2014年浙江大学研究生入学考试高等代数试题
- 格式:doc
- 大小:152.00 KB
- 文档页数:1
2014年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( ) (A )2n aa >(B )2n a a <(C )1n a a n >-(D )1n a a n<+(2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+(C )1sin y x x =+ (D )21sin y x x=+(3) (A ) (B ) (C ) (D )(4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥ (D )当'()0f x ≤时,()()f x g x ≥(5)行列式0000000ab a bcd cd =(A )2()ad bc - (B )2()ad bc -- (C )2222a dbc - (D )2222b c a d -(6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设123,,X X X 为来自正态总体2(0,)N σ服从的分布为 (A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。
2014年全国硕士研究生入学统一考试数学(二)试题及答案解析一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)当x →0+时,若1ln (12),(1-cos )x x αα+均是比x 高阶的无穷小,则α的取值范围是( ) (A )),(∞+2 (B )(1,2) (C )),(121 (D ))(210, 【答案】B【解析】当x →0+时,∵()()ln12~2x x αα+,111211(1cos )~()()22x x ααα-=·2x α ,∴由2111 2.ααα>>⇔<<且(2)下列曲线有渐近线的是( )(A ).sin x x y += (B ).sin 2x x y +=(C ).1sin x x y += (D )21sin .y x x=+【答案】C【解析】1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]lim sin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==∴y=x 是y=x +1sin x的斜渐近线注:渐近线有3种:水平、垂直、斜渐近线。
本题中(A)(B)(D)都没有渐近线,(C)只有一条斜渐近线。
(3)设函数()f x 具有2阶导数,()()()()011g x f x f x =-+,则在区间[0,1]上( )(A)当0f x '≥()时,()()f x g x ≥.(B)当0f x '≥()时,()()f x g x ≤ (C)当0f ''≥时,()()f x g x ≥.(D)当0f ''≥时,()()f x g x ≤【答案】D【解析】方法1:(利用函数的凹凸性)当() 0f x "≥时,()f x 是凹函数,而()g x 是连接()()0,0f 与()1,1f ()的直线段,如右图 故()()f xg x ≤方法2:(利用函数的单调性)()()()h x g x f x =-令,则(0)(1)0h h ==,由洛尔定理知,(0,1)()0,h ξξ'∃∈=,使若()0f x ''≥,则()0,()h x h x '''≤单调递减, 当(0,)x ξ∈时,()()0h x h ξ''≥=,()h x 单调递增,()(0)0,g(x)()h x h f x ≥=≥即; 当(,1)x ξ∈时,()()0h x h ξ''≤=,()h x 单调递减,()(1)0,g(x)()h x h f x ≥=≥即;注:当0f x '≥()时,只能说明()f x 是单调增加的,但增加的方式可能是以凸的形式,也可能是以凹的形式,若是前者,则()()f x g x ≥,此时(A)成立,如()f x x =;若是后者,则()()f x g x ≤,此时(B)成立,如2()f x x =.(4)曲线⎪⎩⎪⎨⎧++=+=,t t y ,t x 14722上对应1t =的点处的曲率半径是( )(A ).5010 (B ).10010 (C ).1010 (D ).105 【答案】C【解析】令()27x t t ϕ==+ ()241y t t t ψ==++则2,()2t t t ϕϕ'''=()=; ()24t t ψ'=+ ()2t ψ"=当t =1时,(1)2,(1)2(1)6,(1)2ϕϕψψ''''''====则332222|2226|811010(26)40K ⨯-⨯===+,曲率半径11010.K ρ== (5)设函数()arctan f x x =,若)()(ξf x x f '=,则22limx xξ→=( )(A )1. (B ).32 (C ).21(D ).31【答案】D【解析】由()()arctan , f x x f x ==()xf ξ'得21arctan 1x x ξ=⋅+ ()3322222|||()()()()|1[()()]y t t t t K y t t ϕψϕψϕψ''''''''-=='''++2arctan arctan x x x ξ-=,222232000011arctan arctan 11lim lim lim lim arctan 33x x x x x x x xx x x x xx ξ→→→→---+∴==== (6)设函数()u x y ,在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足0022222=∂∂+∂∂≠∂∂∂yux u y x u 及,则( ) (A )()u x y ,的最大值和最小值都在D 的边界上取得. (B )()u x y ,的最大值和最小值都在D 的内部取得.(C )()u x y ,的最大值在D 的内部取得,最小值在D 的边界上取得. (D )()u x y ,的最小值在D 的内部取得,最大值在D 的边界上取得. 【答案】A【解析】A=22u x ∂∂,B=2u x y∂∂∂,C=22u y ∂∂,22200 0B A C AC B A B ≠+=-=--<,,,∴D 内部无极值.(7)行列式=dc dc b a ba 00000000( )(A )2()ad bc - (B )2()ad bc --(C )2222a dbc - (D)2222b c a d -【答案】B【解析】41440000004(1)00(1)00000000a ba b a ba bc bd a c d c d c dc d++-+-按第行展开 32212(1)(1)()()()()()a b a b c b d a c dc dad bc bc ad ad bc ad bc bc ad ad bc ++=-⋅-+⋅⋅-=-⋅--=--=--注:此题按其它行或列展开计算都可以。
