双电层型超级电容器的工作原理电介质
- 格式:ppt
- 大小:3.34 MB
- 文档页数:15
超级电容器的工作原理根据存储电能的机理不同,超级电容器可分为双电层电容器(Electric double layercapacitor, EDLC)和赝电容器(Pesudocapacitor)。
2.1 双电层电容器原理双电层电容器是通过电极与电解质之间形成的界面双层来存储能量的新型元器件,当电极与电解液接触时,由于库仑力、分子间力、原子间力的作用,使固液界面出现稳定的、符号相反的双层电荷,称为界面双层。
双电层电容器使用的电极材料多为多孔碳材料,有活性炭(活性炭粉末、活性炭纤维)、碳气凝胶、碳纳米管。
双电层电容器的容量大小与电极材料的孔隙率有关。
通常,孔隙率越高,电极材料的比表面积越大,双电层电容也越大。
但不是孔隙率越高,电容器的容量越大。
保持电极材料孔径大小在2,50 nm 之间提高孔隙率才能提高材料的有效比表面积,从而提高双电层电容。
2.2 赝电容器原理赝电容,也叫法拉第准电容,是在电极材料表面或体相的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附或氧化/还原反应,产生与电极充电电位有关的电容。
由于反应在整个体相中进行,因而这种体系可实现的最大电容值比较大,如吸附型准电容为2 000×10–6 F/cm2。
对氧化还原型电容器而言,可实现的最大容量值则非常大[9],而碳材料的比容通常被认为是20×10–6 F/cm2,因而在相同的体积或重量的情况下,赝电容器的容量是双电层电容器容量的10,100 倍。
目前赝电容电极材料主要为一些金属氧化物和导电聚合物。
金属氧化物超级电容器所用的电极材料主要是一些过渡金属氧化物,如:MnO2、V2O5、2、NiO、H3PMo12O40、WO3、PbO2和Co3O4等[10]。
金属氧化物作为超级电容器电RuO2、IrO极材料研究最为成功的是RuO2,在H2SO4电解液中其比容能达到700,760F/g。
但RuO2稀有的资源及高昂的价格限制了它的应用。
超级电容电池的结构和工作原理超级电容的容量比通常的电容器大得多。
由于其容量很大,对外表现和电池相同,因此也称作“电容电池”或说“黄金电池”。
超级电容器电池也属于双电层电容器,它是目前世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量.传统物理电容中储存的电能来源于电荷在两块极板上的分离,两块极板之间为真空(相对介电常数为1)或一层介电物质(相对介电常数为ε)所隔离,电容值为:C = ε·A / 3.6 πd ·10-6 (μF) 其中A为极板面积,d为介质厚度。
所储存的能量为: E = C (ΔV)2/2,其中C为电容值,ΔV为极板间的电压降.可见,若想获得较大的电容量,储存更多的能量,必须增大面积A或减少介质厚度d,但这个伸缩空间有限,导致它的储电量和储能量较小。
超级电容采用活性炭材料制作成多孔电极,同时在相对的碳多孔电极之间充填电解质溶液,当在两端施加电压时,相对的多孔电极上分别聚集正负电子,而电解质溶液中的正负离子将由于电场作用分别聚集到与正负极板相对的界面上,从而形成两个集电层,相当于两个电容器串联,由于活性碳材料具有≥1200m2/g的超高比表面积(即获得了极大的电极面积A),而且电解液与多孔电极间的界面距离不到1nm(即获得了极小的介质厚度d),根据前面的计算公式可以看出,这种双电层电容器比传统的物理电容的容值要大很多,比容量可以提高100倍以上, 从而使单位重量的电容量可达100F/g,并且电容的内阻还能保持在很低的水平,碳材料还具有成本低,技术成熟等优点。
从而使利用电容器进行大电量的储能成为可能,且在实际使用时,可以通过串联或者并联以提高输出电压或电流。
超级电容电池的特点:(1)充电速度快,只要充电几十秒到几分钟就可达到其额定容量的95%以上;而现在使用面积最大的铅酸电池充电通常需要几个小时。
什么是超级电容超级电容器(supercapacitor),又叫双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容,通过极化电解质来储能。
它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。
超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。
超级电容器向快速充电与大功率发展充电1分钟即可驱动小型笔记本电脑运行近1个半小时--在2004年10月于幕张MESSE举行的IT博览会“CEATEC JAPAN”上,这种快速充电的演示成了人们关心的话题。
一般笔记本电脑的充电电池要充满电至少需要1个小时。
但“双电层电容器”却大幅缩短了这一时间。
超级电容器是介于电容器和电池之间的储能器件,它既具有电容器可以快速充放电的特点,又具有电化学电池的储能机理。
超级电容器也可以分为两类:(1)以活性炭材料为电极,以电极双电层电容的机制储存电荷,通常被称作双电层电容器(DLC);(2)以二氧化钌或者导体聚合物等材料为阳极,以氧化还原反应的机制存储电荷,通常被称作电化学电容器。
