设a 0, b 0, a b 1
1 你能给出几个含有 0 ab 1 1 4 4 字母a和b的不等式 a b 1 2 2 1 a b 2 倒数
乘积
1 1 25 ( a )( b ) a b 4
平方
1 1 (1 )(1 ) 9 a其他 b
作业
A、40 B、10
D)
C、4 D、2
1、应用均值不等式须注意以下三点:
(1)各项或各因式为正 (2)和或积为定值 (3)各项或各因式能取得相等的值,必要时作适当变形, 以满足上述前提,即“一正二定三相等” 2、二元均值不等式具有将“和式”转化为“积式”和将“积 式”转 化为“和式”的放缩功能; 创设应用均值不等式的条件,合理拆分项或配凑因式是常 用的解题技巧,而拆与凑的成因在于使等号能够成立;
1 当且仅当 x 即x 1时, ymin 2 x 1 当x 0时, x 0, 则y x x
1 x 2 x 1 x 2 x 1 y 2, 当且仅当 x 即x 1时 x ymax 2
知识扫描
基本不等式(又叫均值不等式)
ab
ab 2
(a 0, b 0)
2
a b 2 ab (a 0, b 0)
当且仅当a=b时等号成立
ab ab 2
(a 0, b 0)
代数意义:
a b 如果把 看做是两正数a、b 2 的算术平均数, ab 看做是两正数a、b
看谁最快
1 9 1、已知 x 0, y 0, 且 1, 则x y的 最 x y 16 小值为____.
2、设 a 0, b 0 且a+b=3,则2a+2b的最小值 为___ 4 2.