2014年全国硕士研究生入学统一考试数学(二)真题及答案(江南博哥)1[单选题]A.(2,+∞)B.(1,2)C.(,1)D.(0,)正确答案:B参考解析:2[单选题]下列曲线中有渐近线的是().A.y=x+sin xB.y=x2+sin xC.y=x+sinD.y=x2+sin正确答案:C参考解析:3[单选题]设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上().A.当f’(x)≥0时,f(x)≥g(x)B.当f'(x)≥0时,f(x)≤g(x)C.当f”(x)≥0时,f(x)≥g(x)D.当f”(x)≥0时,f(x)≤g(x)正确答案:D参考解析:令F(x)=g(x)-f(x)=f(0)(1-x)+f(1)x-f(x),则 F(0)=F(1)=0,F'(x)=-f(0)+f(1)-f’(x),F”(x)=-f”(x).若f”(x)≥0,则F”(x)≤0,此时F(x)在[0,1]上为凸的.又F(0)=F(1)=0,所以当x∈[0,1]时,F(x)≥0,从而g(x)≥f(x).4[单选题]().A.B.C.D.正确答案:C参考解析:5[单选题]().A.1B.C.D.正确答案:D参考解析:6[单选题]A.u(x,y)的最大值和最小值都在D的边界上取得B.u(x,y)的最大值和最小值都在D的内部取得C.u(x,y)的最大值在D的内部取得,最小值在D的边界上取得D.u(x,y)的最小值在D的内部取得,最大值在D的边界上取得正确答案:A参考解析:由题意知,B≠0,A,C互为相反数.由于AC—B2<0,可知u(x,y)在D内无极值.而最值只可能在极值点、不可导点和区间端点(或区域边界)处取得,因此可知u(x,y)的最大值和最小值均在区域D的边界处取得.7[单选题]A.(ad—bc)2B.-(ad—bc)2C.a2d2-b2c2D.b2c2-a2d2正确答案:B参考解析:利用行列式的展开定理,按列步步展开,可得提示:本题也可用特殊值代入,通过排除,从而得出正确答案.令a=d=0,可得行列式值为-(bc)2,排除A、D项;令b=c=0,可得行列式值为-(ad)2,排除C项,故B项正确.8[单选题]设α1,α2,α3均为三维向量,则对任意的常数k,l,向量组α1+kα+lα3,线性无关是向量组α1,α2,α3线性无关的().3,α2A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件正确答案:A参考解析:9[填空题]_______.参考解析:【解析】10[填空题]设f(x)是周期为4的可导奇函数,且f’(x)=2(x-1),x∈[0,2],则f(7)=_______. 参考解析:1【解析】由题意知,当x∈[0,2]时,又f(x)是周期为4的奇函数,可知f(0)=C=0,f(7)=f(-1)=-f(1)=1.11[填空题]_______. 参考解析:【解析】解法一将方程两边对x,y分别求偏导数,得12[填空题]曲线L的极坐标方程是r=θ,则L在点(r,θ)=()处的切线的直角坐标方程是_______.参考解析:【解析】13[填空题]一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度p(x)=-x2+2x+1,则该细棒的质心横坐标=_______.参考解析:【解析】14[填空题]设二次型f(x1,x2,x3)=的负惯性指数是1,则a的取值范围是_______.参考解析:[-2,2]【解析】配方法:f(x1,x2,x3)=(x1+ax3)2-(x2-2x3)2+(4-a2)由于二次型负惯性指数为1,所以4-a2≥0,故-2≤a≤2.15[简答题]参考解析:16[简答题]已知函数y=y(x)满足微分方程x2+y2y’=1-y’,且y(2)=0,求y(x)的极大值与极小值.参考解析:由x2+y2y '=1-y' ,得17[简答题]设平面区域D={(x,y)| 1≤x2+y2≤4,x≥0,y≥0}.参考解析:区域D关于y=x对称,且满足轮换对称性,即18[简答题]参考解析:19[简答题]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(I)(1I)参考解析:20[简答题]参考解析:21[简答题]已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)ln y.求曲线f(x,y)=0所围图形绕直线y=-1旋转所成旋转体的体积.参考解析:22[简答题](I)求方程组Ax=0的一个基础解系; (Ⅱ)求满足AB=E 的所有矩阵B . 参考解析:23[简答题]参考解析:。
2014年考研数学(二)试题答案速查一、选择题(1)B (2)C (3)D (4)C (5)D (6)A (7)B (8)A 二、填空题(9)3π8 (10)1 (11)1(d d )2x y −+ (12)2ππ2y x =−+ (13)2011 (14)]2,2[−三、解答题 (15)21. (16)(1)1y =为极大值,(1)0y −=为极小值. (17)34−. (18)22111()e e 444u u y f u u −⎛⎫==−− ⎪⎝⎭.(19)略. (20)1. (21)5π2πln24−. (22)(Ⅰ)T(1,2,3,1)ξ=−.(Ⅱ)123123123123261123212134313k k k k k k k k k k k k −−−−⎛⎫⎪−+−++ ⎪=⎪−+−++⎪⎝⎭B ,123,,k k k 为任意常数.(23)略.2014年全国硕士研究生入学统一考试数学(二)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)【答案】B.