密度法判别高聚物
- 格式:ppt
- 大小:172.00 KB
- 文档页数:4
重量法测定聚合物的原理
重量法测定聚合物的原理是利用聚合物与溶剂之间的溶解相互作用,通过称量聚合物在不同溶剂环境下的重量变化来辨别和测定聚合物的性质和组成。
具体步骤如下:
1. 首先,将待测聚合物样品称量并记录其重量。
2. 将聚合物加入所选溶剂中,使其完全溶解,并充分搅拌混合,使聚合物均匀分散在溶剂中。
3. 将溶解后的聚合物溶液过滤或离心,以去除可能存在的溶剂中的杂质和未溶聚合物颗粒。
4. 将溶液倒入干燥的皿中,然后放入加热器中进行脱溶剂处理,使溶剂蒸发,只留下干燥的聚合物样品。
5. 完成脱溶剂处理后,将皿中的聚合物样品取出并称重。
6. 通过计算聚合物样品的重量差异,可以得到聚合物在溶剂中的溶解度和溶解度参数,进而推测聚合物的性质和组成。
重量法测定聚合物的原理基于溶解度理论,根据聚合物与溶剂之间的相互作用力以及溶剂对聚合物的溶解能力来推测和测定聚合物的性质。
重量法测定聚合物的优点是操作简单、结果准确可靠,但也存在一些限制,如溶剂选择、皿内的空气流动等因素会影响测定结果。
因此,在进行重量法测定之前,需要对溶剂和实验条件进行合理选择和控制,以确保测定结果的可靠性。
高聚物单体的判断方法高聚物单体是合成高聚物的基本组成单元,通过聚合反应将单体分子连接起来形成高分子链。
判断一种化合物是否为高聚物单体,可以从以下几个方面进行分析。
高聚物单体通常具有较高的分子量。
高分子量是高聚物的显著特点,使其具有独特的物理和化学性质。
因此,如果一种化合物的分子量较大,那么它有可能是高聚物单体。
可以通过凝胶渗透色谱等分析方法来确定化合物的分子量。
高聚物单体通常具有多个反应官能团。
反应官能团使单体能够与其他单体进行化学反应,形成高分子链。
常见的反应官能团包括双键、羟基、胺基、羧基等。
因此,如果一种化合物含有多个反应官能团,那么它有可能是高聚物单体。
可以通过红外光谱、核磁共振等方法来确认化合物中的反应官能团。
高聚物单体通常具有较低的反应活性。
由于高聚物单体需要通过聚合反应连接成高分子链,其反应活性通常较低。
因此,高聚物单体在常规实验条件下不易发生自发聚合反应。
可以通过热分析、差示扫描量热等方法来测定化合物的热稳定性,进而判断其反应活性。
高聚物单体通常具有较高的溶解度。
由于高分子链的存在,高聚物单体通常具有较高的溶解度,能够在溶剂中形成均匀的溶液。
可以通过溶解度实验来测定化合物在不同溶剂中的溶解度,进而判断其是否为高聚物单体。
高聚物单体通常具有特定的结构特征。
不同类型的高聚物单体具有不同的结构特征,如线性结构、支化结构、交联结构等。
可以通过核磁共振、质谱等分析方法来确定化合物的结构特征,进而判断其是否为高聚物单体。
判断一种化合物是否为高聚物单体可以从分子量、反应官能团、反应活性、溶解度和结构特征等方面进行分析。
通过合理运用上述方法,可以对高聚物单体进行准确判断,为高聚物的合成提供重要依据。
实验1 密度梯度管法测定高聚物的密度和结晶度高聚物的密度是高聚物的重要物理参数之一,它对于指导高聚物的合成、成型工艺以及探索结构与性能之间的关系等方面都是不可缺少的数据。
而对于结晶高聚物来说,结晶度反映了物质内部结构规则程度,影响着其许多物理、化学性能和应用性能,密度和结晶度之间有着密切的关系。
因此,测定高聚物的密度和结晶度,对研究其结构状态进而控制材料的性能有着很大的实用意义。
测定高聚物结晶度的方法很多,有X-射线衍射法、红外吸收光谱法、核磁共振法、差热分析法、反相色谱法、化学方法(水解法、甲酰化法、氘交换法)、密度法等等。
其中前几种方法都需要使用复杂的仪器设备,而密度法是从较容易测定的高聚物密度换算成结晶度,既简单易行,又较为准确。
凡是能测定出高聚物试样密度的方法都属于密度法。
本实验采用密度法中的一种方法 ── 密度梯度管法测定高聚物的结晶度。
一、实验目的1. 了解用密度梯度管法测定高聚物的密度和结晶度的基本原理和方法。
2. 学会用连续灌注法制备密度梯度管的技术及密度梯度管的标定方法。
3. 用密度梯度管测定结晶高聚物试样的密度,并计算其结晶度。
二、实验原理将两种密度不同且又能互溶的液体配制成一系列等差密度的混合液,并按照低密度液体(轻液)位于高密度液体(重液)之上的层次,把不同密度的混合液置于带有刻度的玻璃管中,由于液体分子的扩散作用,管中的液体密度将会从下到上呈连续的线性分布,这就是密度梯度管。
当把一个颗粒状试样放入密度梯度管中时,根据悬浮原理,试样会在与其密度相等的液位上悬浮不动。
配制密度梯度管所选用的轻液和重液种类不同时,密度梯度管的密度梯度范围就会不同。
