浙江大学2000年研究生高等代数试题
- 格式:pdf
- 大小:384.69 KB
- 文档页数:4
名词解释:1.意识2.侧抑制和感受野 4.格式塔心理学5.模式识别 6.晶体智力和流体智力7.STROOP效应8.现代人格三层次理论9.费希纳定律10.自我功效论11.人本主义心理学12.皮层的言语区 13.神经冲动的化学传导 14.知觉的恒常性15.特征整合论16.心境与应激17.正强化与负强化 18.投射测验 19.两种人格理论模式20.基于物体的选择注意21.交互作用22.等响曲线23.恩墨特定律24.样本分布25.PASS模型26.投射测验17.需要与动机28.Weiner的动机归因理论29.结构优势效应30.特征整合理论31.启动效应32.问题空间33.实验者效应34.匹配法35.启动效应36.诱动现象37.听觉适应38.差异系数39.分层随机抽样40.心理物理学41.似动现象42.实验法43.闪光融合理论44.最小可觉差45.等响曲线46.完全随机化设计47.部分报告法48平均差误法49.似动现象50.系列位置效应51.实验者效应52.被试间设计53.费希纳的对数定律54.音高量表55.实验效度56.操作定义57.感受野58.数量估计法59.双眼视差60.开窗实验61反射62错觉63模式识别64图形掩蔽65暗适应66发散思维67心境与应激68诱因理论69素质70特质简答:1.试结合实例分析知觉是对输入信息的组织和解释2.试阐述和评述智力三元论3.试评述几种主要的注意选择理论4.试阐述减法反应时和相加因素法范式的典型实验及特点并说明其对认知心理学的贡献5.阈限的定义及操作定义,6.如何正确选用回忆方法,7.非参数检验方法的特点,8.开窗实验的范式及特点,9.谈用统计法消除额外变量,10.试述感受性和感受阈限以及感觉大小与刺激强度的关系。
11.试述并评价几种主要的能力理论。
12.你如何看待短时记忆容量问题?什么是工作记忆?为什么它是认知心理学研究的关键问题?13.什么是部件认知(RBC)理论?它与传统模式识别理论相比有什么进步?有什么不足?14.什么是Stroop效应?什么是反应选择?你认为两者有关吗?为什么?15.试阐述“心理旋转”和“心理扫描”的典型实验,你认为它们对心理学的贡献主要表现在哪里?16.如何控制额外变量?17.恒定刺激法的特点?18.反应指标应该有什么要求?19.感受性与感觉域限如刺激强度与感受性的关系是什么样的?20.有两个口袋,一个口袋有2只黑球和4只白球,另一个口袋有5只黑球和3只白球,求(1)从两只口袋中各取一只白球的概率(2)从两只口袋中各取一只黑球的概率(3)从一只口袋中取一个白球从另一只口袋中去一只黑球的概率21.详述内隐记忆与外显记忆的区别。
且f(x)在有理数域上不可约。
第一章多项式1 (清华2 000— 20分)试求7次多项式f(X ),使f(M 1能被(X -1)4整除,而f(X )-1能被(X 1)4整除。
2、 (南航 2001 — 20 分)(1) 设 x —2px+2 I x +3x +px+q ,求 p,q 之值。
(2) 设f(x) , g(x), h(x) € R[x],而满足以下等式2(x +1)h(x)+(x -1) f(x)+ (x -2) g(x)=02(x +1)h(x)+(x+1) f(x)+ (x+2) g(x)=02 2证明:x +1 I f(x) , x +1 I g(x)3、 (北邮2002 —12分)证明:x d - 1 I x "- 1的充分必要条件是d I n (这里里记号 d I n 表示正整数d 整除正整数n )。
4、 、(北邮 2003 —15分)设在数域 P 上的多项式 g 1(x), g 2(x) , g 3(x) , f(x),已知 g 1(x) I f(x),g 2(x) I f(x) , g 3(x) I f(x),试问下列命题是否成立,并说明理由:(〔)如果 g 1(x) ,g 2(x) , g 3(x)两两互素,则一定有 g 1(x) , g 2(x) , g 3(x) I f(X )(2)如果g1(x) , g 2(x) , g 3(x)互素,则一定有 g 1(x)g 2(x)g 3(x)I f(X )5、 (北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p I ab 则p I a 或p I b 。
6、 (大连理工2003 —12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幕主充分必要条件是,对任意的多项式g(x) , h(x),由f(x) I g(x) h(x)可以推出f(x) I g(x),或者对某一正整数 m , f(x) I h m(x)。