【解答】由定义02lim )2(lim )21(ln lim 1000===+−→→→ααααx xx x x x x x ,所以10,1αα−>>.当+→0x 时,ααα1212~)cos 1(x x −是比x 的高阶无穷小,所以210,2αα−><.故选择B.(2)【答案】C.【解答】C 选项,11sinsinlimlim1lim 1,x x x x x x a x x→∞→∞→∞+==+= 11lim[sin ]limsin 0x x b x x x x→∞→∞=+−==,所以x x y 1sin +=存在斜渐近线y x =,故选择C.(3)【答案】D.【解答】令)()1()1)(0()()()(x f x f x f x f x g x F −+−=−=,则0)1()0(==F F ,)()(),()1()0()(x f x F x f f f x F ''−='''−+−='.若()0,f x ''则()0,()F x F x ''在]1,0[上是凸的,又0)1()0(==F F ,故当]1,0[∈x 上时,()0F x ,从而()()g x f x ,故选择D.(4)【答案】C.【解答】22111122d 24d 3,1d 2d 2t t t t y t y t x t x t ====−+====−, 10101,)91(1)1(23232==+='+''=KR y y K ,故选择C. (5)【答案】D. 【解答】因,11)()(2ξξ+='=f x x f 所以)()(2x f x f x −=ξ,313111limarctan arctan lim )()(limlim220202022=+−=−=−=→→→→x x x x xx x f x x f x x x x x x ξ,故选择D. (6)【答案】A.【解答】记C A B yuC y x u B x u A ,,0,,,22222≠∂∂=∂∂∂=∂∂=互为相反数,故20AC B −<. 由于闭区域上连续函数必有极值,所以),(y x u 在D 内无极值,则极值在边界上取得.故选择A. (7)【答案】B.【解答】00000000a b abc d cd=0000000000000000c d c d a b a b c d d c a b b a −=2()c d d cad bc a b b a=⋅=−−. 故选择B.(8)【答案】A.【解答】132312310()(,,)01k ,l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα,记1323()k ,l =++A αααα,123(,,)=B ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r r r ===A BC C ,故1323k ,l ++αααα线性无关,所以13k +αα,23l +αα线性无关是向量组123,,ααα线性无关的必要条件;反之,未必成立,例如取3=α0,12,αα线性无关,虽然13k +αα,23l +αα线性无关,123,,ααα却线性相关,故选A.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)【答案】3π8. 【解答】1122111113πd d arctan 25(1)4228x x x x x x −∞−∞+===−∞++++⎰⎰. (10)【答案】1.【解答】由于]2,0[),1(2)(∈−='x x x f ,所以]2,0[,)1()(2∈+−=x C x x f ,又)(x f 为奇函数,故0)0(=f ,代入方程可得1−=C ,故]2,0[,1)1()(2∈−−=x x x f ,又)(x f 是周期为4的奇函数,则1)1()1()81()7(=−=−=+−=f f f f . (11)【答案】1(d d )2x y −+. 【解答】对方程两边同时对y x ,求偏导数得22e 210,e (22)20,yzyz z z y x x z z z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当21==y x 时,0=z ,故21,21)21,21()21,21(−=∂∂−=∂∂yz x z ,故11(,)221d (d d )2zx y =−+.(12)【答案】2ππ2y x =−+. 【解答】由直角坐标和极坐标的关系cos cos ,sin sin ,x r y r θθθθθθ==⎧⎨==⎩于是ππ(,)(,)22r θ=对应于π(,)(0,)2x y =,切线斜率d d cos sin d d d cos sin d yy x x θθθθθθθθ+==−, 所以π(0,)2d 2d πy x=−,从而切线方程为2ππ2y x =−+. (13)【答案】2011. 【解答】质心坐标为1010()d ()d x x x x x xρρ=⎰⎰,而11205()d (21)d 3x x x x x ρ=−++=⎰⎰,1120011()d (21)d 12x x x x x x x ρ=−++=⎰⎰,所以2011351211==x . (14)【答案】]2,2[−.【解答】3231222132142),,(x x x ax x x x x x f ++−==232232231)4()2()(x a x x ax x −+−−+,由于二次型的负惯性指数为1,故240a −,故22a −.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分)解:11221122(e 1)d (e 1)d limlim 11ln(1)xx t tx x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤−−−−⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12201e 1lim [(e 1)]limt xx t t t x x x t +→+∞→=−−=−−00e 11lim lim 222t t t t t t ++→→−===.