采用AT89C51单片机作为核心控制单元,使用LCD1602液晶显示器进行时间显示,并使用DS1302实时时钟芯片提供准确的时间。
(2)电路设计:① AT89C51单片机电路:包括电源电路、晶振电路、复位电路等;② DS1302实时时钟芯片电路:包括电源电路、时钟晶振电路、数据通信电路等;③ LCD1602液晶显示器电路:包括电源电路、数据通信电路等;④ 键盘电路:包括按键输入电路和单片机接口电路。
2. 软件设计(1)软件组成:本实训的软件设计包括主程序、按键扫描程序、时间显示程序和DS1302时钟读取程序。
(2)程序设计:① 主程序:负责系统初始化、按键扫描、时间显示和DS1302时钟读取等功能;② 按键扫描程序:负责检测按键是否被按下,并根据按键输入进行相应操作;③ 时间显示程序:负责将DS1302实时时钟芯片读取的时间显示在LCD1602液晶显示器上;④ DS1302时钟读取程序:负责从DS1302实时时钟芯片读取当前时间。
3. 系统调试(1)硬件调试:连接好硬件电路,检查各个模块的连接是否正确,并进行必要的调试;(2)软件调试:使用Proteus软件进行仿真调试,确保程序能够正常运行。
四、实训过程1. 硬件制作(1)根据电路原理图,焊接好各个模块的电路板;(2)将各个模块连接到单片机上,并检查连接是否正确。
2. 软件编写(1)使用Keil C51软件编写程序;(2)将编写好的程序烧录到单片机中。
51单片机数字钟设计实习报告目录一.设计方案: (3)二.设计内容: (3)三.相关总线及芯片介绍: (3)1.SPI总线: (3)2.74LS595芯片: (4)3. 实验箱电路图: (6)四.系统软件程序设计: (6)五.设计程序: (8)六.程序调试及显示: (11)七.实习心得: (12)八.参考文献: (13)一.设计方案:通过单片机内部的计数/定时器,采用软件编程来实现时钟计数,一般称为软时钟,这种方法的硬件线路简单,系统的功能一般与软件设计相关,通常用在对时间精度要求不高的场合。
二.设计内容:这里采用应用广泛的C51作为时钟控制芯片,利用单片机内部的定时/计数器T0 实现软时钟的目的。
首先将T0设定工作于定时方式,对机器周期计数形成基准时间(50ms),然后用另一个定时/计数器T1对基准时间计数形成秒,秒计60次形成分,分计60形成小时,小时计到12或者24。
通过外部中断实现12进制与24进制的切换。
最后通过数码管把它们的内容在相应的位置显示出来,达到时、分、秒计时的功能。
三.相关总线及芯片介绍:1.SPI总线:SPI(Serial Peripheral Interface--串行外设接口)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。
外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。
SPI 总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。
由于SPI系统总线一共只需3~4位数据线和控制即可实现与具有SPI总线接口功能的各种I/O器件进行接口,而扩展并行总线则需要8根数据线、8~16位地址线、2~3位控制线,因此,采用SPI总线接口可以简化电路设计,节省很多常规电路中的接口器件和I/O口线,提高设计的可靠性。
数字时钟实验报告一、实验目的:通过实验进一步深刻理解单片机最小系统的工作原理。
着重掌握中断和定时器的使用,以及读键盘和LED显示程序的设计(具体设计在后面会涉及到)。
培养动手能力。
二、实验内容:使用单片机最小系统设计一个12小时制自动报时的数字时钟。
三、功能描述:★使用低六位数码管显示时、分、秒、使用第七位表示上午和下午。
符号A表示上午;符号P表示下午。
★通过按键分别调整小时位和分钟位。
★到达整点时以第八位数码管闪烁的方式报时,使用8作为显示内容。
★考虑整点报时功能。
四、设计整体思路以及个别重点部分的具体实现方式:下面这幅图展示主函数的流程下面描述的是调用T0中断时所进行的动作显示更新的函数具体见下面这幅图我们还一个对键盘进行扫描以获得有效键盘值,其具体的实现见下面这幅图● 要实现时钟的运行和时间的调整,我的设计思路是这样的:由于T0中断的时间间隔是4ms,那么我可以设置一个计数器i,在每次进入中断时进行加一调整,当i计满面250时就将时钟我秒的低位加一。
然后根据进位规则,对其后的各位依次进行调整。
