24C02读写程序
- 格式:pdf
- 大小:39.63 KB
- 文档页数:10
;--------------------------------------------------------------------------------------------------------------------- ;本程序是针对AT89S52单片机编制的EEPROM读写程序(2013.8.4测试通过);本程序在4MHZ、12MHZ和24MHZ分别测试通过;AT24C02的A0、A1、A2均接GND,设备地址高7位为(1010)000;WP接GND,充许对EEPROM正常读写;本程序仅作学习交流之用。
;--------------------------------------------------------------------------------------------------------------------- SCl equ P2.0 ;SCL接A T89S52的P2.0端口,作为EEPROM的串行输入时钟SDA equ P2.1 ;SDA接AT89S52的P2.1端口,作为主机与EEPROM之间信息串行传输总线WRITEDATA equ 08H;拟写入EEPROM的数据在主机中的存贮单元地址READDATA equ 09H ;从EEPROM读取的数据存放到主机存贮单元地址EPROMADDRESS equ 0AH;拟随机读写EEPROM的存贮单元地址;------------------------------------------------ORG 00HLJMP MAIN;------------------------------------------------ORG 50HMAIN: MOV SP,#20H;防止堆栈影响已用内存数据;以下为写EEPROM过程mov EPROMADDRESS,#09H;该地址可以随意输入(00H~FFH),但读和写的地址须相同MOV WRITEDA TA,#01010010B;该数字可以随意输入,并将读和写的数据进行比较;如读数正确则按将读出数据在P1口输出,可在P1口各位分别接LED灯直观显示出来。
E2PROM芯片24C02的读写程序一、实验目的:给24C02的内部RAM写入一组数据,数据从24C02内部RAM的01h开始存放。
然后再把这组数据读出来,检验写入和读出是否正确。
在这里我们给24C02中写入0、1、2的段码,然后把它读出来,送到数码管显示。
二、理论知识准备:上面两个实验主要学习的是利用单片机的串口进行通讯,本实验要介绍的是基于I2C总线的串行通讯方法,下面我们先介绍一下I2C总线的相关理论知识。
(一)、I2C总线概念I2C总线是一种双向二线制总线,它的结构简单,可靠性和抗干扰性能好。
目前很多公司都推出了基于I2C总线的外围器件,例如我们学习板上的24C02芯片,就是一个带有I2C总线接口的E2PROM存储器,具有掉电记忆的功能,方便进行数据的长期保存。
(二)、I2C总线结构I2C总线结构很简单,只有两条线,包括一条数据线(SDA)和一条串行时钟线(SCL)。
具有I2C接口的器件可以通过这两根线接到总线上,进行相互之间的信息传递。
连接到总线的器件具有不同的地址,CPU根据不同的地址进行识别,从而实现对硬件系统简单灵活的控制。
一个典型的I2C总线应用系统的组成结构如下图所示(假设图中的微控制器、LCD驱动、E2PROM、ADC各器件都是具有I2C总线接口的器件):我们知道单片机串行通讯的发送和接收一般都各用一条线TXD和RXD,而I2C总线的数据线既可以发送也可以接受,工作方式可以通过软件设置。
所以,I2C总线结构的硬件结构非常简洁。
当某器件向总线上发送信息时,它就是发送器,而当其从总线上接收信息时,又成为接收器。
(三)、I2C总线上的数据传送下面我们看看I2C总线是如何进行数据传送的。
我们知道,在一根数据线上传送数据时必须一位一位的进行,所以我们首先研究位传送。
1、位传输I2C总线每传送一位数据必须有一个时钟脉冲。
被传送的数据在时钟SCL的高电平期间保持稳定,只有在SCL低电平期间才能够改变,示意图如下图所示,在标准模式下,高低电平宽度必须不小于4.7us。
E2PROM芯片24C02的读写程序一、实验目的:给24C02的内部RAM写入一组数据,数据从24C02内部RAM的01h开始存放。
然后再把这组数据读出来,检验写入和读出是否正确。
在这里我们给24C02中写入0、1、2的段码,然后把它读出来,送到数码管显示。
二、理论知识准备:上面两个实验主要学习的是利用单片机的串口进行通讯,本实验要介绍的是基于I2C总线的串行通讯方法,下面我们先介绍一下I2C总线的相关理论知识。
(一)、I2C总线概念I2C总线是一种双向二线制总线,它的结构简单,可靠性和抗干扰性能好。
目前很多公司都推出了基于I2C总线的外围器件,例如我们学习板上的24C02芯片,就是一个带有I2C总线接口的E2PROM存储器,具有掉电记忆的功能,方便进行数据的长期保存。
(二)、I2C总线结构I2C总线结构很简单,只有两条线,包括一条数据线(SDA)和一条串行时钟线(SCL)。
具有I2C接口的器件可以通过这两根线接到总线上,进行相互之间的信息传递。
连接到总线的器件具有不同的地址,CPU根据不同的地址进行识别,从而实现对硬件系统简单灵活的控制。
一个典型的I2C总线应用系统的组成结构如下图所示(假设图中的微控制器、LCD驱动、E2PROM、ADC各器件都是具有I2C总线接口的器件):我们知道单片机串行通讯的发送和接收一般都各用一条线TXD和RXD,而I2C总线的数据线既可以发送也可以接受,工作方式可以通过软件设置。
所以,I2C总线结构的硬件结构非常简洁。
当某器件向总线上发送信息时,它就是发送器,而当其从总线上接收信息时,又成为接收器。
(三)、I2C总线上的数据传送下面我们看看I2C总线是如何进行数据传送的。
我们知道,在一根数据线上传送数据时必须一位一位的进行,所以我们首先研究位传送。
1、位传输I2C总线每传送一位数据必须有一个时钟脉冲。