2000年浙江大学804数学分析考研真题浙江大学2000年攻读硕士学位研究生入学试题考试科目:数学分析(804)一、(10分)()i 求极限10(1)lim x x e x x →-+; ()ii 设01,x a x b ==,21,2,3,2n n n x x x n ---==.求lim n n x →∞.二、(10分) ()i 设(0)f K '=,试证明00()()lim a b f b f a K b a -+→→-=-;()ii 设()f x 在[],a b 上连续,()f x ''在(),a b 内存在,试证明存在(),a b ξ∈,使得2()()()2()()24a b b a f b f a f f ξ+-''+-=.三、(15分)()i 求数项级数12n n n ∞=∑的和;()ii 试证明函数11()x n S x n ∞==∑在()1,+∞上连续.四、(15分)()i 设方程组0sin sin 0x y u v x u y v +++=⎧⎨+=⎩,确定了可微函数(,)(,)u u x y v v x y =⎧⎨=⎩,试求,,v v du x y ∂∂∂∂; ()ii 设2)()y x y F y dx x =,求(1)F '.五、(30分) ()i 计算积分20sin 1cos x x I dx x π=+⎰;()ii 求以曲面22x y z e --=为顶,平面0z =为底,柱面221x y +=为侧面的曲顶柱体的体积V ;()iii 设S 表示半球面221)z x y =+≤的上侧,求第二类曲面积分222()(2)(2)S J x y z dydz x y z dzdx x z y dxdy=++-++⎰⎰.六、(20分)()i 将函数(),()f x x x ππ=-≤≤展开成Fourier 级数;()ii 求级数211n n ∞=∑的和;()iii 计算广义积分10ln(1)x dx x -⎰.。
浙江大学研究生入学考试2000年试题一、填空题1.流体在管内会引发机械能的损失,这是由于。
2.离心泵在设计流量下工作时泵效率最高,这是由于。
而大型泵的效率通常高于小型泵的,那么是由于。
3.在进行流态化操作时,床层的压降不随气速增大而增大,这是由于。
4.某一热流体流经一段直管后,在流入同一内径的弯管段,那么弯管段的传热系数比直管段的,因为。
5.关于相同产能力,多效蒸发比单效蒸发操作费用,设备费用。
6.将相对挥发度为的某二元物系在全回流操作的塔中进行精馏,现测得全凝器中冷凝液组成为,塔顶第二层塔板上升的气相组成为,那么塔顶第一层塔板的气相默弗里板效为。
7.关于难容气体的吸收,可采取哪些方法以提高吸收速度、。
8.恒沸精馏的原理是。
9.在设计或研制新型气液传质设备时,要求设备具有、、。
10.临界湿含量于哪些因素有关?(举其中四个因素)、、、。
二、选择题1.如图1所示,高位槽A通过一并联管路向槽B输送液体,两槽液面维持恒定。
输液时要求排液管FG上的阀门k1关闭.现由于操作不慎,阀门k1未关严,试判定,与k1关闭时相较,下面哪个结论正确。
(1)D处的压力下降,总管AC内流量下降;(2)E处的压力下降,支管CF内流量增大;(3)C处的压力下降,支管CED内流量增大;(4)E处的压力上升,支管CED内流量下降。
2.随着流体流量的增大,流体通过以下哪一种流量计时,其压降转变幅度最小。
(1)孔板流量计;(2)文丘里流量计;(3)转子流量计3.离心泵的安装高度与。
(1)泵的结构无关;(2)液体流量无关;(3)吸入管路的阻力无关; (4)被输送的液体密度有关4.推导过滤大体方程式的一个最大体依据是 。
(1)滤液通过滤饼时呈湍流流动; (2)假定滤渣大小均一;(3)滤液通过滤饼时呈层流流动; (4)假设过滤介质的阻力可忽略不计5.如图2所示,冷、热流体在套管换热器中进行换热(均无相转变)。
现冷流体流量m 2减少,那么 。
2000年攻读硕士学位研究生入学考试试题解答 一、()f x 是数域P 上的不可约多项式(1)()[]g x P x ∈,且与()f x 有一公共复根,证明:()|()f x g x 。
(2)若c 及1c 都是()f x 的根,b 是()f x 的任一根,证明:1b 也是()f x 的根。
Proof :(1)()f x 是数域P 上的不可约多项式,故对于P 上任一多项式()g x 只有以下两种情形:01()|()f x g x , 02 ((),())1f x g x =下证不可能是情形二。
(反证法)若不然为情形二,就是((),())1f x g x =则(),()[].()()()()1(*)u x v x P x s t u x f x v x g x ∃∈+=由已知条件,f 与g 有一公共复根(设为α),则()()0f g αα==,将α代入(*)中得到10=的矛盾,故假设不正确,得证!(2)设b 是()f x 的任一根,下证1()0f b =。
证明见《高等代数题解精粹》钱吉林编20P第42题.二、计算行列式210...000121...000........000 (012)n D =Solution:我们已经知道:1111,1(1),1n n n n αβαβαβαβαβαβαβαβαββαβαβ+++++⎧-≠⎪=+-⎨⎪+=⎩+在此结论中令1αβ==,知1n D n =+三、(1)A 是正定矩阵,C 是实对称矩阵,证明:∃可逆矩阵P .s t ,P AP P CP ''同时为对角形Proof: (1)A 正定,∴ ∃可逆矩阵T 使得T AT E '=,此时T CT '还是对称的,∴∃ 正交矩阵M 使得M T CTM ''为对角形,令P TM =,此时P AP E '=P CP '是对角形,得证!(2)由(1)知P ∃非异s.t 12n P AP E P ABP λλλ'=⎧⎪⎛⎫⎪⎨ ⎪'=⎪⎪ ⎪⎪⎝⎭⎩所以112n P BP λλλ-⎛⎫⎪= ⎪ ⎪⎝⎭,故AB 正定⇔0,1,2,,i i nλ>=得证!!四、设n 维线性空间V 的线性变换A 有n 个互异的特征值,线性变换B A 与可交换的充分必要条件是B 是121,,,,n E A A A -的线性组合,其中E 为恒等变换。