●要实现整点报时功能,则可以根据时位是否为0判断是否要闪烁显示字符8。
至于闪烁的具体实现方式,见源程序。
至此,本实验的设计思路己基本介绍完毕。
下面就是本次实验的源程序代码。
/*********************************************************//** 数字时钟程序**//** **//*********************************************************/#include <absacc.h>#include <reg51.h>#define uchar unsigned char#define uint8 unsigned char#define uint16 unsigned int#define LED1 XBYTE [0xA000] //数码管地址#define LED2 XBYTE [0xA001]#define LED3 XBYTE [0xA002]#define LED4 XBYTE [0xA003]#define LED5 XBYTE [0xA004]#define LED6 XBYTE [0xA005]#define LED7 XBYTE [0xA006]#define LED8 XBYTE [0xA007]#define KEY XBYTE [0xA100] //键盘地址bit ap=0;//上下午int i=0;//计数器uchar data clock[7]={0,0,0,0,0,0,0};/*扫描键盘使用的变量 */sbit first_row = P1^4; //键盘第一行控制sbit second_row = P1^3; //键盘第二行控制bit first_getkey = 0,control_readkey = 0; //读键盘过程中的标志位bit getkey = 0; //获得有效键值标志位等于1时代表得到一个有效键值bit keyon = 0; //防止按键冲突标志位uchar keynum = 0; //获得的有效按键值寄存器/*数码管显示使用的变量和常量*/uchar lednum = 0; //数码管显示位控制寄存器uchar led[8] = {0,0,0,0,0,0,0,0}; //数码管显示内容寄存器uchar code segtab[18] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0x8c,0xff}; //七段码段码表// "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D","E", "F", "P" ,"black"void leddisp(void); //数码管显示函数void readkey(void); //读键盘函数void intT0() interrupt 1 //T0 定时中断处理函数{TH0 = -2720/256; //定时器中断时间间隔 4msTL0 = -2720%256;if((clock[2]==0)&&(clock[3]==0)&&(i==125)&&(clock[5]<=5)&&(clock[4]==0))led[7]=17;if((clock[2]==0)&&(clock[3]==0)&&(i==0)&&(clock[5]<=5)&&(clock[4]==0))led[7]=8;i=i+1;if(i==250){if((clock[2]==0)&&(clock[3]==0)&&(clock[4]==0)&&(clock[5]==0)&&(clock[6]==0)){ap=!ap;if(ap==0)led[6]=10;if(ap==1)led[6]=16;}clock[5]=clock[5]+1;i=0;}if(clock[5]==10){clock[5]=0;clock[4]=clock[4]+1;}if(clock[4]==6){clock[4]=0;clock[3]=clock[3]+1;}if(clock[3]==10){clock[3]=0;clock[2]=clock[2]+1;}if(clock[2]==6){clock[2]=0;clock[6]=clock[6]+1;}if(clock[6]==12){clock[6]=0;}clock[0]=clock[6]/10;clock[1]=clock[6]%10;led[5]=clock[0];led[4]=clock[1];led[3]=clock[2];led[2]=clock[3];led[1]=clock[4];led[0]=clock[5];leddisp(); //每次定时中断显示更新一次if(control_readkey == 1) //每两次定时中断扫描一次键盘{readkey();}c ontrol_readkey = !control_readkey;}void main(void){TMOD = 0x01; //TH0 = -2720/256; //定时器中断时间间隔 4msTL0 = -2720%256;TCON = 0x10;ET0 = 1;EA = 1;while(1){if(getkey == 1) //判断是否获得有效按键{getkey = 0;switch(keynum) //判断键值,对不同键值采取相应的用户定义处理方式{case 0x01: //当按下第一行第二列键时,分加一clock[3]=clock[3]+1;break;case 0x02: ////当按下第一行的第三列键时,分减一clock[3]=clock[3]-1;break;case 0x03://当按下第一行的第四列时,时加一clock[6]=clock[6]+1;break;case 0x04:clock[6]=clock[6]-1; //当按下第一行的第五列时,时减一break;default:break;}}}}/***************************************************键盘扫描函数原型: void readkey(void);功能: 当获得有效按键时,令getkey=1,keynum为按键值****************************************************/void readkey(void){uchar M_key = 0;second_row = 0;M_key = KEY;if(M_key != 0xff) //如果有连续两次按键按下,认为有有效按键按下。
目录1 前言 (3)2 数字钟设计原理 (3)3 流程图 (4)4 51单片机系统的硬件连接 (4)5 程序设计 (6)5.1主程序5.2中断服务子程序5.3 显示子程序5.4 总的程序清单6 系统调试及结果分析 (12)7 注意事项 (12)8 感想与体会 (13)9 参考文献 (13)一.前言20世纪末,电子技术获得了飞速的发展,在其推动下,具有功能强、体积小、可靠性高、价格低廉的单片机在工业控制、数据采集、智能仪表、机电一体化、家用电器等领域得到了广泛的应用,极大的提高了这些领域的技术水平和自动化程度。
现在生活的人们越来越重视起了时间观念,可以说是时间和金钱划上了等号,对于那些对时间把握非常严格和准确的人或事来说,时间的不准确性带来不小的麻烦,所以说以数码管显示的时钟比指针式的时钟表现出了很大的优势。
数码管显示的时间简明而且读数快,时间准确显示到秒。
数字钟是采用数字电路对时分秒数字显示的计时装置。
数字钟的精度,稳定性远远超过老式机械钟。
数字钟是其小巧,价格低廉,走时精度高,使用方便,功能多,便于集成化而受到广大消费者的喜爱。
二.数字钟设计原理数字钟实际是对标准频率计数的电路,由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路,同时标准的时间信号必须做到准确稳定。
通常使用石英晶体振荡电路构成数字钟。
数字钟电子钟由以下几部分组成:按键开关部分,振荡电路部分,89c51单片机控制器,4位数码管显示部分,7407数码管驱动部分。
按键开关振荡电路89C51单片机控制器4位数码管显示7407列驱动三.流程图主程序流程图如图2.3所示,定时器T0中断服务程序流程图如2.4所示。
返回图2.4中断服务程序流程图四.51单片机系统的硬件连接1.硬件电路的设计,硬件电路图如图2.2所示图2.2硬件电路图该电路采用AT89C51单片机最小化应用,采用共阴7段LED数码管显示器,P2.4~P2.7口作为列扫描输出,P0口输出段码数据,P1.2,P1.1口接2个按钮开关,用于调时及功能误差,采用12Mhz晶振,可提高秒计时的精确度。
一、实习目的随着电子技术的飞速发展,单片机作为一种重要的电子元件,在工业、医疗、通讯等领域得到了广泛的应用。
为了更好地掌握单片机的原理和应用,提高动手能力,我们选择了单片机数字钟作为实习项目。
通过本次实习,我们旨在掌握单片机的编程、调试、硬件连接等方面的知识,实现数字时钟的显示与控制。