被传送的数据在时钟SCL的高电平期间保持稳定,只有在SCL低电平期间才能够改变,示意图如下图所示,在标准模式下,高低电平宽度必须不小于4.7us。
24c02的连续读写/**********************************************24c02驱动程序SDA=P3^6;SCL=P3^7;可以写一个字节,写一串字符(以'\n'作为结束标志)可以读一个字节,读一串字符(以'\n'作为结束标志)**********************************************/#include <reg51.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned int#define W24C02 0xA0 //存储器的写地址#define R24C02 0xA1 //存储器的读地址/********************/sbit SDA=P3^6; //AT24C02串行数据5脚sbit SCL=P3^7; //AT24C02串行时钟6脚void start_24c02(); //开始void stop_24c02(); //停止void response_24c02(bit); //应答void write_8bit(uchar); //写8位void write_byte(uchar,uchar); //写一字节void write_list(uchar, uchar *); //写*指向的数据(以'\n'作结束)uchar read_8bit(); //读8位uchar read_byte(uchar); //从某一地址读1字节void read_list(uchar,uchar *); //从某一地址开始连续读,存到*所指位置/********************开始,在读\写前调用********************/void start_24c02(){SDA=1;_nop_();_nop_();SCL=1;_nop_();_nop_();SDA=0;_nop_();_nop_();}/********************结束,在读\写完后调用********************/void stop_24c02(){SDA=0;_nop_();_nop_();SCL=1;_nop_();_nop_();SDA=1;_nop_();_nop_();}/********************应答当单片机写时,ack=1,为等待24c02的应答信号当单片机读时,ack=0,为向24c02发送应答信号********************/void respons_24c02(bit ack) //ak为1则单片机接收24c02的应答信号;ak为0则24c02接收单片机的应答信号{uchar i=0;SDA=ack;while(i<250&&SDA==1)i++;SCL=1;_nop_();_nop_();SCL=0;_nop_();SDA=1;}/********************向24c02写入一字节(8位)的数据********************/void write_8bit(uchar dat) {uchar i;SCL=0;for(i=0;i<8;i++){dat=dat<<1;SDA=CY;SCL=1;_nop_();_nop_();SCL=0;_nop_();_nop_();}}/********************从24c02读取一字节(8位)的数据********************/ uchar read_8bit(){uchar i,k;for(i=0;i<8;i++){SCL=1;_nop_();_nop_();k=(k<<1)|SDA;SCL=0;_nop_();_nop_();}return k;}/********************向地址addr写入数据dat********************/void write_byte(uchar addr,uchar dat){start_24c02();write_8bit(W24C02);respons_24c02(1);write_8bit(addr);respons_24c02(1);write_8bit(dat);respons_24c02(1);stop_24c02();}/********************从地址addr形如连续写入list中的数据,以'\n'为结束标志********************/void write_list(uchar addr, uchar *list) {uchar i=0;start_24c02();write_8bit(W24C02);respons_24c02(1);write_8bit(addr);respons_24c02(1);do{if(i==0||i%8!=0) //判断是否到了页的边缘{write_8bit(list[i]);respons_24c02(1);}else{stop_24c02(); //写完一页,则进入启动内部写周期do{start_24c02();write_8bit(W24C02);SDA=1;//delay(2);}while(SDA==1); //等待24c02完成写周期发出的应答信号,从而继续下一个读写操作SCL=1;_nop_();_nop_();SCL=0; //应答write_8bit(i);respons_24c02(1);write_8bit(list[i]);respons_24c02(1);}}while(list[i++]!