109、浙江大学2019年高等代数考研试题
- 格式:pdf
- 大小:219.45 KB
- 文档页数:1
浙江省2019年选拔优秀高职高专毕业生进入本科学习统一考试高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题号的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案的标号。
不能答在试卷上。
选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共5小题,每小题4分,共20分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设a x n n =∞→lim 则说法不正确的是()(A)对于正数2,一定存在正整数N ,使得当n>N 时,都有2X <-a n (B)对于任意给定的无论多么小的正数ε,总存在整数N ,使得当n>N 时,不等式ε<-a n X 成立(C)对于任意给定的a 的邻域()εε+-a a ,,总存在正整数N ,使得当n>N 时,所有的点n x 都落在()εε+-a a ,内,而只有有限个(至多只有N 个)在这个区间外(D)可以存在某个小的正数0ε,使得有无穷多个点0ε落在这个区间()00,εε+-a a 外2.设在点0x 的某领域内有定义,则在点0x 处可导的一个充分条件是()(A)hx f h x f h )()2(lim000-+→存在(B)hh x f x f h )()(lim 000---→存在(C)hh x f h x f h )()(lim000--+→存在(D)⎥⎦⎤⎢⎣⎡-++∞→)()1(lim 00x f h x f h h 存在3.⎥⎦⎤⎢⎣⎡+++++++∞→n n n n n x πππsin 1...2sin 1sin 11lim 等于()(A)dxx ⎰10sin π(B)dxx ⎰+1sin 1π(C)dxx ⎰+10sin 1(D)dxx ⎰+1sin 1π4.下列级数或广义积分发散的是().(A)∑∞=-+-11100n 1n n )((B)∑∞=12cos n n(C)dxx ⎰212-41(D)dx x ⎰+∞+12211)(5.微分方程044=+'-''y y y 的通解是()(A)x e c x c x y 221)(-+=(B)()x e x c c x y 221)(-+=(C)()xe x c c x y 221)(+=(D)()xxe x c c x y 221)(-+=非选择题部分二、填空题:本大题共10小题,每小题4分,共40分。
2019年普通高等学校招生全国统一考试(浙江卷)数学参考公式:选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}101B =-,,,则U A B =I ð( )A. {}1-B. {}0,1C. {}1,2,3-D. {}1,0,1,3-【答案】A 【解析】 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查.【详解】={1,3}U C A -,则(){1}U C A B =-I 【点睛】易于理解集补集的概念、交集概念有误2.渐近线方程为0x y ±=的双曲线的离心率是( )A. B. 1C.D. 2【答案】C 【解析】 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b,则c =,双曲线的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 12【答案】C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A. 158B. 162C. 182D. 32【答案】B 【解析】 【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算. 5.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.6.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.【答案】D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大【答案】D 【解析】 【分析】 研究方差随a 变化增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A. ,βγαγ<<B.,βαβγ<<C.,βαγα<< D. ,αβγβ<<【答案】B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin ,sin sin 6633α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.9.已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >-> D. 1,0a b >-<【答案】C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +…,即1a -…时,0y '…,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a <-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如右图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+. 