二、实习内容1. 单片机数字钟硬件设计(1)选用AT89C51单片机作为核心控制单元,具有丰富的片上资源,方便编程和调试。
(2)采用LCD1602液晶显示屏,显示时间、日期等信息。
(3)使用DS1302实时时钟芯片,实现时间的存储和更新。
(4)选用按键作为输入设备,实现时间的调整和设置。
(5)选用蜂鸣器作为报警设备,实现定时报警功能。
2. 单片机数字钟软件设计(1)编写主程序,实现系统初始化、时间显示、按键扫描、时间调整等功能。
(2)编写中断服务程序,实现DS1302时钟芯片的读写、按键消抖等功能。
(3)编写子程序,实现时间的计算、格式化、显示等功能。
3. 单片机数字钟调试与测试(1)连接电路,检查各个模块的连接是否正确。
(2)编写程序,将程序烧录到单片机中。
(3)调试程序,确保程序运行正常。
(4)测试各个功能模块,如时间显示、按键调整、定时报警等。
三、实习过程1. 硬件设计(1)根据设计要求,绘制电路原理图。
(2)购买所需元器件,进行焊接。
(3)组装电路板,连接各个模块。
2. 软件设计(1)编写程序,采用C语言进行编程。
(2)使用Keil软件进行编译、烧录。
(3)在仿真软件Proteus中进行仿真,验证程序的正确性。
3. 调试与测试(1)连接电路,检查各个模块的连接是否正确。
(2)编写程序,将程序烧录到单片机中。
(3)调试程序,确保程序运行正常。
(4)测试各个功能模块,如时间显示、按键调整、定时报警等。
四、实习总结1. 通过本次实习,我们掌握了单片机的编程、调试、硬件连接等方面的知识。
2. 学会了使用LCD1602液晶显示屏、DS1302实时时钟芯片、按键等元器件。
单片机实验报告数字时钟设计报告一、实验目的本次单片机实验的目的是设计并实现一个基于单片机的数字时钟。
通过该实验,深入了解单片机的工作原理和编程方法,掌握定时器、中断、数码管显示等功能的应用,提高综合运用知识解决实际问题的能力。
二、实验原理1、单片机选择本次实验选用了常见的 51 系列单片机,如 STC89C52。
它具有丰富的资源和易于编程的特点,能够满足数字时钟的设计需求。
2、时钟计时原理数字时钟的核心是准确的计时功能。
通过单片机内部的定时器,设定合适的定时时间间隔,不断累加计时变量,实现秒、分、时的计时。
3、数码管显示原理采用共阳或共阴数码管来显示时间数字。
通过单片机的 I/O 口控制数码管的段选和位选信号,使数码管显示相应的数字。
4、按键控制原理设置按键用于调整时间。
通过检测按键的按下状态,进入相应的时间调整模式。
三、实验设备与材料1、单片机开发板2、数码管3、按键4、杜邦线若干5、电脑及编程软件(如 Keil)四、实验步骤1、硬件连接将数码管、按键与单片机开发板的相应引脚通过杜邦线连接起来。
确保连接正确可靠,避免短路或断路。
2、软件编程(1)初始化单片机的定时器、中断、I/O 口等。
(2)编写定时器中断服务程序,实现秒的计时。
(3)设计计时算法,将秒转换为分、时,并进行进位处理。
(4)编写数码管显示程序,将时间数据转换为数码管的段选和位选信号进行显示。
(5)添加按键检测程序,实现时间的调整功能。
3、编译与下载使用编程软件将编写好的程序编译生成可执行文件,并下载到单片机中进行运行测试。
五、程序设计以下是本次数字时钟设计的主要程序代码片段:```cinclude <reg52h>//定义数码管段选码unsigned char code SEG_CODE ={0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90};//定义数码管位选码unsigned char code BIT_CODE ={0x01, 0x02, 0x04, 0x08, 0x10,0x20, 0x40, 0x80};//定义时间变量unsigned int second = 0, minute = 0, hour = 0;//定时器初始化函数void Timer_Init(){TMOD = 0x01; //定时器 0 工作在方式 1 TH0 =(65536 50000) / 256; //定时 50ms TL0 =(65536 50000) % 256;EA = 1; //开总中断ET0 = 1; //开定时器 0 中断TR0 = 1; //启动定时器 0}//定时器 0 中断服务函数void Timer0_ISR() interrupt 1{TH0 =(65536 50000) / 256;TL0 =(65536 50000) % 256;second++;if (second == 60){second = 0;minute++;if (minute == 60){minute = 0;hour++;if (hour == 24){hour = 0;}}}}//数码管显示函数void Display(){unsigned char i;for (i = 0; i < 8; i++)P2 = BIT_CODEi;if (i == 0){P0 = SEG_CODEhour / 10;}else if (i == 1){P0 = SEG_CODEhour % 10;}else if (i == 2){P0 = 0xBF; //显示“”}else if (i == 3){P0 = SEG_CODEminute / 10;else if (i == 4){P0 = SEG_CODEminute % 10;}else if (i == 5){P0 = 0xBF; //显示“”}else if (i == 6){P0 = SEG_CODEsecond / 10;}else if (i == 7){P0 = SEG_CODEsecond % 10;}delay_ms(1);//适当延时,防止闪烁}}//主函数void main(){Timer_Init();while (1){Display();}}```六、实验结果与分析1、实验结果将程序下载到单片机后,数字时钟能够正常运行,准确显示时、分、秒,并且通过按键可以进行时间的调整。
单片机数字钟实习报告一、实习目的和意义随着计算机科学与技术的飞速发展,计算机的应用已经渗透到国民经济与人们生活的各个角落,而单片机技术作为计算机技术中的一个独立分支,具有性价比高、集成度高、体积小、可靠性高、控制功能强大、低功耗、低电压等特点,因此在各个领域得到了广泛的应用。
本次实习旨在通过设计一款数字钟,使学生掌握单片机的原理及其应用,提高实际动手能力和创新能力。
数字钟作为一种典型的数字电路,包括组合逻辑电路和时序电路。
通过设计制作数字钟,可以让学生了解数字钟的原理,学会制作数字钟,并进一步了解各种中小规模集成电路的作用及实用方法。
同时,通过数字钟的制作,可以让学生进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。
二、实习内容和要求1. 设计一款基于单片机的数字钟,能显示时、分、秒。
2. 数字钟具有校时功能,能以24小时为一个周期循环显示时间。
3. 掌握单片机的原理及其编程方法,熟悉LCD1602液晶显示屏的使用。
4. 了解数字钟的原理,学会制作数字钟,并掌握各种组合逻辑电路与时序电路的原理与使用方法。
三、实习过程1. 首先,我们对单片机的原理进行了学习,了解了单片机的内部结构、工作原理及其编程方法。
同时,我们还学习了LCD1602液晶显示屏的使用,掌握了如何将单片机与LCD1602液晶显示屏进行连接。
2. 接下来,我们开始了数字钟的设计。
首先,我们设计了数字钟的电路原理图,包括了单片机、LCD1602液晶显示屏、按键、时钟芯片等元件。
然后,我们进行了电路板的焊接,焊接过程中,我们严格遵循电路焊接规范,确保了电路板的质量和稳定性。
3. 焊接完成后,我们开始了数字钟的程序编写。
我们编写了相应的程序,实现了数字钟的时、分、秒显示功能以及校时功能。
在编程过程中,我们深入理解了单片机的编程原理,掌握了Keil编程软件的使用。
4. 最后,我们对数字钟进行了调试和测试。
我们通过观察数字钟的显示效果,分析了可能存在的问题,并针对问题进行了改进。
数字时钟的设计实习报告一、实习目的本次实习旨在通过设计一个数字时钟,使学生掌握数字电路的设计方法,熟悉集成电路的使用,提高对单片机的学习和应用能力,培养学生的软硬件开发能力。
二、实习内容1. 设计一个数字时钟,能够显示时分秒。
2. 掌握数字时钟的设计方法。
3. 熟悉集成电路的使用方法。
4. 培养学习、设计、开发软、硬的能力。
三、实习过程1. 首先,我们对数字时钟的设计进行了需求分析,明确了数字时钟的功能和要求。
数字时钟应能够显示时分秒,采用24小时标准计时制。
2. 接下来,我们进行了数字时钟的设计方案制定。
数字时钟主要由单片机、LED数码管、按键等部分构成。
单片机负责控制整个系统,LED数码管用于显示时间,按键用于调整时间。
3. 然后,我们进行了数字时钟的硬件设计。