作为一种新型储能元件,电化学电容器的电容量可高达法拉级甚至上万法拉,能够实现快速充放电和大电流发电,并比蓄电池具有更高的功率密度(可达1,000W/kg数量级)、和更长的循环使用寿命(充放电次数可达10万次),同时可在极低温等极端恶劣的环境中使用,并且无环境污染。
这些特点使得电化学电容器在电动汽车、通讯、消费和娱乐电子、信号监控等领域的电源应用方面具有广阔的市场前景。
有业内专家预测,仅就中国市场而言,目前的年需求量可达2,150万只,而整个亚太地区的总需求量则超过9,000万只。
美国市场研究公司Frost & Sullivan不久前发布的一份报告也预计,2002年到2009年之间,全球超级电容器产业的产量和销售收入这两项数据将分别以157%和49%的年复合增长率保持高速增长。
超级电容技术原理简介超级电容器(Supercapacitor ultraca-pacitor) 又叫双电层电容器(Electrical Double-Layer Capacitor),它不但具有电容的特性,同时也具有电池特性,是一种介于电池和电容之间的新型特殊的储能元器件。
超级电容器是利用活性炭多孔电极和电解质组成的双电层结构获得超大电容量的。
众所周知,传统电容器的面积是导体的平板面积,为了获得较大的容量,导体材料卷制得很长,有时用特殊的组织结构来增加它的表面积。
传统电容器是用绝缘材料分离它的两极板,一般为塑料薄膜、纸等,这些材料通常要求尽可能的薄。
超级电容器在分离出的电荷中存储能量,用于存储电荷的面积越大、分离出的电荷越密集,其电容量越大。
超级电容器的极板面积是基于多孔炭材料,该材料的多孔结构允许其面积达到2000m2/g,通过一些措施可实现更大的表面积。
超级电容器电荷分离开的距离是由被吸引到带电电极的电解质离子尺寸决定的。
该距离和传统电容器薄膜材料所能实现的距离更小。
这种庞大的表面积再加上非常小的电荷分离距离使得超级电容器较传统电容器而言有惊入大的静电容量,故称其为“超级电容器”。
超级电容器拥有比传统电容器高出数千倍的电容值,目前常用的超级电容器的电容量是(0.1F~5000F),最高可达上万F(法拉)。
与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程,性能十分稳定。
它具有功率密度大、重量轻、体积小、充电时间短、安全系数高、使用寿命长、低温特性卓越、免维护、节约能源和绿色环保等诸多特点。
因而其用途极其广泛,发展前景非常看好,世界各国在此方面的重视程度和研发投入正在快速提高。
超级电容器的出现,填补了传统电容器和各类电池间的空白。
它最初在电力系统得到广泛的应用,此外用作起重装置的电力平衡电源,可提供超大电流的电力;用作车辆启动电源,启动效率和可靠性都比传统的蓄电池高,可以全部或部分替代传统的蓄电池;用作车辆的牵引能源可以生产电动汽车、替代传统的内燃机、改造现有的无轨电车;用在军事上可保证坦克、装甲车等战车的顺利启动(尤其是在寒冷的冬季)、又可作为激光武器的脉冲能源等。
超级电容器原理及电特性详细分析超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。
1. 级电容器的原理及结构1.1 超级电容器结构图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(t etraetry lanmmonium perchlorate)。
工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定:其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界面的表面面积。
图1超级电容器结构框图由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一特性是介于传统的电容器与电池之间。
电池相较之间,尽管这能量密度是5%或是更少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。
这种超级电容器有几点比电池好的特色。
1.2 工作原理超级电容器是利用双电层原理的电容器,原理示意图如图2。
当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。
当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。
由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。
超级电容原理
超级电容是一种电子元件,它具有非常高的电容量和超低的内阻,常用于储能和快速放电的应用。
超级电容的原理基于电荷的吸附和去吸附过程。
它由两个电极(通常是碳材料)和一个介质(电解质)构成。
在超级电容中,当电压施加在电极之间时,电解质中的正负离子会吸附在电极表面上,形成一个内部双电层结构。