='\n');stop_24c02();}/********************从addr中读取一字节数据返回dat********************/uchar read_byte(uchar addr){uchar dat;start_24c02();write_8bit(W24C02);respons_24c02(1);write_8bit(addr);respons_24c02(1);start_24c02();write_8bit(R24C02);respons_24c02(1);dat=read_8bit(); //读取一字节后若发送停止指令,则结束并返回datstop_24c02();return dat;}/********************从地址addr开始连续读取数据,并存入list中以'\n'为结束********************/void read_list(uchar addr,uchar *list){uchar i=0;start_24c02();write_8bit(W24C02);respons_24c02(1);write_8bit(addr);respons_24c02(1);start_24c02();write_8bit(R24C02);respons_24c02(1);do{list[i]=read_8bit(); //读取1字节后,若其不为结束标志,则发送应答信号,继续读下一个if(list[i]!='\n')respons_24c02(0);}while(list[i++]!='\n');stop_24c02();}。
本文档内容为在STM32条件下的24C02读写程序。
全文共分四部分,第一部分24C02的C程序,第二部分为24C02的.h程序,第三部分为端口与时钟配置函数,第四部分为主函数。
下面分别进行介绍。
第一部分:24C02的.c函数******************************************************************************/ #include "stm32f10x.h"#include "system_config.h"#include "24C02.h"u8 savedata[10]={10,9,8,7,6,5,4,3,2,1};/****************************************************************************** ** Function Name : AT24C02_SDA_IO_SET(uchar io_set)* Description : SDA方向控制* Input : None* Output : None* Return : None******************************************************************************* /void AT24C02_SDA_IO_SET(unsigned char io_set){GPIO_InitTypeDef GPIO_InitStructure;if(io_set){GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 ;//SDA 设置为输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_Init(GPIOB, &GPIO_InitStructure);}else{GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 ;//SDA 设置为输入GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;GPIO_Init(GPIOB, &GPIO_InitStructure);}}/****************************************************************************** ** Function Name : delay2* Description : 延时函数* Input : None* Output : None* Return : None******************************************************************************* /void delay2(u8 x){u8 i;for(i=0;i<x;i++);}/****************************************************************************** ** Function Name : delay2* Description : 延时函数* Input : None* Output : None* Return : None******************************************************************************* /void delay_nop(void){uint8_t i=10;//延时1.5uswhile(i--);}/****************************************************************************** ** Function Name : 24C02_init()* Description : 初始化函数* Input : None* Output : None* Return : None******************************************************************************* /void I2C_init(void){//SCL=1SCL_H;delay_nop();//SDA=1SDA_H;delay_nop();}/****************************************************************************** ** Function Name : I2C_start()* Description : 开始信号* Input : None* Output : None* Return : None******************************************************************************* /void