目录Ⅰ历年考研真题试卷 (2)浙江大学2007年招收攻读硕士学位研究生入学考试试题 (2)浙江大学2008年招收攻读硕士学位研究生入学考试试题 (5)浙江大学2009年招收攻读硕士学位研究生入学考试试题 (7)浙江大学2010年招收攻读硕士学位研究生入学考试试题 (9)浙江大学2011年招收攻读硕士学位研究生入学考试试题 (11)浙江大学2012年招收攻读硕士学位研究生入学考试试题 (13)浙江大学2014年招收攻读硕士学位研究生入学考试试题 (15)浙江大学2015年招收攻读硕士学位研究生入学考试试题 (16)浙江大学2016年招收攻读硕士学位研究生入学考试试题 (17)浙江大学2017年招收攻读硕士学位研究生入学考试试题 (18)浙江大学2018年招收攻读硕士学位研究生入学考试试题 (19)浙江大学2019年招收攻读硕士学位研究生入学考试试题 (21)Ⅱ历年考研真题试卷答案解析 (23)浙江大学2007年招收攻读硕士学位研究生入学考试试题答案解析 (23)浙江大学2008年招收攻读硕士学位研究生入学考试试题答案解析 (31)浙江大学2009年招收攻读硕士学位研究生入学考试试题答案解析 (39)浙江大学2010年招收攻读硕士学位研究生入学考试试题答案解析 (46)浙江大学2011年招收攻读硕士学位研究生入学考试试题答案解析 (52)浙江大学2012年招收攻读硕士学位研究生入学考试试题答案解析 (57)浙江大学2014年招收攻读硕士学位研究生入学考试试题答案解析 (64)浙江大学2016年招收攻读硕士学位研究生入学考试试题答案解析 (70)Ⅰ历年考研真题试卷浙江大学2007年招收攻读硕士学位研究生入学考试试题考试科目:高等代数编号:601注意:答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、(17分)设整系数的线性方程组为),..2,1(,1n i b x ai j nj ij==∑=,证明该方程组对任意整数n b b b ,..,,21都有整数解的充分必要条件是该方程组的系数行列式等于1±。
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2+1∣f(x),x 2+1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
目 录2012年浙江大学601高等代数考研真题2011年浙江大学601高等代数考研真题及详解2010年浙江大学360高等代数考研真题2009年浙江大学360高等代数考研真题2008年浙江大学724高等代数考研真题及详解2007年浙江大学741高等代数考研真题及详解2006年浙江大学341高等代数考研真题及详解2005年浙江大学341高等代数考研真题2004年浙江大学341高等代数考研真题2003年浙江大学344高等代数考研真题2002年浙江大学365高等代数考研真题2001年浙江大学359高等代数考研真题2000年浙江大学226高等代数考研真题1999年浙江大学高等代数考研真题及详解2012年浙江大学601高等代数考研真题浙江大学2012年攻读硕士学位研究生入学试题考试科目:高等代数(601)考生注意:1.本试卷满分为150 分,共计10道题,每题满分15分,考试时间总计180 分钟;2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。
一、设是阶单位矩阵,,矩阵满足,证明的行列式等于.二、设是阶幂零矩阵满足,.证明所有的都相似于一个对角矩阵,的特征值之和等于矩阵的秩.三、设是维欧氏空间的正交变换,证明最多可以表示为个镜面反射的复合.四、设是阶复矩阵,证明存在常数项等于零的多项式使得是可以对角化的矩阵,是幂零矩阵,且.五、设.当为何值时,存在使得为对角矩阵并求出这样的矩阵和对角矩阵;求时矩阵的标准型.六、令二次型.求次二次型的方阵;当均为实数,给出次二次型为正定的条件.七、令和是域上的线性空间,表示到所有线性映射组成的线性空间.证明:对,若,则和在中是线性无关的.八、令线性空间,其中是的线性变换的不变子空间.证明;证明若是有限维线性空间,则;举例说明,当时无限维的,可能有,且.九、令.求阶秩为的矩阵,使得(零矩阵);假如是满足的阶矩阵,证明:秩.十、令是有限维线性空间上的线性变换,设是的不变子空间.那么,的最小多项式整除的最小多项式.。
高等代数试题及参考答案The document was prepared on January 2, 2021高等代数(一)考试试卷一、单选题(每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入答题纸内相应的表格中。