(16)(本题满分10分)解:由y y y x '−='+122得,221)1(x y y −='+ ① 此时方程为可分离变量,通解为C x x y y +−=+333131,由0)2(=y 得32=C ; 由①可得2211)(y x x y +−=',当0)(='x y 时,1±=x ,且有 0)(,1;0)(,11;0)(,1<'>>'<<−<'−<x y x x y x x y x ,所以)(x y 在1−=x 处取得极小值,在1=x 取得极大值,且1)1(,0)1(==−y y , 故)(x y 的极限值为0,极大值为1. (17)(本题满分10分)解:如图因为D 关于x y =对称,由轮换对称性质,则22sin(π)d d Dx x y x y x y ++⎰⎰22sin(π)d d D y x y x y x y +=+⎰⎰ 所以,22sin(π)d d Dx x y I x y x y +=+⎰⎰22()sin(π)1d d 2D x y x y x y x y++=+⎰⎰ yxO12221x y +=224x y +=221sin(π)d d 2D x y x y =+⎰⎰π220113d sin πd 24r r r θ=⋅=−⎰⎰.(18)(本题满分10分) 解:由(e cos )x z f y =可得(e cos )e cos ,(e cos )(e sin )x x x x z zf y y f y y x y∂∂''=⋅=⋅−∂∂, 22(e cos )e cos e cos (e cos )e cos x x x x xz f y y y f y y x ∂'''=⋅⋅+⋅∂,22(e cos )(e sin )(e sin )(e cos )(e cos )x x x x xz f y y y f y y y ∂'''=⋅−⋅−+⋅−∂.由22222(4e cos )e x xz z z y x y∂∂+=+∂∂,并把以上式子代入得 22(e cos )e[4(e cos )e cos ]e xxx x x f y f y y ''⋅=+,即 (e cos )4(e cos )e cos x x xf y f y y ''−=,令 e cos xu y =得 ()4()f u f u u ''−= ① 特征方程为 042=−λ,特征根为2λ=±,通解2212e e uu y C C −=+.设方程①的特解b au y +=*,代入方程 得1,04a b =−=,特解为*4u y =−, 则原方程的通解为22121()ee 4uu y f u C C u −==+−,由0)0(,0)0(='=f f 得1211,1616C C ==−,则方程为22111()e e 444u u y f u u −⎛⎫==−− ⎪⎝⎭.(19)(本题满分10分) 证:(Ⅰ)由积分中值定理()d ()(),[,]xag t t g x a a x ξξ=−∈⎰,因为0()1g x ,故0()(),0()d ()xag x a x a g t t x a ξ−−−⎰;(Ⅱ)()d ()()()d ()d ua ua g t t aaF u f x g x x f x x +⎰=−⎰⎰令,()()()(()d )()u aF u f u g u f a g t t g u '=−+⋅⎰()[()(()d )]uag u f u f a g t t =−+⎰,由(Ⅰ)知0()d (),()d uuaag t t u a a a g t t u −+⎰⎰,由于)(x f 单调增加,则()(()d )0uaf u f ag t t −+⎰,所以()0,()F u F u '单调不减,则()()0F u F a =, 取b u =得()0F b ,即所证结论成立.(20)(本题满分11分)解:因为12(),()112x xf x f x x x==++,3()13x f x x =+,…,由数学归纳法可得()1n xf x nx =+,所以1100()d d 1n n x S f x x x nx==+⎰⎰, 111000d 1()d d 11ln(1)11n n nx x nS n f x x x n nx nx n===−=−+++⎰⎰⎰,从而可知lim 1n n nS →∞=.(21)(本题满分11分) 解:因为)1(2+=∂∂y yf,所以)(),(2),(2x x y y y x f ϕϕ其中++=为待定函数. 又因为2(,)(1)(2)ln f y y y y y =+−−,则()(2)ln y y y ϕ=−−,从而x x y x x y y y x f ln )2()1(ln )2(12),(22−−+=−−++=,所以0),(=y x f 对应的方程为2(1)(2)ln ,(12)y x x x +=−, 其所围图形绕直线1−=y 旋转所成旋转体的体积为222221111π(1)d π(2)ln d π2ln d πln d V y x x x x x x x x x =+=−=−⎰⎰⎰⎰π352π(2ln 21)(4ln 2)(2ln 2)π224=−−−=−.(22)(本题满分11分)解:(Ⅰ)对矩阵A 作初等行变换,可得123410010111010212030013−−⎛⎫⎛⎫ ⎪ ⎪=−→− ⎪ ⎪ ⎪ ⎪−−⎝⎭⎝⎭A ,则方程组=Ax 0的一个基础解系为T)1,3,2,1(−=ξ. (Ⅱ)对矩阵()AE 作初等行变换,有12341001234100()0111010011101012030010431101−−−−⎛⎫⎛⎫⎪ ⎪=−→− ⎪ ⎪ ⎪ ⎪−−−⎝⎭⎝⎭A E123410010012610111010010213100131410013141−−−⎛⎫⎛⎫ ⎪ ⎪→−→−−− ⎪ ⎪ ⎪ ⎪−−−−−−⎝⎭⎝⎭. 记T3T 2T 1)1,0,0(,)0,1,0(,)0,0,1(===e e e ,则1e x A =的通解为T1111T1),31,21,2()0,1,1,2(k k k k ξk x +−+−−=−−+=, 2e x A =的通解为T2222T2),34,23,6()0,4,3,6(k k k k k x +−+−−=−−+=ξ, 3e x A =的通解为T3333T3),31,21,1()0,1,1,1(k k k k k x ++−−=−+=ξ,所以,123123123123261123212134313k k k k k k k k k k k k −−−−⎛⎫⎪−+−++ ⎪=⎪−+−++⎪⎝⎭B ,123,,k k k 为任意常数.