我们选择了AT89C52单片机作为核心控制器,6个共阳极的高亮度LED数码管用于显示时间,还选择了两个按键用于调整时间。
4. 在硬件设计的基础上,我们进行了数字时钟的软件设计。
我们编写了程序,使单片机能够控制LED数码管显示时间,并能够通过按键调整时间。
5. 最后,我们对数字时钟进行了测试和调试,确保其功能的正确性和稳定性。
四、实习心得通过本次实习,我们掌握了数字时钟的设计方法,熟悉了集成电路的使用方法,提高了对单片机的学习和应用能力。
我们在设计过程中,学会了如何分析需求、制定方案、设计硬件和软件,并通过测试和调试,确保设计的正确性和稳定性。
此外,我们还学会了如何协作和沟通,提高了团队协作能力。
在设计过程中,我们遇到了很多问题,但通过互相讨论和请教老师,我们逐一解决了问题,取得了实习的成功。
五、实习成果本次实习,我们成功设计了一个数字时钟,能够显示时分秒,并具有时间调整功能。
数字时钟的硬件电路稳定运行,软件程序正确无误。
六、实习展望在今后的学习和工作中,我们将继续深入学习数字电路和单片机的相关知识,提高自己的设计能力和开发水平。
我们还将把在实习中学到的知识和技能应用到实际项目中,为我国电子行业的发展做出贡献。
北京理工大学珠海学院课程设计I I I实习报告姓名:学院:信息学院专业:测控技术与仪器班级:2007级测控2班学号:指导教师:完成日期:2010 年12月目录一任务及意义 ............................................ - 2 - 二单片机资源介绍......................................... - 2 - 三基于单片机定时器时钟设计的外围硬件电路设计............. - 5 - 四基于单片机定时器时钟设计的软件代码..................... - 6 - 五 Proteus仿真软件使用.................................. - 12 - 六附录(附图) ......................................... - 13 -一任务及意义设计任务:1602LCD设计可调试电子钟。
数字钟是采用数字电路实现对时,分,秒.数字显示的计时装置,广泛用于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表,同时使数字钟具有走时准确、性能稳定、携带方便等优点。
钟表的数字化给人们生产生活带来了极大的方便。
因此,研究数字钟及扩大其应用,有着非常现实的意义。
在本次的实习实践过程中,我们将已学过的单片机和数字电路的相关知识知识有机的、系统的结合起来用于实际,来培养我们的综合分析和设计电路,写程序、调试电路的能力。
二单片机资源介绍单片机即单片微型计算机。
(Single-Chip Microcomputer ),是集 CPU ,RAM ,ROM ,定时,计数和多种接口于一体的微控制器。
他体积小,成本低,功能强,广泛应用于工业自动化上和智能产品。
时钟,自从它被发明的那天起,就成为了人类的好朋友,但随着时间的推移,科学技术的不断发展,时钟的应用越来越广范,人们对时间计量的精度要求也越来越高AT89C51是一种带4K字节闪存可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除1000次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如图所示:图1 TA89C51其管脚说明如下:(1)VCC:供电电压(2)GND:接地(3)时钟电路XTAL1(19脚)——芯片内部振荡电路(单级反相放大器)输入端。
XTAL2(18脚)——芯片内部振荡电路(单级反相放大器)输出端。
(4)控制信号RST(9脚)复位信号:时钟电路工作后,在此引脚上将出现两个机器周期的高电平,芯片内部进行初始复位,P0口~P3口输出高电平,将初值07H写入堆栈指针。
ALE(30脚)地址锁存信号:当访问外部存储器时,P0口输出的低8位地址由ALE输出的控制信号锁存到片外地址锁存器,P0口输出地址低8位后,又能与片外存储器之间传送信息。
另外,ALE可驱动4个TTL门。
(29脚)片外程序存储器读选通:低电平有效,作为程序存储器的读信号,输出负脉冲,将相应的存储单元的指令读出并送到P0口,可驱动8个TTL门。
/Vpp(30脚):当为高电平且PC值小于0FFFH时,CPU执行内部程序存储器程序;当为低电平时,CPU仅执行外部程序存储器程序。