这个双电层结构由两个层次组成,即溶液亲和层和电解界面。
当电荷从电极进入电解质中时,溶液亲和层中的离子会相应地反应。
正离子会被吸附到负极上,负离子则被吸附到正极上。
这种吸附过程具有很高的速度和效率,因此超级电容能够实现快速充放电。
超级电容还可以通过表面物理吸附和电化学吸附来实现电荷的存储。
在表面物理吸附中,电荷通过静电力吸附在电极表面上。
在电化学吸附中,电荷通过氧化还原反应在电极表面上进行储存。
超级电容的两个电极之间的电压与电荷量之间的关系是线性的,这意味着电容器可以在很短的时间内存储和释放大量的电荷。
此外,由于超级电容的内部阻抗非常低,它能够提供非常低的能量损耗。
总之,超级电容通过电荷的吸附和去吸附过程来存储和释放能
量。
它具有高电容量、低内阻和快速充放电的特点,广泛应用于储能、电动车辆、电子产品等领域。
•超级电容器的原理、结构和特点•Maxwell超级电容器结构超级电容的容量比通常的电容器大得多。
由于其容量很大,对外表现和电池相同,因此也有称作“电容电池”。
超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。
超级电容器原理电化学双层电容器(EDLC)因超级电容器被我们所熟知。
超级电容器利用静电极化电解溶液的方式储存能量。
虽然它是一个电化学器件,但它的能量储存机制却一点也不涉及化学反应。
这个机制是高度可逆的,它允许超级电容器充电放电达十万甚至数百万次。
超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关的多孔板。
对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。
这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另外一层。
传统的电解电容器存储区域来自平面,导电材料薄板。
高电容是通过大量的材料折叠。
可能通过进一步增加其表面纹理,进一步增加它的表面积。
过去传统的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。
电介质越薄,在空间受限的区域越可以获得更多的区域。
可以实现对介质厚度的表面面积限制的定义。
超级电容器的面积来自一个多孔的碳基电极材料。
这种材料的多孔结构,允许其面积接近2000平方米每克,远远大于通过使用塑料或薄膜陶瓷。
超级电容器的充电距离取决于电解液中被吸引到电极的带电离子的大小。
这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。
巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。
超级电容器内部结构超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。
由于制造商或特定的应用需求,这些材料可能略有不同。
所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。
超级电容器工作原理引言概述:超级电容器是一种高容量、高功率密度的电子元件,其工作原理基于电荷的吸附和电解质的离子迁移。
本文将详细介绍超级电容器的工作原理,包括电荷的吸附、电解质的离子迁移以及超级电容器的优势和应用领域。
一、电荷的吸附1.1 电荷吸附的概念电荷吸附是指超级电容器中的正极和负极表面通过吸引电子和离子,将电荷储存起来的过程。
1.2 电荷吸附的机制电荷吸附的机制主要包括物理吸附和化学吸附两种方式。
物理吸附是指电子在电极表面形成双电层结构,电荷储存在电极表面;化学吸附则是指离子通过氧化还原反应与电极表面发生化学反应,形成电荷储存。
二、电解质的离子迁移2.1 电解质的作用电解质是超级电容器中的重要组成部分,其主要作用是提供离子迁移的通道,以实现电荷的储存和释放。
2.2 离子迁移的过程离子迁移是指电解质中的离子在外加电压的作用下,从正极迁移到负极或从负极迁移到正极的过程。
这种迁移过程通过电解质中的孔隙和溶液中的离子进行。
三、超级电容器的优势3.1 高容量和高功率密度超级电容器相比传统电容器具有更高的容量和功率密度,能够在短时间内存储和释放大量的能量。
3.2 长寿命和低内阻超级电容器的寿命通常比电池更长,且内阻较低,能够快速响应电路的需求。
3.3 环境友好和可循环利用超级电容器不含有有害物质,且可以进行多次充放电循环,具有较好的环境友好性。
四、超级电容器的应用领域4.1 电动汽车超级电容器可以作为电动汽车的辅助能量存储装置,提供高功率的瞬时加速和能量回收功能。
4.2 可再生能源超级电容器可以储存可再生能源(如太阳能和风能)的电能,平衡能源供应和需求之间的差异。
4.3 电子设备超级电容器可以应用于电子设备中,提供快速充电和长寿命的能量存储功能,如智能手机和手表。
五、总结超级电容器的工作原理基于电荷的吸附和电解质的离子迁移。
通过电荷的吸附和离子的迁移,超级电容器能够实现高容量、高功率密度的能量存储和释放。