(23)(本题满分11分)证:不妨设111111111⎛⎫ ⎪⎪= ⎪⎪⎝⎭A ,00100200B n ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,则, ()()111...111...111...111 (1)..................11...111...1n n n λλλλλλλλλ−−−−−−−−−−−−==−=−−−−−−E A ,特征值为1210,n n n λλλλ−=====,()10...10 (2).........00...n n n λλλλλλ−−−−==−−E B ,特征值为1210,n n n λλλλ−=====,因为矩阵A 为对称阵,所以必可以对角化,相似于矩阵00n ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭Λ; 对于矩阵B ,当0λ=时,(0)()1r r −==E B B ,所以矩阵B 对应于特征值0有1n −个线性无关的特征向量,所以矩阵B 可以对角化为00n ⎛⎫⎪⎪= ⎪ ⎪⎝⎭Λ,所以二者相似.。
2014年全国硕士研究生招生考试数学(一)真题一、选择题(1—8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求)1.下列曲线有渐近线的是( )。
(A)(B)sin y x x =+2sin y x x =+ (C)1siny x x =+(D)21siny x x =+2.设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0上( )。
,1](A)当时,()0f x '≥()()f x g x ≥ (B)当()0f x '≥时,()()f x g x ≤ (C)当时,()0f x ''≥()()f x g x ≥(D)当()0f x ''≥时,()()f x g x ≤3.设是连续函数,则110(,)ydy f x y dx -=⎰⎰( )。
(A)110010(,)(,)x dx f x y dy dx f x y dy--+⎰⎰⎰(B)11001(,)(,)xdx f x y dy dx f x y dy--+⎰⎰⎰⎰(C)112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r ++⎰⎰⎰⎰ππθθπθθθθθdrθ(D)112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r ++⎰⎰⎰⎰ππθθπθθθθθrdrθ4.若{}ππ2211-π-π,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ∈--=--⎰⎰,则11cos sin a x b x +=( )。
(A)2sin x(B)2cos x(C)2sin x π(D)2cos x π5.行列式0000000aba bc d c d =( )。
(A)(B)(C)(D)2(ad bc -))2(ad bc --2222a dbc -2222b c a d -6.设123,,ααα均为三维向量,则对任意常数,向量组l k ,132,k 3l αααα++线性无关是向量组123,,ααα线性无关的( )。
目 录2012年浙江大学601高等代数考研真题2011年浙江大学601高等代数考研真题及详解2010年浙江大学360高等代数考研真题2009年浙江大学360高等代数考研真题2008年浙江大学724高等代数考研真题及详解2007年浙江大学741高等代数考研真题及详解2006年浙江大学341高等代数考研真题及详解2005年浙江大学341高等代数考研真题2004年浙江大学341高等代数考研真题2003年浙江大学344高等代数考研真题2002年浙江大学365高等代数考研真题2001年浙江大学359高等代数考研真题2000年浙江大学226高等代数考研真题1999年浙江大学高等代数考研真题及详解2012年浙江大学601高等代数考研真题浙江大学2012年攻读硕士学位研究生入学试题考试科目:高等代数(601)考生注意:1.本试卷满分为150 分,共计10道题,每题满分15分,考试时间总计180 分钟;2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。
一、设是阶单位矩阵,,矩阵满足,证明的行列式等于.二、设是阶幂零矩阵满足,.证明所有的都相似于一个对角矩阵,的特征值之和等于矩阵的秩.三、设是维欧氏空间的正交变换,证明最多可以表示为个镜面反射的复合.四、设是阶复矩阵,证明存在常数项等于零的多项式使得是可以对角化的矩阵,是幂零矩阵,且.五、设.当为何值时,存在使得为对角矩阵并求出这样的矩阵和对角矩阵;求时矩阵的标准型.六、令二次型.求次二次型的方阵;当均为实数,给出次二次型为正定的条件.七、令和是域上的线性空间,表示到所有线性映射组成的线性空间.证明:对,若,则和在中是线性无关的.八、令线性空间,其中是的线性变换的不变子空间.证明;证明若是有限维线性空间,则;举例说明,当时无限维的,可能有,且.九、令.求阶秩为的矩阵,使得(零矩阵);假如是满足的阶矩阵,证明:秩.十、令是有限维线性空间上的线性变换,设是的不变子空间.那么,的最小多项式整除的最小多项式.2011年浙江大学601高等代数考研真题及详解2010年浙江大学360高等代数考研真题2009年浙江大学360高等代数考研真题浙江大学2009年攻读硕士学位研究生入学试题考试科目:高等代数(360)考生注意:1.本试卷满分为150 分,共计10道题,每题满分15分,考试时间总计180 分钟;2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。
