反冲运动火箭及习题课
- 格式:ppt
- 大小:478.00 KB
- 文档页数:25
知识点:反冲现象系统在内力作用下,当一部分向某一方向的动量发生变化时,剩余部分沿相反方向的动量发生同样大小变化的现象。
火箭等都是利用反冲运动的实例.若系统由两部分组成,且相互作用前总动量为零。
一般为物体分离则有 0=mv+(M-m)v\\\\\\\\\' , M是火箭箭体质量,m是燃气改变量。
(参考系的选择是箭体) 例如:火箭、水轮机或灌溉喷水器等。
火箭喷气式飞机(不属于反冲运动)和火箭的飞行应用了反冲的原理,它们都是靠喷出气流的反冲作用而获得巨大速度的。
现代的喷气式飞机,靠连续不断地向后喷出气体,飞行速度能够超过l000m/s。
质量为m的人在远离任何星体的太空中,与他旁边的飞船相对静止。
由于没有力的作用,他与飞船总保持相对静止的状态。
根据动量守恒定律,火箭原来的动量为零,喷气后火箭与燃气的总动量仍然应该是零,即mΔv+Δmu=0 解出Δv= -Δmu/m(1)(1)式表明,火箭喷出的燃气的速度越大、火箭喷出物质的质量与火箭本身质量之比越大,火箭获得的速度越大。
现代火箭喷气的速度在2000~4000 m/s,近期内难以大幅度提高,因此要在减轻火箭本身质量上面下功夫。
火箭起飞时的质量与火箭除燃料外的箭体质量之比叫做火箭的质量比,这个参数一般小于10,否则火箭结构的强度就成了问题。
但是,这样的火箭还是达不到发射人造地球卫星的7.9 km/s的速度。
为了解决这个问题,苏联科学家齐奥尔科夫斯基提出了多级火箭的概念。
把火箭一级一级地接在一起,第一级燃料用完之后就把箭体抛弃,减轻负担,然后第二级开始工作,这样一级一级地连起来,理论上火箭的速度可以提得很高。
但是实际应用中一般不会超过四级,因为级数太多时,连接机构和控制机构的质量会增加得很多,工作的可靠性也会降低。
练习:课件:教案:【教学目标】一、知识与技能1.理解反冲运动概念及其特点,理解反冲运动的物理实质。
2.能够运用动量守恒定律分析、解决有关反冲运动的问题。
反冲现象火箭1.通过实验认识反冲运动,能举出反冲运动的实例,知道火箭的发射是反冲现象。
2.能结合动量守恒定律对常见的反冲现象作出解释。
3.了解我国航天事业的巨大成就,增强对我国科学技术发展的自信。
考点一、反冲现象1.定义:一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另一部分必然向相反的方向运动的现象.2.规律:反冲运动中,相互作用力一般较大,满足动量守恒定律.3.反冲现象的应用及防止(1)应用:农田、园林的喷灌装置利用反冲使水从喷口喷出时,一边喷水一边旋转.(2)防止:用枪射击时,由于枪身的反冲会影响射击的准确性,所以用枪射击时要把枪身抵在肩部,考点二、火箭1.工作原理:喷气式飞机和火箭的飞行应用了反冲的原理,它们靠喷出气流的反冲作用而获得巨大的速度.2.决定火箭增加的速度Δv的因素以喷气前的火箭为参考系。
喷气前火箭的动量是0,喷气后火箭的动量是m△v),燃气的动量是△m u。
根据动量守恒定律,喷气后火箭和燃气的总动量仍然为0,所以m△v+△m u=0解出△v=―Δmmu上式表明,火箭喷出的燃气的速度u越大、火箭喷出物质的质量与火箭本身质量之比越大,火箭获得的速度△v就越大。
题型1用动量守恒定律解决爆炸问题[例题1](2023秋•密山市期末)一枚在空中飞行的火箭在某时刻的速度为v0,方向水平,燃料即将耗尽。
此时,火箭突然炸裂成两块(如图所示),其中质量为m2的后部分箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则质量为m1前部分箭体速率v1为( )A.v0﹣v2B.v0+v2C.v0―m2m1v2D.v0+m2m1(v0―v2)【解答】解:火箭在爆炸分离时水平方向上动量守恒,规定初速度的方向为正方向,有:(m 1+m 2)v 0=m 1v 1+m 2v 2解得v 1=v 0+m 2m 1(v 0―v 2),故ABC 正确,D 正确。
故选:D 。
[例题2](2024•顺义区二模)一枚在空中水平飞行的玩具火箭质量为m ,在某时刻距离地面的高度为h ,速度为v 。