故选:C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..10.设,a b R ∈,数列{}n a 中,21,n n n a a a a b +==+,N n *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->【答案】A 【解析】 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B:不动点满足221142x x x⎛⎫-+=-=⎪⎝⎭时,如图,若1110,,22na a a⎛⎫=∈<⎪⎝⎭,排除如图,若a不动点12则12na=选项C:不动点满足22192024x x x⎛⎫--=--=⎪⎝⎭,不动点为ax12-,令2a=,则210na=<,排除选项D:不动点满足221174024x x x⎛⎫--=--=⎪⎝⎭,不动点17122x=±,令17122a=±,则171102na=<,排除.选项A:证明:当12b=时,2222132431113117,,12224216a a a a a a=+≥=+≥=+≥≥,处理一:可依次迭代到10a;处理二:当4n≥时,221112n n na a a+=+≥≥,则117117171161616log2log log2nn n na a a-++>⇒>则12117(4)16nna n-+⎛⎫≥≥⎪⎝⎭,则626410217164646311114710161616216a⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++>⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a的可能取值,利用“排除法”求解.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.复数11z i=+(i 为虚数单位),则||z =________.【答案】2【解析】 【分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【详解】1|||1|2z i ===+. 【点睛】本题考查了复数模的运算,属于简单题.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】 (1). 2m =- (2). r =【解析】 【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.【详解】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===【点睛】:解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13.在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【答案】 (1). (2). 5 【解析】 【分析】本题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察x 的幂指数,使问题得解.【详解】9(2)x +的通项为919(2)(0,1,29)rr r r T C x r -+==L 可得常数项为0919(2)162T C ==,因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.14.在V ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.【答案】 (1). 1225 (2). 7210【解析】 【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.通过引入CD x =,在BDC ∆、ABD ∆中应用正弦定理,建立方程,进而得解.. 【详解】在ABD ∆中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,22AC AB BC 5=+=,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以122BD =. 72cos cos()coscos sinsin 4410ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=【点睛】解答解三角形问题,要注意充分利用图形特征.15.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,OF为半径的圆上,则直线PF的斜率是_______.【答案】15【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示考点圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM|=c=,由中位线定理可得12||4PF OM==,设(,)P x y可得22(2)16x y-+=,联立方程22195x y+=可解得321,22x x=-=(舍),点P在椭圆上且在x轴的上方,求得315,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得315,2P ⎛⎫-⎪ ⎪⎝⎭,所以1521512PF k ==.