错选、多选、不选均不给分,6小题,每小题4分,共24分)1. 以下乘积中( )是4阶行列式ij D a =展开式中取负号的项. A 、11223344a a a a . B 、14233142a a a a . C 、12233144a a a a . D 、23413214a a a a .2.行列式13402324a --中元素a 的代数余子式是( ).A 、0324-. B 、0324--. C 、1403-. D 、1403. 3.设,A B 都是n 阶矩阵,若AB O =,则正确的是( ). A 、()()r A r B n +≤. B 、0A =. C 、A O =或B O =. D 、0A ≠. 4.下列向量组中,线性无关的是( ). A 、{}0. B 、{},,αβ0. C 、{}12,,,r ααα,其中12m αα=. D 、{}12,,,r ααα,其中任一向量都不能表示成其余向量的线性组合.5.设A 是n 阶矩阵且()r A r n =<,则A 中( ). A 、必有r 个行向量线性无关. B 、任意r 个行向量线性无关.C 、任意r 个行向量构成一个极大线性无关组.D 、任意一个行向量都能被其它r 个行向量线性表出.6.n 阶矩阵A 具有n 个不同的特征值是A 与对角阵相似的( )条件. A 、充要. B 、充分非必要. C 、必要非充分. D 、非充分非必要. 二、判断题(正确的打√,错误的打×,5小题,每小题2分,共10分). 1.若A 为n 阶矩阵,k 为非零常数,则kA k A =. ( ) 2.若两个向量组等价,则它们包含的向量个数相同. ( ) 3.对任一排列施行偶数次对换后,排列的奇偶性不变. ( ) 4.正交矩阵的逆矩阵仍是正交矩阵. ( ) 5.任何数域都包含有理数域. ( )三、填空题(每空4分,共24分).1.行列式000100201000D n n==- . 2.已知5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)αβ---=--=-,则α= ,(,)αβ= .3.矩阵12311211022584311112A ---⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥--⎣⎦,则()r A = . 4.设线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解,其系数矩阵A 与增广矩阵A 的秩分别为s 和t ,则s 与t 的大小关系是 .5.设111123111,124111051A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,则1A B -= . 四、计算题(4小题,共42分)1.计算行列式(1)111111111111a a a a;(2)111116541362516121612564.(每小题6分,共12分)2.用基础解系表出线性方程组123451234512345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解.(10分)3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组.(10分)4.求矩阵211020413A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征根和特征向量.(10分)一、单选题(每题4分,共24分)二、判断题(每题2分,共10分)三、填空题(每空4分,共24分)1.(1)2(1)!n n n --⋅; 2.(1 (2)0;3.3; 4.s t =;5.351222312212112-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. 四、计算题(共42分)1.(12分,每小题各6分) (1)解:11131111111111311111(3)111311111111311111a a a a a a a a a a a aa a a++==+++ ..............(3分)311110100(3)(3)(1)001001a a a a a a -=+=+--- ...................(3分)注:中间步骤形式多样,可酌情加分 (2)解:222233331111111116541654136251616541216125641654=,此行列式为范德蒙行列式 ......(3分)进而2222333311111654=(61)(51)(41)(56)(46)(45)12016541654=------=-原式 .......(3分)2.(10分)解:用初等变换把增广矩阵化为阶梯形1213211213211213212111360317740115411122220115410317742351710501711630171163---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥--------⎣⎦⎣⎦⎣⎦1213211213210115410115410317740048510171163000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥-----⎢⎥⎢⎥---⎣⎦⎣⎦..................