第5节 反冲运动 火箭A 组:合格性水平训练1.(反冲运动)以下实例中不属于反冲现象的是( ) A .当枪发射子弹时,枪身会同时向后运动 B .乌贼向前喷水从而使自己向后游动C .火箭中的火药燃烧向下喷气推动自身向上运动D .战斗机在紧急情况下抛出副油箱以提高机身的灵活性 答案 D解析 当枪发射子弹时,枪身同时受到一个反作用力向后运动,A 是反冲现象;乌贼向前喷水从而使自己受到一个向后的力,向后游动,B 是反冲现象;火箭中的火药燃烧向下喷气而火箭自身受到一个向上的推力,推动火箭自身向上运动,C 是反冲现象;战斗机抛出副油箱,质量减小,惯性减小,机身的灵活性提高,D 不是反冲现象。
故选D 。
2.(人船模型)停在静水中的船的质量为180 kg,长12 m,不计水的阻力,当质量为60 kg 的人从船尾走到船头的过程中,船后退的距离是( )A .3 mB .4 mC .5 mD .6 m答案 A解析 船和人组成的系统在水平方向上动量守恒,人在船上行进,船向后退,人从船头走到船尾,设船后退的位移大小为x ,则人相对于岸的位移大小为L -x 。
以人的速度方向为正方向,由动量守恒定律得m 人L -x t -m 船·xt=0,代入数据解得x =3 m,故选A 。
3.(火箭问题)静止的实验火箭,总质量为M ,当它以对地速度为v 0喷出质量为Δm 的高温气体后,火箭的速度为( )A .Δmv 0M -ΔmB .-Δmv 0MC .Δmv 0MD .-Δmv 0M -Δm答案 D解析 以火箭和气体组成的系统为研究对象,选高温气体的速度方向为正方向,设火箭速度为v ′,由动量守恒定律得0=(M -Δm )v ′+Δmv 0,得v ′=-Δmv 0M -Δm,故选D 。
4.(火箭问题)一质量为M 的航天器,正以大小为v 0的速度在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )A.v2-v0v1M B.v2v2+v1MC.v2-v0v2+v1M D.v2-v0v2-v1M答案 C解析规定航天器的速度方向为正方向,由动量守恒定律得,Mv0=(M-m)v2-mv1,解得m=v2-v0v2+v1M,故C正确。
5 反冲运动、火箭1.定义:一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动的现象.2.特点:(1)反冲运动是物体的不同部分在内力作用下产生的结果.(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理.3.反冲现象的应用及防止(1)应用:农田、园林的喷灌装置是利用反冲使水从喷口喷出时,一边喷水一边旋转来自动改变喷水的方向.(2)防止:用枪射击时,由于枪身的反冲会影响射击的准确性,所以用步枪射击时要把枪身抵在肩部,以减少反冲的影响.【深度思考】假如在月球上建一飞机场,应配置喷气式飞机还是螺旋桨飞机呢?答案 喷气式飞机是靠喷出自身携带的气体而做反冲运动的;螺旋桨飞机靠螺旋桨转动时桨面与周围空气发生相互作用而获得向上的动力.因为月球上没有气体,所以只能配置喷气式飞机.【例1】 反冲小车静止放在水平光滑玻璃上,点燃酒精,水蒸气将橡皮塞水平喷出,小车沿相反方向运动.如果小车的总质量M =3 kg ,水平喷出的橡皮塞的质量m = kg.(1)若橡皮塞喷出时获得的水平速度v = m/s ,求小车的反冲速度.(2)若橡皮塞喷出时速度大小不变,方向与水平方向成60°角,小车的反冲速度又如何?(小车一直在水平方向运动) 解析 (1)小车和橡皮塞组成的系统所受外力之和为零,系统总动量为零.以橡皮塞运动的方向为正方向 根据动量守恒定律,mv +(M -m )v ′=0v ′=-m M -mv =-错误!× m/s=- m/s 负号表示小车运动方向与橡皮塞运动的方向相反,反冲速度大小是 m/s.(2)小车和橡皮塞组成的系统水平方向动量守恒.以橡皮塞运动的方向为正方向,有mv cos 60°+(M -m )v ″=0v ″=-mv cos 60°M -m=-错误! m/s =- m/s 负号表示小车运动方向与橡皮塞运动的方向相反,反冲速度大小是 m/s.