I2C_start(){SDA_H;delay_nop();SCL_H;delay_nop();SDA_L;delay_nop();SCL_L;delay_nop();}/****************************************************************************** ** Function Name : I2C_stop()* Description : 开始信号* Input : None* Output : None* Return : None******************************************************************************* /void I2C_stop(){SDA_L;delay_nop();SCL_H;delay_nop();SDA_H;delay_nop();}/****************************************************************************** ** Function Name : I2C_write_bit()* Description : 开始信号* Input : None* Output : None* Return : None******************************************************************************* /void I2C_write_bit(int j){int i,temp,temp1;temp=j;//AT24C02_SDA_IO_SET(1);//发送数据for(i=0;i<8;i++){temp1=temp&0x80;//高位在前相与temp=temp<<1;SCL_L;//时钟线设为低delay_nop();if(temp1==0x80)//发送数据到SDA线上{SDA_H;delay_nop();}else{SDA_L;delay_nop();}SCL_H;//时钟线设为高,开始传输数据delay_nop();}SCL_L;//一个字节发送完成delay_nop();SDA_H;delay_nop();}/****************************************************************************** ** Function Name : I2C_read_bit()* Description : 读取一个字节数据* Input : None* Output : None* Return : None******************************************************************************* /u8 I2C_read_bit(){u8 i,j,k=0;SCL_L;delay_nop();SDA_H;delay_nop();A T24C02_SDA_IO_SET(0);//SDA设置为输入for(i=0;i<8;i++){delay_nop();SCL_H;delay_nop();if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_7)==1)j=1;elsej=0;k=(k<<1)|j;SCL_L;delay_nop();}A T24C02_SDA_IO_SET(1);//SDA设置为输出delay_nop();return(k);}/****************************************************************************** ** Function Name : I2C_reply()* Description : 读取应答信号* Input : None* Output : None* Return : None******************************************************************************* /void I2C_reply(){u16 i=0;A T24C02_SDA_IO_SET(0);//SDA设置为输入SCL_H;delay_nop();while((GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_7)==1)&&(i<5000))i++;SCL_L;delay_nop();A T24C02_SDA_IO_SET(1);//SDA设置为输出}/****************************************************************************** ** Function Name : I2C_write_addr()* Description : 指定地址写* Input : None* Output : None* Return : None******************************************************************************* /void I2C_write_addr(u8 addr,u8 data){I2C_start();//开始信号I2C_write_bit(0xa0);//发送写命令I2C_reply();//等待应答I2C_write_bit(addr);//发送写地址I2C_reply();//等待应答I2C_write_bit(data);//发送写数据I2C_reply();//等待应答I2C_stop();//停止信号delay2(250);}/****************************************************************************** ** Function Name : I2C_read_addr()* Description : 指定地址读* Input : None* Output : None* Return : None******************************************************************************* /int I2C_read_addr(int addr){int i=0;I2C_start();//开始信号I2C_write_bit(0xa0);//发送写命令因为要先写入要读的地址I2C_reply();//等待应答I2C_write_bit(addr);//发送读地址I2C_reply();//等待应答I2C_start();//开始信号I2C_write_bit(0xa1);//发送读命令I2C_reply();//等待应答i=I2C_read_bit();I2C_stop();//停止信号delay2(250);return(i);}第二部分:24C02的.h函数#define SCL_H GPIO_SetBits(GPIOB,GPIO_Pin_6)#define SCL_L GPIO_ResetBits(GPIOB,GPIO_Pin_6)#define SDA_H GPIO_SetBits(GPIOB,GPIO_Pin_7)#define SDA_L GPIO_ResetBits(GPIOB,GPIO_Pin_7)#define Write_able GPIO_ResetBits(GPIOB,GPIO_Pin_5)//24C02写使能控制引脚void AT24C02_SDA_IO_SET(unsigned char io_set);void delay2(u8 x) ;void delay_nop(void);void I2C_init(void);void I2C_start();void I2C_stop();void I2C_write_bit(int j);u8 I2C_read_bit();void I2C_reply();void I2C_write_addr(u8 addr,u8 data) ;int I2C_read_addr(int addr) ;第三部分:端口与时钟配置函数由于我们使用的是PB6作为时钟线,PB7作为数据线,所以端口配置PB6,PB7就可以了。
HT49 MCU系列单片机读写HT24系列的EEPROM应用范例HT49 MCU系列单片机读写HT24系列的EEPROM应用范例文件编码:HA0017s简介:HT24系列的EEPROM是通过I2C协议控制其读写的。
HT49系列单片机的接口部分是简单I/O 口,可以用来很方便地采用I2C协议控制周边器件。
HT24系列的EEPROM总共8个管脚,三个为芯片地址脚A0、A1、A2,在单片机对它进行操作时,从SDA输入A0、A1、A2数据和芯片外部A0、A1、A2所接地址需一一对应。
一个为芯片写保护脚WP,WP脚接低电平时,芯片可进行读写操作;WP脚接高时,芯片只可进行读,不可进行写。
另外两个管脚为电源脚VCC,VSS。
用单片机对HT24系列的EEPROM进行控制时,HT24系列的EEPROM的外部管脚VCC、VSS、WP、A0、A1、A2根据需要,对应接上,SDA、SCL接到单片机控制脚上。
引脚名称I/O 功能描述A0~A2 I地址输入VSS I电源负极输入SDA I/O串行数据输入/输出SCL I串行数据传送时钟信号输入WP I写保护VCC I电源正极输入HT24系列的EEPROM根据型号不同,EEPROM的容量大小不同,当EEPROM的空间大于1页(256bytes)时,即大于2048bits,则HT49 MCU需要控制A0、A1、A2来确定写HT24系列的EEPROM的第几页,HT24系列的EEPROM空间大小如下表所示:型号引脚A0、A1及A2使用方法容量大小HT24LC02 A0、A1、A2引脚作为器件地址输入,从SDA输入A0、A1、A2数据和芯片引脚A0、A1、A2所接状态需一一对应2K(256×8)HT24LC04 A1、A2引脚作为器件地址输入,从SDA输入A1、A2数据和芯片引脚A1、A2所接状态需一一对应,A0引脚浮空4K(512×8,2pages)HT24LC08 A2引脚器件地址输入,从SDA输入A2数据和芯片引脚A2所接状态需一一对应,其余引脚浮空8K(1024×8,4pages)HT24LC16 A0、A1、A2全部浮空,不必接16K(2048×8,8pages)HT49 MCU系列单片机读写HT24系列的EEPROM应用范例程式说明:本文是以HT49R30A-1控制HT24LC04为例的。
I2C协议只需要两根线进行控制,一根时钟线SCL,一根数据线SDA。
用单片机对HT24LC04进行控制时,HT24LC04外部管脚VCC、VSS、WP、A1、A2根据需要,对应接上(本例中是与VSS相接,即A1、A2=00),SDA、SCL接到单片机控制脚上。
在这个例程中SCL接到pa.3脚,SDA接到pa.1脚。
程序的过程是这样的:先向EEPROM 中某个地址写55H,写完后,再将EEPROM中内容读出来,并将读出数据和55H进行比较,若数据不相等程序跳到fail_out中;若相等,最后程序跳到ok_end中。
例程中只是对第0页中的特定地址进行写操作后,再将该地址的内容读出。
关于HT24系列的EEPROM其它操作只要严格按其时序要求,并注意从SDA输入A0、A1、A2数据和芯片引脚A0、A1、A2所接状态需一一对应即可。