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16.已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a = 【解析】 【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()()222(2)()2(2)(2))223642f t f t a t t t t a t t +-=•++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤,由折线函数,如图只需113a -≤,即43a ≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++u u u r u u u r u u u r u u u r u u u r u u u r的最小值是________;最大值是_______.【答案】 (1). 0 (2). 25【解析】 【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ= 此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=u u u v u u u v u u u v u u u v u u u v u u u v等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正。
高等代数历年考研真题高等代数是数学学科中的一门重要课程,对于数学专业的学生来说,它是必修课之一。
考研是追求学术进阶的一个重要途径,因此高等代数也成为许多考研学生备战的重点科目之一。
本文将通过回顾历年考研真题,分析高等代数考点和解题技巧,帮助考生更好地应对高等代数考研。
一、线性代数线性代数是高等代数的重要组成部分,它主要研究向量空间、线性变换、矩阵等内容。
在考研真题中,线性代数所占比例较大,因此掌握好线性代数的基本概念和基本性质非常关键。
1.1 向量空间向量空间是线性代数的核心概念之一。
考研真题中常涉及到子空间、基、维数等概念。
在解题过程中,要注意对向量空间性质的分析,运用相关定理和定理的推论进行证明。
1.2 线性变换线性变换是研究向量空间的重要方法之一。
考研真题中常涉及到线性变换的矩阵表示、特征值和特征向量等。
对于线性变换的性质和特征值的计算,考生需要熟练掌握相应的运算方法和计算技巧。
1.3 矩阵矩阵是线性代数中的重要工具之一。
考研真题中常要求计算矩阵的特征值、特征向量以及矩阵的秩等。
在解答这类问题时,要善于利用矩阵的性质和运算规则,结合相应的定理进行证明和计算。
二、群论群论是代数学的一个重要分支,用于研究对称性和对称性破缺等问题。
在高等代数考研中,群论占有一定的比例,因此对群论的掌握和理解是非常重要的。
2.1 群的基本概念在群论中,要掌握群的定义、子群、陪集等基本概念。
考研真题中常结合这些概念来进行命题证明和运算。
2.2 循环群循环群是群论中重要的一类特殊群。
考研真题中常要求判断某个群是否为循环群以及计算循环群的阶等。
在解答这类问题时,要熟练应用循环群的定义和基本性质。
2.3 正规子群与商群正规子群和商群是群论中的重要概念。
考研真题中要求理解正规子群和商群的定义,熟练运用这些概念进行证明和计算。
三、域论域论是代数学的一个重要分支,主要研究环和域的性质与结构。
在高等代数考研中,域论占有一定比例,因此对域的基本概念和性质的理解是十分重要的。
姓名: 报考专业: 准考证号码:密封线内不要写题2019年全国硕士研究生招生考试初试自命题试题科目名称:高等代数(√A 卷□B 卷)科目代码:614考试时间: 3 小时 满分 150 分可使用的常用工具:□无 □计算器 □√直尺 □√圆规(请在使用工具前打√)注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考完后试题随答题纸交回。
一、选择题(共8小题,每小题5分,共40分)1、设,A B 均是可逆矩阵,且A 与B 相似,则下列结论错误的是( )。
(A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A --与1B B --相似2、设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是 ( )。
(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω3、二次型()123,,f x x x 在正交变换X PY = 下的标准形为2221232+-y y y ,其中123(,,)P e e e =,若132(,,)Q e e e =-,则()123,,f x x x 在变换X QY =下的标准形是( )。
(A) 2221232-+y y y(B) 2221232+-y y y (C) 2221232--y y y(D) 2221232++y y y4、所有4阶对称矩阵按矩阵的加法和数乘所组成的线性空间V 的维数是 ( )。
(A ) 4维 (B ) 16维 (C ) 8维 (D ) 10维5、设1α,2α,3α均为3维向量,则对任意常数k ,l ,向量组1α+3αk ,2α+3αl 线性无关是向量组1α,2α,3α线性无关的( )。
(A )必要非充分条件(B )充分非必要条件(C )充分必要条件(D )非充分非必要条件6、设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为( )。