二、火箭【例2】 一火箭喷气发动机每次喷出m =200 g 的气体,气体离开发动机喷出时的速度v =1 000 m/s.设火箭质量M =300 kg ,发动机每秒钟喷气20次.(1)当第三次喷出气体后,火箭的速度多大?(2)运动第1 s 末,火箭的速度多大?解析 火箭喷气属反冲现象,火箭和气体组成的系统动量守恒,运用动量守恒定律求解.(1)选取火箭和气体组成的系统为研究对象,运用动量守恒定律求解.设喷出三次气体后,火箭的速度为v 3, 以火箭和喷出的三次气体为研究对象,据动量守恒定律得:(M -3m )v 3-3mv =0,故v 3=3mv M -3m≈2 m/s(2)发动机每秒钟喷气20次,以火箭和喷出的20次气体为研究对象,根据动量守恒定律得:(M -20m )v 20-20mv =0,故v 20=20mv M -20m≈ m/s. 答案 (1)2 m/s (2) m/s 分析火箭类问题应注意的三个问题(1)火箭在运动过程中,随着燃料的燃烧,火箭本身的质量不断减小,故在应用动量守恒定律时,必须取在同一相互作用时间内的火箭和喷出的气体为研究对象.注意反冲前、后各物体质量的变化.(2)明确两部分物体初、末状态速度的参考系是否为同一参考系,如果不是同一参考系要设法予以调整,一般情况要转换成对地的速度.(3)列方程时要注意初、末状态动量的方向.反冲物体速度的方向与原物体的运动方向是相同的.三、反冲运动的应用——“人船模型”1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人停船停,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1. (3)应用此关系时要注意一个问题:即公式v 1、v 2和x 1、x 2一般都是相对地面而言的.【例3】 有一只小船停在静水中,船上一人从船头走到船尾.如果人的质量m =60 kg ,船的质量M =120 kg ,船长为l =3 m ,则船在水中移动的距离是多少?水的阻力不计.解析 人在船上走时,由于人、船系统所受合力为零,总动量守恒,因此系统的平均动量也守恒,如图所示. 设人从船头到船尾的时间为t ,在这段时间里船后退的距离为x ,人相对地面运动距离为l -x ,选船后退方向为正方向,由动量守恒有:M x t -m l -x t =0 所以x =m M +m l =60120+60×3 m=1 m.答案 1 m “人船模型”是利用平均动量守恒求解的一类问题,解决这类问题应明确:(1)适用条件:①系统由两个物体组成且相互作用前静止,系统总动量为零;②在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向).(2)画草图:解题时要画出各物体的位移关系草图,找出各长度间的关系,注意两物体的位移是相对同一参考系的位移.练习:1.(反冲运动)手持铁球的跳远运动员起跳后,欲提高跳远成绩,可在运动到最高点时,将手中的铁球( C )A .竖直向上抛出B .向前方抛出C .向后方抛出D .向左方抛出解析 欲提高跳远成绩,则应增大水平速度,即增大水平方向的动量,所以可将铁球向后抛出,人和铁球的总动量守恒,因为铁球的动量向后,所以人向前的动量增加.2.(反冲运动)(多选)中国潜艇专家正在设计一种以电磁推动潜航的潜艇,基本原理是潜艇间的海水通电,利用潜艇的强磁场对通电海水的作用力即安培力,将海水高速推出,使潜艇获得动力.为了提高潜艇的航速,可采用哪些措施( ACD )A.使推出水的速度增大 B.使潜艇的质量增大C.使通过海水的电流增大 D.使单位时间内推出的水的质量增加3.(火箭的原理)运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是( B )A.燃料燃烧推动空气,空气反作用力推动火箭B.火箭发动机将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭C.