(5)I/O接口P0口(P0.0~P0.7,39~32脚)三态双向口:P0口结构包括一个输出锁存器、两个三态缓冲器、一个输出驱动电路和一个输出控制端。
P0口做地址/数据复用总线使用。
若从P0口输出地址数据信息,此时控制端为高电平,若从P0口输入数据指令信息时,引脚信号应从输入三态缓冲器进入地址总线,它可驱动8个TTL门。
P0~P3口上的“读-修改-写”功能,其操作是先将字节的全部8位数读入,再通过指令修改某些位,然后将新的数据写回到口锁存器中。
P1口(P1.0~P1.7,1~8脚)准双向口:P1口做通用I/O接口使用,P1口的每一位口线能独立地作用于输入线,P1口可驱动4个TTL门。
P2口(P2.0~P2.7,21~28脚)通用I/O接口:它做通用I/O接口使用时,是一个准双向口,此时转换开关MUX倒向左边,输出极与锁存器相连,引脚可作为用户I/O口线使用,输入/输出操作与P1口完全相同,P2口做地址总线使用。
当系统中接有外部存储器时,P2口用于输出高8位地址A8~A15,这时在CPU控制下,转换开关MUX倒向右边,接通内部地址总线。
P2口的口线状态取决于片内输出的地址信息,这些信息来源于PC、DPTR等。
在外接程序存储器中,由于访问外部存储器操作连续不断,P2口不断送出地址高8位。
AT89C51单片机的P2口一般只做地址总线使用,不做I/O接口直接连外部设备使用。
P3口(P3.0~P3.7,10~17脚)双功能口:P3口做通用I/O接口使用,输出功能控制线为高电平,与非门的输出取决于锁存器的状态,此时锁存器Q端的状态与其引脚状态是一致的。
在这种情况下,P3口的结构和操作与P1口相同。
P3口第二功能是可作为系统具有控制功能的控制线,另外P3口可驱动4个LSTTL门电路。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流,这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口使用如:P3.0 RXD(串行输入口);P3.1 TXD(串行输出口);P3.2 /INT0(外部中断0);P3.3 /INT1(外部中断1);P3.4 T0(记时器0外部输入);P3.5 T1(记时器1外部输入);P3.6 /WR(外部数据存储器写选通);P3.7 /RD(外部数据存储器读选通);三基于单片机定时器时钟设计的外围硬件电路设计●晶振与复位电路图2 晶振与复位电路●按键输入电路图3 按键输入电路●LCD显示电路图4 LCD显示电路四基于单片机定时器时钟设计的软件代码源程序代码://头文件#include<reg52.h>//定义#define uchar unsigned char#define uint unsigned int//数组uchar code table[]=" ran's clock";uchar code table1[]=" 23:59:00";//LCD位选sbit lcden=P2^6;//LCD 几根线选择使能sbit lcdrs=P2^7;sbit rw=P2^5;//定义全局变量uchar temp,num;uchar count,key1num;char miao,shi,fen;//键盘定义sbit key1=P1^0;sbit key2=P1^1;sbit key3=P1^2;//延时函数void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}//LCD 显示//写命令需要根据说明书写void write_com(uchar com){lcdrs=0;rw=0;P0=com;delay(5);lcden=1;delay(5);lcden=0;}void write_date(uchar date){lcdrs=1;rw=0;P0=date;delay(5);lcden=1;delay(5);lcden=0;}//LCD初始化函数void lcd_init(){lcden=0; //write_com(0x38); //write_com(0x0c);write_com(0x06);write_com(0x01);write_com(0x80+0x10);}void write_sfm(uchar add,char date) //显示传过来的内容{uchar