(3分) 得同解方程组取45,x x 为自由未知量,得方程的一般解为12345234534521321544185x x x x x x x x x x x x++=+-⎧⎪-=+-⎨⎪=--+⎩(其中45,x x 为自由未知量) 将450,0x x ==代入得特解01551(,,,0,0)444γ=--. ................(3分)用同样初等变换,得到与导出组同解的方程组12345234534523205404850x x x x x x x x x x x x ++-+=⎧⎪--+=⎨⎪+-=⎩仍取45,x x 为自由未知量,得一般解12345234534523254485x x x x x x x x x x x x++=-⎧⎪-=-⎨⎪=-+⎩,将451,0x x ==和450,4x x ==分别代入得到一个基础解系:12(1,3,2,1,0),(9,11,5,0,4)ηη=--=- ...............(3分)所以,原方程组的全部解为01122k k γηη++,12,k k 为数域P 中任意数。
2000年全国硕士研究生入学统一考试数学二试题、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上 )H marctanx ;x二x卩 In(1 2x 3) ---------------------⑵设函数y =y(x)由方程2x ^ -x y 所确定,则dy x^二 _____________________-0 0〕⑸设A =-2 3 0 0 ,E 为4阶单位矩阵,且B = (E+A)」(E_A)则0 -4 5 0-6 7一(E B)」= __________________ .二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项 符合题目要求,把所选项前的字母填在题后的括号内.)x(1)设函数f(x)=——衣在(―巴 丘)内连续,且lim f(x)=O,则常数a,b 满足()a +e J 存(C) a - 0,b 0.(D) a _ 0,b :: 0.2⑵设函数f (x)满足关系式f ”(x) • [ f (x)]二x ,且「(0) = 0,贝y ()(A) f(0)是f(x)的极大值. (B) f (0)是f(x)的极小值.(C) 点(0, f (0))是曲线y = f (x)的拐点•(D) f(0)不是f(x)的极值,点(0, f (0))也不是曲线y= f (x)的拐点.(3 )设 f(x),g(x)是大于零的可导函数,且 f'(x)g(x)- f(x)g'(x) :::0,则当 a :::x ::: b 时, 有()(A) f(x)g(b) f(b)g(x)(B) f (x)g(a) f (a)g(x)(A) a :: 0,b :: 0.(B) a 0,b 0.(C) f(x)g(x) f(b)g(b) (D) f(x)g(x) f (a)g(a)1⑷ 曲线y 二(2x -1)e x 的斜渐近线方程为三、 (本题满分5分)设 f (In x)=匹1__x),计算 f (x)dx .x四、 (本题满分5分)设xoy 平面上有正方形D ={(x, y) 0兰x 兰1,0兰y 兰讣及直线I : x + y = t(t Z 0).若xS(t)表示正方形D 位于直线I 左下方部分的面积,试求o S(t)dt,(x 一 0).五、 (本题满分5分)求函数 f (x) = x 21n(1 • x)在 x = 0 处的 n 阶导数 f n (0)(n _ 3). 六、 (本题满分6分)x设函数 S(x)二 J | cost dt , (1)当n 为正整数,且n 二空x 空(n 时,证明2n 空S(x) ::: 2(n 1);⑵求lim^^ .x —抉 x 七、 (本题满分7分)某湖泊的水量为V ,每年排入湖泊内含污染物A 的污水量为V ,流入湖泊内不含 A 的6水量为V ,流出湖泊的水量为 V ,已知1999年底湖中A 的含量为5m ),超过国家规定指6 3标.为了治理污染,从2000年初起,限定排入湖泊中含 A 污水的浓度不超过 印° .问至多需要V经过多少年,湖泊中污染物 A 的含量降至 呛以内(注:设湖水中A 的浓度是均匀的) 八、 (本题满分6分)设函数f (x)在〔0,二】上连续,且° f (x)dx = 0, ° f (x)cosxdx = 0,试证明:在(0,二) 内至少存在两个不同的点 1, 2,使f( J = f ( 2)=0.九、(本题满分7分)⑷若四『6x +xf (x 厂=。
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0(x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d -1∣x n-1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x),g 3(x),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m(x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。