火箭吸入空气,然后向后推出,空气对火箭的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭解析火箭工作的原理是利用反冲运动,火箭燃料燃烧产生的高温高压燃气从尾喷管以很大速度喷出时,使火箭获得反冲速度向前运动,故选B项.4.(人船模型的应用)(多选)一平板小车静止在光滑的水平地面上,甲、乙两人分别站在车上左、右两端,当两人同时相向而行时,发现小车向左移动,则( AC )A.若两人质量相等,必定v甲>v乙B.若两人质量相等,必定v甲<v乙C.若两人速率相等,必定m甲>m乙D.若两人速率相等,必定m甲<m乙解析把甲、乙以及小车看成一个系统,系统的动量守恒,开始时速度都为零,小车向左移动,说明甲、乙两人的合动量方向向右,根据题意,甲向右运动,乙向左运动,所以甲的动量大于乙的动量,如果二者质量相等,则甲的速度大于乙的速度,如果二者速率相等,则甲的质量大于乙的质量.5.(人船模型的应用)如图1所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M,顶端高度为h.今有一质量为m的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( C )α) α)解析此题属“人船模型”问题,m与M组成的系统在水平方向上动量守恒,设m在水平方向上对地位移为x1,M 在水平方向对地位移为x2,因此0=mx1-Mx2.①且x1+x2=htan α.②由①②可得x2=mh?M+m?tan α,故选C.。
16.5 反冲运动火箭1.关于反冲运动,下列说法正确的是( )A.反冲现象是有害的,应设法防止B.反冲运动的两个物体系统动量守恒,机械能也守恒C.火箭匀速升空,不需向后喷气D.影响火箭速度大小的因素是喷气速度和质量比E.枪射击时,需用肩抵住枪身,这是利用了反冲现象解析:火箭发射应用的就是反冲现象,机械能不守恒,ABC错,枪射击时,用肩抵住枪身,为防止反冲现象,E错。
答案:D2.采取下列措施有利于提高火箭的飞行速度的是( )A.使喷出的气体速度增大B.使喷出的气体温度更高C.使喷出的气体质量更大D.使喷出的气体密度更小解析:设火箭原来的总质量为M,喷出的气体质量为m,速度为v,剩余的质量为(M-m),速度为v′,由动量守恒定律得(M-m)v′=mv,则v′=mvM-m,故m越大,v越大,则v′越大。
答案:AC3.小车上装有一桶水,静止在光滑水平地面上,如图所示,桶的前、后、底及侧面各装有一个阀门,分别为S1、S2、S3、S4(图中未全画出)。
要使小车向前运动,可采用的方法是( ) A.打开阀门S1B.打开阀门S2C.打开阀门S3D.打开阀门S4解析:应利用反冲的原理使小车向前运动,故应打开阀门S2。
答案:B4.一辆小车置于光滑水平面上,车左端固定一水平弹簧枪,右端装一网兜。
若从弹簧枪中发射一粒弹丸,恰好落在网兜内,结果小车将(空气阻力不计)( )A.向左移动一段距离停下B.在原位置没动C.向右移动一段距离停下D.一直向左移动解析:弹簧枪发射弹丸后,依靠反冲小车向左运动,当飞行的弹丸落入右端网兜时,因系统动量守恒,小车又停止。
故选项A正确。
答案:A5.静止的实验火箭总质量为M ,当它以对地速度为v 0,喷出质量为Δm 的高温气体后,火箭的速度为( ) A.Δmv 0M -Δm B .-Δmv 0M -ΔmC.Δmv 0M D .-Δmv 0M解析:以火箭和喷出气体为研究对象,系统初始动量为零,选取v 0的方向为正方向,由动量守恒定律,得0=Δmv 0+(M -Δm )v ,v =-Δmv 0M -Δm,故答案为B 。
《反冲现象 火箭》 习题课1. (多选)一个质量为M 的平板车静止在光滑的水平面上,在平板车的车头与车尾站着甲、乙两人,质量分别为m 1和m 2,当两人相向而行时( )m 1> m 2时,车子与甲运动方向一致 B. 当v 1> v 2时,车子与甲运动方向一致C. 当m 1v 1=m 2v 2时,车子静止不动D. 当m 1v 1>m 2v 2时,车子运动方向与乙运动方向一致2.装有炮弹的火炮总质量为m 1,炮弹的质量为m 2,炮弹射出炮口时对地的速率为0v ,若炮管与水平地面的夹角为θ,则火炮后退的速度大小为 ( )A .m 2 0v /m 1B .—m 20v /(m 1一m 2)C .m 20v cos θ/ (m 1一m 2)D .m 20v cos θ/m 13.质量为M 的玩具汽车拉着质量为m 的小拖车,在水平地面上以速度v 匀速前进,某一时刻拉拖车的线突然断了,而小汽车的牵引力不变,汽车和拖车与地面间的动摩擦因数相同,一切阻力也不变。