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0(x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d -1∣x n-1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x),g 3(x),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m(x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
考研数学分析真题集目录 南开大学 北京大学 清华大学浙江大学华中科技大学一、,,0N ∃>∀ε当N n >时,ε<>∀m a N m ,证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a ,a a kn k =∞→lim ,所以,ε2<-+-≤-a a a a a a k k n n n n二 、,,0N ∃>∀ε当N x >时,ε<-)()(x g x f ,,0,01>∃>∀δε当1'''δ<-x x 时,ε<-)''()'(x f x f对上述,0>ε当N x x >'','时,且1'''δ<-x xε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>∃>∀δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。
三、由,0)('',0)('<>x f a f 得,0)('<x f 所以)(x f 递减,又2))((''21))((')()(a x f a x a f a f x f -+-+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。
浙江大学2019年研究生高等代数试题一.n a a a ,,,21 是n 个不相同的整数,证明1)())(()(21+---=n a x a x a x x f 在有理数域上可约的充分必要条件是)(x f 可表示为一个整数多项式的平方二.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α,且0=ααT,求(1)T n E αα- (2)1)(--T n E αα(其中n E 为n 阶单位阵,的转置为ααT) 三.矩阵n m A ⨯是行满秩)(m A =即秩,证明: (1)存在可逆阵Q ,使得Q E A m )0,(= (2) 存在矩阵mn B ⨯,使得mE AB =四.设n 阶方阵A 满足A A =2,n ααα,,,21 是n P 中n 个线形无关的列向量,设2V 是由n A A A ααα,,,21 生成的子空间,1V 是0=AX 的解空间,证明:21V V P n⊕=(21V V ⊕表示1V 与2V 的直和)五.设B A ,都是n 阶实对称矩阵,且B 正定,则存在⎪⎪⎪⎭⎫ ⎝⎛=n D S λλ 1及,使得T T SS B SDS A ==, 六.设n 阶矩阵)(ij a A =,满足下列条件:(1)0≤ij a ≤1,j i ,∀ (2)121=+++in i i a a a (i=1,2, ,n)求证:(1)A的每一个特征值λ,都有1≤λ(2)10=λ为A 的一个特征⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎪⎭⎫ ⎝⎛=ℜ是实数i n nx x x |1 ,阶正定阵是n A ,⎪⎪⎪⎭⎫ ⎝⎛=n x x 1α,n n y y ℜ∈⎪⎪⎪⎭⎫⎝⎛= 1β,求证:(1)))(()(2ββααβαA A A T T T ≤等号成立当且仅当βα与线形相关时成立(2)若是正定矩阵,则A ))(()(2ββααβαA A A TTT≤也成立八(1)设B A ,分别为复数矩阵域上的阶方阵阶和l k ,并且B A ,没有公共的特征值,求证XB AX =只有空解(这里k k ij x X ⨯=)()(2)在nn ⨯ℜ中,变换nn A XA AX X ⨯ℜ∈+A ,: ,A 为一个固定的矩阵,且A 的特征值不为(-A )的特征值,求证:A 为一个线形变换。
《高等代数》试题库一、选择题1.在F[x]里能整除任意多项式的多项式是()。
A.零多项式B.零次多项式C.本原多项式D.不可约多项式2.设g(x)=x+1是f(x)=x-k x+4kx+x-4的一个因式,则k=()。
6242A.1B.2C.3D.43.以下命题不正确的是()。
A.若f(x)|g(x),则f(x)|g(x);B.集合F={a+bi|a,b∈Q}是数域;C.若(f(x),f'(x))=1,则f(x)没有重因式;D.设p(x)是f'(x)的k-1重因式,则p(x)是f(x)的k重因式4.整系数多项式f(x)在Z不可约是f(x)在Q上不可约的( )条件。
A.充分B.充分必要C.必要D.既不充分也不必要5.下列对于多项式的结论不正确的是()。
A.如果f(x)g(x),g(x)f(x),那么f(x)=g(x)B.如果f(x)g(x),f(x)h(x),那么f(x)(g(x)±h(x))C.如果f(x)g(x),那么∀h(x)∈F[x],有f(x)g(x)h(x)D.如果f(x)g(x),g(x)h(x),那么f(x)h(x)6.对于“命题甲:将n(>1)级行列式D的主对角线上元素反号,则行列式变为-D;命题乙:对换行列式中两行的位置,则行列式反号”有( )。
A.甲成立,乙不成立;B.甲不成立,乙成立;C.甲,乙均成立;D.甲,乙均不成立7.下面论述中,错误的是( )。