高等代数综合考试试题一、选择题(每题3分,共20题,总分60分)1. 高等代数的基本概念中,下列哪个选项是正确的?A. 定理B. 命题C. 运算D. 推论2. 下列哪个不是线性代数的研究内容?A. 矩阵与行列式B. 向量空间与线性方程组C. 群论与环论D. 特征值与特征向量3. 设A是一个n阶方阵,若有2个不同的正整数p和q使得$A^p = A^q = I$,则矩阵A的阶数n最小可能是:A. 3B. 4C. 5D. 64. 对于线性方程组$AX=B$,若$A^{-1}$存在,则方程组的解为:A. $X=A^{-1}B$B. $X=AB^{-1}$C. $X=A^{-1}AB$D. $X=BA^{-1}B$5. 设矩阵A的特征值为-1和2,特征向量分别为$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$和$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$,则矩阵A 的转置$A^T$的特征值和特征向量分别为:A. -1,2 和 $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$,$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$B. 1,-2 和 $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$,$\begin{bmatrix} -2 \\ -3 \end{bmatrix}$C. -1,2 和 $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$,$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$D. 1,-2 和 $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$,$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$6. 设A为n阶矩阵,若A的行列式$|A|=0$,则下列哪个选项是正确的?A. A是可逆矩阵B. A的逆矩阵不存在C. A的秩为n-1D. A的行向量线性相关...二、填空题(每空3分,共10题,总分30分)1. 设A为对称矩阵,若$A^2 = 4I$,则A的特征值为______。
高等代数考研试题及答案一、选择题(每题3分,共30分)1. 下列矩阵中,哪个不是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [1, -1; 2, 2]2. 设线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) 由矩阵 \( A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) 给出,那么 \( T(1, 2, 3) \) 的结果是:A. (3, 5, 3)B. (5, 3, 3)C. (1, 2, 3)D. (2, 3, 1)3. 多项式 \( p(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 44. 设 \( V \) 是所有 \( n \) 次多项式的向量空间,\( T: V\rightarrow V \) 是一个线性变换,且 \( T(p(x)) = p'(x) \)。
如果 \( T \) 的特征值为 \( k \),那么 \( k \) 等于:A. 0B. 1C. -1D. \( n \)5. 下列哪个命题是正确的?A. 每个线性映射都可以用一个矩阵来表示。
B. 矩阵的乘积总是可交换的。
C. 两个相似矩阵必定是同阶矩阵。
D. 行列式的值总是正数或零。
6. 设 \( A \) 是一个 \( n \) 阶方阵,如果 \( A \) 的所有特征值的和等于 \( 0 \),那么 \( A \) 必定是:A. 正交矩阵B. 对角矩阵C. 零矩阵D. 反对称矩阵7. 如果一个 \( n \) 阶方阵 \( A \) 的所有元素都等于 \( 1 \),那么 \( A^n \) 的迹(trace)是:A. \( n \)B. \( n^n \)C. \( n! \)D. \( 0 \)8. 对于任意 \( n \) 阶方阵 \( A \),下列哪个选项是正确的?A. \( \det(A^2) = (\det A)^2 \)B. \( \det(A^T) = \det A \)C. \( \det(A + I) = \det A + 1 \)D. \( \det(A) = \det(A^T) \)9. 设 \( V \) 是一个向量空间,\( T: V \rightarrow V \) 是一个线性变换,如果 \( T \) 的一个特征向量 \( v \) 满足 \( T(v) = \lambda v \),那么 \( T \) 的逆变换 \( T^{-1} \)(如果存在)将 \( v \) 映射到:A. \( \lambda^{-1} v \)B. \( \frac{1}{\lambda} v \)C. \( v \)D. \( v + \lambda v \)10. 下列哪个矩阵是正交矩阵?A. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)B. \( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)D. \( \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)二、填空题(每题4分,共20分)11. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det A \) 等于 _______。