则在小拖车停止运动时,小汽车的速度大小为 。
4.小孩双手搭着大人的肩一起在水平冰面上以3m /s 的速度向右匀速滑行,后面的小孩突然推了一下前面的大人,结果小孩以2 m /s 的速度向左滑行,已知小孩的质量为30kg ,大人的质量为60kg ,则被推后大人的速度大小变为( )A .5.5m /sB .4.5m /sC .3.5m /sD .2.5m /s 选择题答案1 2 3 45.在水平轨道上放置一门质量为M 的炮车,发射炮弹的质量为m ,炮车与地面间摩擦不计,当炮身与水平方向成θ角发射炮弹时,炮弹相对炮身的出口速度为v 0,试求炮车后退的速度多大? 6.如图所示,物体A 和B 质量分别为m 1和m 2,其图示直角边长分别为a 和b 。
设B 与水平地面无摩擦,当A 由O 顶端从静止开始滑到B 的底端时,B 的水平位移是多少?7.一质量为m 的人站在停靠岸边的小船上、小船质量为M ,现在:(1)人以对地的水平速度v 跳上岸;(2)人以对地的速度v 斜向上跳上岸,v 和水平方向成θ角;※(3)人以对船的速度u 斜向上跳上岸,u 与水平方向成φ角;求上述三种情况下,人跳起后,小船后退的速度各是多大(不计水的阻力)?那么以地面为参考系,气体的速度反向实际上是与飞机飞行的方向相同的。
第6节 反冲现象 火箭课时定时训练(限时35分钟)题组一 反冲运动的理解和应用1.如图所示,我国自行研制的“歼-15”战斗机挂弹飞行时,接到命令,进行导弹发射训练,当战斗机水平飞行的速度为v 0时,将总质量为M 的导弹释放,刚释放时,导弹向战斗机飞行的反方向喷出对地速率为v 1、质量为m 的燃气,则喷气后导弹相对地面的速率v 为( )A.M v 0-m v 1MB.M v 0+m v 1MC.M v 0-m v 1M -mD.M v 0+m v 1M -m答案 D 解析 以导弹飞行的方向为正方向,导弹被战斗机释放后导弹喷出燃气前后瞬间,根据动量守恒定律得M v 0=(M -m )v -m v 1,解得v =M v 0+m v 1M -m,故选项D 正确。
2.(2020·三明市二中高二期末)假设进行太空行走的宇航员A 和B 的质量分别为m A 和m B ,他们携手匀速远离空间站,相对空间站的速度为v 0。
某时刻A 将B 向空间站方向轻推,A 的速度变为v A ,B 的速度变为v B ,则下列各关系式中正确的是( )A.(m A +m B )v 0=m A v A -m B v BB.(m A+m B)v0=m A v A+m B(v A+v0)C.(m A+m B)v0=m A v A+m B(v A+v B)D.(m A+m B)v0=m A v A+m B v B答案D解析本题中的各个速度都是相对于空间站的,不需要转换,相互作用前系统的总动量为(m A+m B)v0,A将B向空间站方向轻推后,A的速度变为v A,B的速度变为v B,动量分别为m A v A、m B v B,根据动量守恒得(m A+m B)v0=m A v A+m B v B,故A、B、C错误,D正确。
3.(2020·浙江高二期中)一航天器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下说法正确的是()A.探测器加速运动时,沿直线向后喷气B.探测器匀速运动时,不需要喷气C.探测器匀速运动时,竖直向下喷气D.探测器获得动力的原因是受到了喷出的气流的反作用力,气流来自探测器吸入的大气答案C解析航天器除受到推动力外,还受到竖直向下的重力,要想沿着与月球表面成一倾角的直线加速飞行,合外力与运动方向相同,推动力不与速度在同一直线上,故A错误;匀速运动合外力为零,故推动力竖直向上,应竖直向下喷气,故B错误,C正确;气流来自航天器燃料燃烧产生的气体,故D错误。