例程:; file name: 4924_WR.asm; 作者:盛扬半导体(上海)有限公司软件部; 目的:用HT49系列单片机控制24系列EEPROM; 注意: 在mask_option中,PA0~PA3须选择NMOS有上拉电阻include ht49r30a-1.inc;----------------------------;equ定义区间pa.3 ;时钟信号引脚定义scl equpa.1 ;串行数据引脚定义sda equ[70h] ;写暂存器read_out equwrite_in equ[71h] ;读暂存器word_address equ [72h][73h]equdata_8;----------------------------;----------------------------;宏定义;延迟宏,延迟100微秒d_1 macrolocal labela,64hmovdelay,amovlabel:sdzdelaylabeljmpendmHT49 MCU系列单片机读写HT24系列的EEPROM应用范例;---------------------------;---------------------------;数据区e2prom .section 'data'?delay db;----------------------------;----------------------------;代码段eepromc .section 'code'00horgstartjmpstart:a,055h;设写入值为055Hmovwrite_in,amova,14h ;写入14H为要操作的EEPROM的地址movword_address,amovrandom_write_cycle:sdasetd_1sclsetd_1sda ;起始信号clrsclclrsda ;1setd_1setscld_1sclclrclrsda ;0sclsetd_1sclclrsda ;1setd_1setscld_1HT49 MCU系列单片机读写HT24系列的EEPROM应用范例 sclclrsda ;0clrsclsetd_1clrscl;A2,A1,A0=0sdaclrsclsetd_1sclclrsclsetd_1clrsclsclsetd_1clrsclwritemode;0sdaclrsclsetd_1clrsclack,for设为输入口,接收应答信号;1setsdad_1;read_modify_writesclsetd_1skch:sda ;应答信号szskchjmpsclclra,08hmovdata_8,a ;一个字节八位movwrite_address_in:sdaclrword_address.7szsdasetd_1sclsetd_1HT49 MCU系列单片机读写HT24系列的EEPROM应用范例clr sclrl word_addresssdz data_8jmp write_address_inset sdad_1set scld_1wdow:sdaszwdowjmpsclclra,08hmovdata_8,amovwrite_data_in:sdaclrwrite_in.7szsdasetd_1sclsetd_1sclclrwrite_inrldata_8sdzjmpwrite_data_insdaclrsclsetd_1sclclrsclsetd_1sda ;停止信号setd_1clrscl;-----------读read_random_1:setsdad_1HT49 MCU系列单片机读写HT24系列的EEPROM应用范例 sclsetd_1sda ;开始信号clrsclclrsda ;1setd_1setscld_1sclclrclrsda ;0sclsetd_1sclclrsda ;1setd_1setscld_1sclclrsda ;0clrsclsetd_1sclclrclr;A2,A1,A0=0,0,0sdasclsetd_1sclclrsclsetd_1sclclrsclsetd_1sclclrmodewriteclrsda;0HT49 MCU系列单片机读写HT24系列的EEPROM应用范例 sclsetd_1clrsclacksetsda ;ford_1sclsetd_1flel:sdaszread_random_1jmpsclclra,08hmovdata_8,amovread_address_in:sdaclrword_address.7szsetsdad_1sclsetd_1sclclrword_addressrldata_8sdzread_address_injmpack;forsetsdad_1sclsetd_1skco:sdaszskcojmpsclclrrestart:sdasetd_1sclsetd_1sda ;起始信号clrHT49 MCU系列单片机读写HT24系列的EEPROM应用范例 sclclrsda ;1setd_1sclsetd_1sclclrsda ;0clrsclsetd_1sclclrsda ;1setd_1sclsetd_1sclclrsda ;0clrsclsetd_1clrscl;A2,A1,A0=0sdaclrsclsetd_1sclclrsclsetd_1sclclrsclsetd_1sclclrmode;1readsdasetd_1sclsetd_1sclclrHT49 MCU系列单片机读写HT24系列的EEPROM应用范例ack;forsetsdad_1sclsetd_1ewfp:sdaszewfpjmpa,08hmovdata_8,amovflow_out:sclclrsda ;设定为输入口setd_1read_out.7clrsdaszsetread_out.7d_1sclsetd_1read_outrldata_8sdzflow_outjmpsclclrsdaclrsetscld_1sda ;停止信号setd_1;将读出数据与55H比较a,055hmova,read_outxorzsnzfail_outjmpok_endjmpfail_out:jmp $ ;操作失败ok_end:jmp $ ;操作成功;HT49R30A-1通过HT49 MCU系列单片机读写HT24系列的EEPROM应用范例注意事项:1、需要注意HT24系列EEPROM中A0的用法。
在HT24LC04中A0是作为地址位用的。
2、读出数据时是在下降沿,写入数据是在上升沿。
3、49系列 I/O 口为简单 I/O 口,PCB与HT24系列的EEPROM之间存在杂散电容C,PCB以及HT24系列的EEPROM与I/O之间的连线等效电阻R;因为T = RC,可能使时钟信号以及数据产生错误,所以在每次SET指令之后加一段延时。
本例适用于读写HT24系列的EEPROM第0页的特定地址操作,若要对其它页进行操作,改变相应的A0、A1、A2数据,从SDA输入即可。