目录Ⅰ历年考研真题试卷 (2)浙江大学2007年招收攻读硕士学位研究生入学考试试题 (2)浙江大学2008年招收攻读硕士学位研究生入学考试试题 (5)浙江大学2009年招收攻读硕士学位研究生入学考试试题 (7)浙江大学2010年招收攻读硕士学位研究生入学考试试题 (9)浙江大学2011年招收攻读硕士学位研究生入学考试试题 (11)浙江大学2012年招收攻读硕士学位研究生入学考试试题 (13)浙江大学2014年招收攻读硕士学位研究生入学考试试题 (15)浙江大学2015年招收攻读硕士学位研究生入学考试试题 (16)浙江大学2016年招收攻读硕士学位研究生入学考试试题 (17)浙江大学2017年招收攻读硕士学位研究生入学考试试题 (18)浙江大学2018年招收攻读硕士学位研究生入学考试试题 (19)浙江大学2019年招收攻读硕士学位研究生入学考试试题 (21)Ⅱ历年考研真题试卷答案解析 (23)浙江大学2007年招收攻读硕士学位研究生入学考试试题答案解析 (23)浙江大学2008年招收攻读硕士学位研究生入学考试试题答案解析 (31)浙江大学2009年招收攻读硕士学位研究生入学考试试题答案解析 (39)浙江大学2010年招收攻读硕士学位研究生入学考试试题答案解析 (46)浙江大学2011年招收攻读硕士学位研究生入学考试试题答案解析 (52)浙江大学2012年招收攻读硕士学位研究生入学考试试题答案解析 (57)浙江大学2014年招收攻读硕士学位研究生入学考试试题答案解析 (64)浙江大学2016年招收攻读硕士学位研究生入学考试试题答案解析 (70)Ⅰ历年考研真题试卷浙江大学2007年招收攻读硕士学位研究生入学考试试题考试科目:高等代数编号:601注意:答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、(17分)设整系数的线性方程组为),..2,1(,1n i b x ai j nj ij==∑=,证明该方程组对任意整数n b b b ,..,,21都有整数解的充分必要条件是该方程组的系数行列式等于1±。
城院线性代数期中试卷汇集浙江大学姜豪汇编2014年6月目录第一部分:试卷真题13—14学年第二学期期中试卷 (2)13—14学年第一学期期中试卷 (4)12—13学年第二学期期中试卷 (6)12—13学年第一学期期中试卷 (9)11—12学年第二学期期中试卷 (11)第二部分:答案与评估13—14学年第二学期期中试卷答案 (13)13—14学年第二学期期中试卷难度与题量评估 (14)13—14学年第一学期期中试卷答案 (15)13—14学年第一学期期中试卷难度与题量评估 (15)12—13学年第二学期期中试卷答案 (16)12—13学年第二学期期中试卷难度与题量评估 (17)12—13学年第一学期期中试卷答案 (17)12—13学年第一学期期中试卷难度与题量评估 (19)11—12学年第二学期期中试卷答案 (19)11—12学年第二学期期中试卷难度与题量评估 (20)第三部分:试题详解13—14学年第二学期期中试卷详解 (21)13—14学年第一学期期中试卷详解 (28)12—13学年第二学期期中试卷详解 (34)12—13学年第一学期期中试卷详解 (41)11—12学年第二学期期中试卷详解 (48)参考文献[1] 苏德矿,裘哲勇,线性代数,高等教育出版社,2005。
[2] 姜豪,线性代数十三讲.ppt 网易免费邮箱,用户名:mathjh, 密码:math123456[3] 姜豪,线性代数习题集。
网易免费邮箱,用户名:mathjh, 密码:math123456[4] 姜豪,线性代数命题集锦。
网易免费邮箱,用户名:mathjh, 密码:math123456[5] 姜豪,[1]的名词索引。
网易免费邮箱,用户名:mathjh, 密码:math123456[6] 姜豪,[1]的勘误表。
网易免费邮箱,用户名:mathjh, 密码:math123456[7] 同济大学数学系,(工程数学)线性代数,第五版,高等教育出版社,2007。
2014年浙江专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.当x→x0时,若f(x)存在极限,g(x)不存在极限,则下列结论正确的是( )A.当x→x0时,f(x)g(x)必定存在极限B.当x→x0时,f(x)g(x)必定不存在极限C.当x→x0时,f(x)g(x)若存在极限,则此极限必为零D.当x→x0时,f(x)g(x)可能存在极限,也可能不存在极限正确答案:D解析:极限运算法则,可以举反例,若f(x)=x2,g(x)=lnx,则f(x)= x2=0,g(x)=lnx=-∞,但f(x).g(x)=x2lnx=0;若f(x)=2,g(x)=sin=2,不存在,但f(x).g(x)=不存在;可见选项D正确.2.曲线y=x3-3x上切线平行于x轴的点是( )A.(0,0)B.(1,2)C.(一1,2)D.(0,2)正确答案:C解析:由导数几何意义可知,k切=y′(x0)=3—3=0,所以切点坐标为(1,一2)或(一1,2),即选项C正确.3.函数f(x)=(x2—x一2)|x3一x|的不可导点个数是( )A.3B.2C.1D.0正确答案:B解析:导数定义,f′(0)=所以f′-(0)==2,f′+(0)==-2所以函数f(x)在x=0处不可导;同理,f′(1)=所以f′-(1)=一(x2一x—2)|x(x+1)|=4.f′+(1)=(x2一x—2)|x(x+1)|=-4,所以函数f(x)在x=1处不可导;f′(-1)==(x-2)|x3-x|=0,所以函数f(x)在x=-1处可导;综上可知,函数f(x)共有2个不可导点,选项B正确.4.若f(x=sin(t一x)dt,则f(x)= ( )A.-sinxB.-1+cosxC.sinxD.0正确答案:A解析:变限函数求导数,因为sin(t一x)dt sinudu,所以sin(t—x)dt=sinudu=0一sin(一x).(一1)=-sim,可见选项A正确.5.微分方程y′+的通解是( )A.arctanx+CB.(arctanx+C)C.arctanx+CD.+arctanx+C正确答案:B解析:一阶线性微分方程,由通解公式可得y=e-∫p(x)dx[∫Q(x).e∫p(x)dxdx+C]=.elnxdx+C]=(arctanx+C),可见选项B正确.填空题6.设f(x)在(-∞,+∞)上连续,且f(2)=3,则=___________.正确答案:9解析:利用连续性求极限,=3f(2)=9 7.设f(x)=,则f[f(x)]=___________.正确答案:解析:求复合函数的表达式,f[f(x)]=f[f(x)]=8.曲线y=xln(e+)(x>0)的渐近线方程是___________.正确答案:y=x+解析:计算斜渐近线,设直线y=ax+b为所求曲线的渐近线,则a==lne=1,b=所以,斜渐近线为y=x+.9.设y=ln,则y′|x=0=___________.正确答案:-1解析:求导函数,因为y=ln[ln(1一x)一ln(1+x)]所以y′=,故y′(0)=-1.10.曲线y=(x>0)的拐点是___________.正确答案:()解析:求曲线的拐点,当x>0时,y′=令y″=0,得x=,所以拐点为().11.由曲线y=x和y=x2所围成的平面图形的面积是___________.