shi,ge;shi=date/10;ge=date%10;write_com(0x80+0x40+add);//write_date(0x30+shi);write_date(0x30+ge);}//write_data('X'); 写数据单个字符//第一行write_com(0x80);//第一行write_com(0x80+0x40);//3个键扫描void keyscan(){if(key1==0){delay(5);//去抖if(key1==0){key1num++;while(!key1);//松手后下去if(key1num==1){TR0=0;//停止中断秒停止write_com(0x80+0x40+10);//开秒位置,将光标移动到那里1602write_com(0x0f);//光标闪烁}if(key1num==2){write_com(0x80+0x40+7);//分闪烁移动位置}if(key1num==3){write_com(0x80+0x40+4);//时闪烁移动位置}if(key1num==4){key1num=0; //归零write_com(0x0c);//不闪烁完了就下去并恢复光标TR0=1; //开中断}}}if(key1num!=0) //证明功能键已经按下{if(key2==0)//加号键{delay(5);if(key2==0){while(!key2);//增加放手if(key1num==1)//秒{miao++;if(miao==60){miao=0;}write_sfm(10,miao);//先写数显示write_com(0x80+0x40+10);//需注意:后写地址才能使得光标不动一般光标都是写一个数就下移一位}if(key1num==2)//分{fen++;if(fen==60)fen=0;write_sfm(7,fen);//先写数write_com(0x80+0x40+7);}if(key1num==3)//时{shi++;if(shi==24)shi=0;write_sfm(4,shi);//先写数write_com(0x80+0x40+4);}}}if(key3==0){delay(5);if(key3==0){while(!key3);//增加放手if(key1num==1)//秒{miao--;if(miao==-1){miao=59;}write_sfm(10,miao);//先写数write_com(0x80+0x40+10);//需注意,后写地址才能使得光标不动}if(key1num==2)//分{fen--;if(fen==-1)fen=59;write_sfm(7,fen);//先写数字write_com(0x80+0x40+7);}if(key1num==3)//时{shi--;if(shi==-1)shi=23;write_sfm(4,shi);//先写数write_com(0x80+0x40+4);}}}}}void inter_init() //全部值的初始化{int i;lcd_init();//lcd初始化write_com(0x80);for(i=0;i<16;i++) write_date(table[i]);write_com(0x80+0x40);for(i=0;i<12;i++) write_date(table1[i]);shi=23;fen=59;miao=57;TMOD=0x01;//中断设置TH0=(65536-50000)/256;//给个初始值50ms 3c H TL0=(65536-50000)%256;EA=1;ET0=1;TR0=1;}void main(){inter_init();//初始化while(1){keyscan();if(count==20){count=0;miao++;if(miao==60){miao=0;fen++;if(fen==60){fen=0;shi++;if(shi==24){shi=0;}write_sfm(4,shi);}write_sfm(7,fen);}write_sfm(10,miao);}}}void timer0() interrupt 1 //50ms interrupt {TH0=(65536-50000)/256;//给个初始值TL0=(65536-50000)%256;count++;}五Proteus仿真软件使用Proteus软件是Labcenter Electronics公司的一款电路设计与仿真软件,它包括ISIS、ARES等软件模块,ARES模块主要用来完成PCB的设计,而ISIS模块用来完成电路原理图的布图与仿真。