A.奇数次实系数多项式必有实根;B.代数基本定理适用于复数域;C.任一数域包含Q;D.在P[x]中,f(x)g(x)=f(x)h(x)⇒g(x)=h(x)A 11 A 12 ... A 1n A21...An1 A22...An2 .........A2n...Ann8.设D=aij ,Aij为aij的代数余子式,则=( )。
A.DB.-DC.D/D.(-1)n D49.行列式31-250a 中,元素a 的代数余子式是()。
二〇〇七年攻读硕士学位研究生入学考试试题考试科目: 高等代数 编号: 741一、(17分)设整系数的线性方程组为,证明该方程组对任意整数都有整数解的充分必要条件是该方程组的系数行列式等于. ),..2,1(,1n i b x a i j nj ij ==∑=n b b b ,..,,211±二、(17分)计算阶行列式, 其中.(1n n >)2−1211232341112...........................n n n n nn n ns s s s s s s s s s s s s s s −+−+⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠kn k k k x x x s +++=...21三、(17分)设矩阵,,A B C 满足有意义.求证: ABC ()()()AB BC B ABC +≤+秩秩秩秩.四、(17分)设s ξξξ,...,,21是某个齐次线性方程组的基础解系,而k ηηη,...,,21是该齐次线性方程组的个线性无关的解,并且k k s <s k −s ξξξ,...,,21.求证中必可取出个解,使得它们个k ηηη,...,,21一起构成原方程组的一个基础解系.五、(17分)设阶方阵(1n n >)A 满足其中,0652=+−E A A E 是阶单位矩阵.证明:n A 相似于对角矩阵;如果A 行列式等于是正整数).求与m n m m n m ,0(32<<−A 相似的对角矩阵. )(2R M V =六、(17分)假设22×是由实数域上所有矩阵构成的实数域上向量空间.1112,11A B λ−⎛⎞⎛==⎜⎟⎜−−⎝⎠⎝1⎞⎟⎠λ,其中是参数. 是V 上的线性变换. (1)证明 AXB X =)(ϕ1−≠λ(2)当ϕ时,证明是可逆线性变换. 1−=λ(3)当ϕ时,求线性变换的核和值域.(4)在值域中取一组基,并把它扩充成V 的基,求线性变换ϕ在这组基下的矩阵.222211λλλλλλλλλ⎛⎞−⎜⎟−⎜⎜⎟+−⎝⎠λ七、(16分)求-矩阵⎟的初等因子和不变因子. 8111181111811118A −⎛⎞⎜⎟−⎜⎟=⎜⎟−⎜⎟−⎝⎠八、(16分)已知矩阵 123412341234(,,,)(,,,)(,,,)T f x x x x x x x x A x x x x =(1)求二次型; (2)用正交线性替换化二次型为标准型;),,,(4321x x x x f (3)证明定义了βαβαA T =),(α4R 4R 上的内积,其中βα,是的列向量,是T α的转置,并求在该内积下4R 的一组标准正交基;(4)求实对称矩阵B 使得A B k =,其中为正整数(只要写出k B 的表达式,不必计算其中的矩阵乘积). 九、(16分)设, 其中是互不相同的整数.证明n a a a ,...,,211)()()()(22221+−⋅⋅⋅−−=n a x a x a x x f ()f x 是有理数域上的不可约多项式.。
目录Ⅰ历年考研真题试卷 (2)浙江大学2007年招收攻读硕士学位研究生入学考试试题 (2)浙江大学2008年招收攻读硕士学位研究生入学考试试题 (5)浙江大学2009年招收攻读硕士学位研究生入学考试试题 (7)浙江大学2010年招收攻读硕士学位研究生入学考试试题 (9)浙江大学2011年招收攻读硕士学位研究生入学考试试题 (11)浙江大学2012年招收攻读硕士学位研究生入学考试试题 (13)浙江大学2014年招收攻读硕士学位研究生入学考试试题 (15)浙江大学2015年招收攻读硕士学位研究生入学考试试题 (16)浙江大学2016年招收攻读硕士学位研究生入学考试试题 (17)浙江大学2017年招收攻读硕士学位研究生入学考试试题 (18)浙江大学2018年招收攻读硕士学位研究生入学考试试题 (19)浙江大学2019年招收攻读硕士学位研究生入学考试试题 (21)Ⅱ历年考研真题试卷答案解析 (23)浙江大学2007年招收攻读硕士学位研究生入学考试试题答案解析 (23)浙江大学2008年招收攻读硕士学位研究生入学考试试题答案解析 (31)浙江大学2009年招收攻读硕士学位研究生入学考试试题答案解析 (39)浙江大学2010年招收攻读硕士学位研究生入学考试试题答案解析 (46)浙江大学2011年招收攻读硕士学位研究生入学考试试题答案解析 (52)浙江大学2012年招收攻读硕士学位研究生入学考试试题答案解析 (57)浙江大学2014年招收攻读硕士学位研究生入学考试试题答案解析 (64)浙江大学2016年招收攻读硕士学位研究生入学考试试题答案解析 (70)Ⅰ历年考研真题试卷浙江大学2007年招收攻读硕士学位研究生入学考试试题考试科目:高等代数编号:601注意:答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、(17分)设整系数的线性方程组为),..2,1(,1n i b x ai j nj ij==∑=,证明该方程组对任意整数n b b b ,..,,21都有整数解的充分必要条件是该方程组的系数行列式等于1±。