正确答案:解析:据题意画图,求所围平面图形的面积S=(x—x2)dx=(x2一12.将函数f(x)=sin2x展开成x的幂级数为___________.正确答案:,x∈(一∞,+∞)解析:麦克劳林展式,f(x)=sin2x=cos2x,又因cosx=x2n,x∈(一∞,+∞),所以cos2x=(2x)2n即f(x)=,x∈(一∞,+∞).13.设(a×b).c=1,则[(a+b)×(b+c)].(c+a)=___________.正确答案:2解析:混合积,向量积运算法则,在混合积计算中,如有两向量相同,则混合积为0.因此,[(a+b)×(b+c)].(c+a)=[a×(b+c)+b×(b+c)]=[a×b+a×c+b×b+b ×c].(c+a)=[a×b+a×c+b×c].(c+a)=(a×b).c+(a×b).a+(a×c).c+(a×c).a+(b×c).c+(b×c).a=(a×b).c-(b×c).a=2(a×b).c=214.微分方程(1+x)ydx+(1一y)xdy=0的通解为___________.正确答案:ln|xy|+x-y+C=0,C为任意常数解析:可分离变量的微分方程,(1+x)ydx+(1一y)xdx=0x+ln|x+C=y—ln|y|,即通解为y=x+ln|xy|+C,C为任意常数.15.设二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=C1ex+C1e2x,那么非齐次y″+ay′+by=1满足的条件y(0)=2,y′(0)=-1的解为___________.正确答案:y=4ex-解析:求二阶线性常系数非齐次方程的通解,特征方程为r2+ar+b=0,r1=1,r2=2即(r-1)(r-2)=0,r2-3r+2=0,故a=-3,b=2.所以原微分方程为y″一3y′+2y=1,由于λ=0不是特征方程的根,取k=0,因此,设特解y*=A,则(y*)′=0,(y*)″=0,代入可得A=,所以y*=,所以y″一3y′+2y=1的通解为y=C1ex+C2e2x+,再由y(0)=2,y′(0)=-1,可得C1=4,C2=,故满足初始条件的特解为y=4ex-解答题解答时应写出推理、演算步骤。
浙江大学攻读硕士学位研究生入学考试试题解答 一、()f x 是数域P 上的不可约多项式(1)()[]g x P x ∈,且与()f x 有一公共复根,证明:()|()f x g x 。
(2)若c 及1c 都是()f x 的根,b 是()f x 的任一根,证明:1b也是()f x 的根。
Proof :(1)()f x 是数域P 上的不可约多项式,故对于P 上任一多项式()g x 只有以下两种情形:01()|()f x g x, 02 ((),())1f x g x =下证不可能是情形二。
(反证法)若不然为情形二,就是((),())1f x g x =则(),()[].()()()()1(*)u x v x P x s tu x f x v x g x ∃∈+=由已知条件,f 与g 有一公共复根(设为α),则()()0f g αα==,将α代入(*)中得到10=的矛盾,故假设不正确,得证!(2)设b 是()f x 的任一根,下证1()0f b=。
证明见《高等代数题解精粹》钱吉林编20P 第42题. 二、计算行列式210...000121...000.. 00 (012)n D =Solution:我们已经知道:1111,1(1),1n n n n αβαβαβαβαβαβαβαβαββαβαβ+++++⎧-≠⎪=+-⎨⎪+=⎩+ 在此结论中令1αβ==,知1n D n =+三、(1)A 是正定矩阵,C 是实对称矩阵,证明:∃可逆矩阵P .st ,P AP P CP ''同时为对角形Proof: (1)A 正定,∴ ∃可逆矩阵T 使得T AT E '=,此时T CT '还是对称的,∴∃ 正交矩阵M 使得M T C T M ''为对角形,令P T M =,此时P AP E '=P CP '是对角形,得证!(2)由(1)知P ∃非异s.t 12n P AP E P ABP λλλ'=⎧⎪⎛⎫⎪⎨ ⎪'=⎪⎪ ⎪⎪⎝⎭⎩ 所以112n P BP λλλ-⎛⎫⎪= ⎪ ⎪⎝⎭,故AB 正定⇔0,1,2,,i i n λ>=得证!! 四、设n 维线性空间V 的线性变换A 有n 个互异的特征值,线性变换B A 与可交换的充分必要条件是B 是121,,,,n E A A A -的线性组合,其中E 为恒等变换。
2014年浙江大学研究生入学考试高等代数试题
1. 00n n E A E ⎛⎫=
⎪⎝⎭,{}2()n L B M R AB BA =∈=。
证明L 为2()n M R 的子空间并计算其维数。
2. 00n n
E A E ⎛⎫= ⎪⎝⎭,请问A 是否可对角化并给出理由。
若A 可对角化为C ,给出可逆矩阵P ,使得1P AP C -=.
3.方阵A 的特征多项式为32()(2)(3)f λλλ=-+,请给出A 所有可能的Jordan 标准型。
4. 1η,2η,3η为0AX =的基础解系,A 为3行5列实矩阵。
求证:存在5R 的一组基,
其包含123ηηη++,123ηηη-+,12324ηηη++。
5.X ,Y 分别为m n ⨯和n m ⨯矩阵,n YX E =,m A E XY =+,证明A 相似于对角矩阵。
6. A 为n 阶线性空间V 的线性变换,1λ,2λ,…,m λ为A 的不同特征值,i V λ为其特征子空间。
证明:对任意V 的子空间W ,有1()()m W W V W V λλ=⋂⊕⋅⋅⋅⊕⋂.
7.矩阵A ,B 均为m n ⨯矩阵,0AX =与0BX =同解,求证A 、B 等价。
若A 、B 等价,是否有0AX =与0BX =同解?证明或举反例否定。
8.证明:A 正定的充分必要条件是存在方阵i B (1,2,,i n =⋅⋅⋅),i B 中至少有一个非退化,使得1n T i
i i A B B ==∑。
9.定义ψ为[0,1]到n 阶方阵全体组成的欧式空间的连续映射,使得(0)ψ为第一类正交矩阵,(1)ψ为第二类正交矩阵。
证明:存在0(0,1)T ∈,使得0()T ψ退化。
10.设g ,h 为复数域C 上n 维线性空间V 的线性变换,gh hg =。
求证g ,h 有公共的特征向量。
若不是在复数域C 上而是在实数域R 上,则结论是否成立?若成立,给出理由;不成立举出反例。