在本实验后面的附表1-1中列出了一些常用的密度梯度管溶液体系。
高度图 1-1 密度梯度管的标定曲线将若干个已知其准确密度的标准玻璃小球放入密度梯度管中,读出各个小球在密度梯度管中的高度值,再以玻璃小球的密度值对小球的高度值作图,就可得到该密度梯度管的标定曲线。
补充习题补1.高分子基础1.高分子化合物的特点;2.聚合反应类型及实施方法;3.聚合物材料的老化现象特征、老化的因素、老化的防止;4.聚合物的降解,降解类型、降解因素第一章高分子链结构1.内聚能密度; 链段;分子链的平衡态柔性和动态柔性。
2.指出塑料、橡胶和纤维的内聚能密度的大致范围。
3.比较各组内几种高分子链的柔性大小并说明理由:1)聚乙烯,聚丙烯,聚苯乙烯;2)聚乙烯,聚乙炔,顺式1,4聚丁二烯;3)聚丙烯,聚氯乙烯,聚丙烯腈;4)聚丙烯,聚异丁稀;5)聚氯乙烯,聚偏氯乙烯;6)聚乙烯,聚乙烯基咔唑,聚乙烯基叔丁烷;7)聚丙烯酸甲酯,聚丙烯酸丙脂,聚丙酸戌酯;8)聚酰胺6.6,聚对苯二甲酰对苯二胺;9)聚对苯二甲酸乙二醇酯,聚对苯二甲酸丁二醇酯。
假定聚乙烯的聚合度为2000,键角为109.5°(如图所示),求伸直链的长度为L max与自由旋转链的均方根末端距之比值,并解释某些高分子材料在外力作用下可产生很大变形的原因。
(链节长度l=0.514nm, =nl2)第二章高分子聚集态结构1.晶态、液晶态、取向态;4)球晶5)取向函数、2.球晶、串晶、伸直链晶体分别在什么条件下形成?3.如何用密度法测定高聚物的结晶度?4.为什么天然橡胶在室温下是柔软而富有弹性的高弹体,但当拉伸比(λ)较大时其模量会急剧增加而失去高弹性?5.如何测定结晶高聚物在一定温度下的结晶速率常数k和阿芙拉密指数n,后者的物理意义是什么?6.试写出下列塑料的最高使用温度?(指出是Tg还是Tm即可)。
1)无规立构聚氯乙烯,2)间同立构聚氯乙烯,3)无规立构聚甲基丙烯酸甲酯,4)全同立构聚甲基丙烯酸甲酯,5)聚乙烯,6)全同立构聚丙烯,7)全同立构聚丁烯-1,8)聚丙烯腈,9)尼龙66,10)聚对苯二甲酰对苯二胺7.高分子液晶按液晶形态分为哪几类?8.高分子液晶的刚性结构及其作用?9.热熔型主链高分子液晶的性质及其说明?第三章 高分子溶液1.低分子物质和高分子物质的溶解过程有何区别?2.结晶高聚物的溶解有什么特点?3.试述选择溶剂的原则。
塑料的密度鉴别法(四)塑料的品种不同,其密度也不同,可利用测定密度的方法来鉴别塑料,但此时应将发泡制品分别出来,因为发泡沫塑料的密度不是材料的真正的密度。
在实际工业上,也有利用塑料的密度不同来分选塑料的。
常用塑料的密度见下表:材料密度/(g/cm3) 材料0.8 硅橡腔(可用二氧化硅填充到1。
25)1.19~1.35增塑聚氯乙烯(大约含有40%增塑剂)0.83 聚甲基戊烯 1.20~1.22聚碳酸酯(双酚A型)0.85~0.91 聚丙烯 1.20~1.26 交联聚氨酯0.89~0.93高压(低密度)聚乙烯1.26~1.28苯酚甲醛树脂(未填充)0.91~0.92 1-聚丁烯 1.26~1.31 聚乙烯醇0.9~0.93 聚异丁烯 1.25~1.35 乙酸纤维素0.92~1.00 天然橡胶 1.30~1.41 苯酚甲醛树脂(填充有机材料:纸,织物)0.92~0.98低压(高密度)聚乙烯1.30~1.40 聚氟乙烯1.01~1.04 尼龙12 1.34~1.40 赛璐珞1.03~1.05 尼龙11 1.38~1.41聚对苯二甲酸乙二醇酯1.04~1.06 丙烯腈-丁二烯-苯乙烯共聚物(ABS)1.38~1.50 硬质PVC1.04~1.08 聚苯乙烯 1.41~1.43聚氧化甲烯(聚甲醛)1.05~1.07 聚苯醚 1.47~1.52 脲-三聚氰胺树脂(加有有机填料)1.06~1.10苯乙烯-丙烯腈共聚物1.47~1.55 氯化聚氯乙烯1.07~1.09 尼龙610 1.50~2.00 酚醛塑料和氨基塑料(加有无机填料)1.12~1.15 尼龙6 1.70~1.80 聚偏二氟乙烯1.13~1.16 尼龙66 1.80~2.30聚酯和环氧树脂(加有玻璃纤维)1.10~1.40 环氧树脂,不饱和聚酯树脂1.86~1.88 聚偏二氯乙烯1.14~1.17 聚丙烯腈2.10~2.20 聚三氟-氯乙烯1.15~1.25乙酰丁酸纤维素2.10~2.30 聚四氟乙烯1.161.20聚甲基丙烯酸甲酯1.17~1.20聚乙酸乙烯酯1.18~1.24 丙酸纤维素常用于塑料的密度鉴别的溶液溶液的种类密度(25℃)/(g/cm3)配制方法塑料(制品)种类浮于溶液沉入溶液水 1聚乙烯,聚丙烯聚氯乙烯,聚苯乙烯饱和食盐溶液1.1974ml水和26g食盐聚苯乙烯,ABS聚氯乙烯58-4%的酒精溶液0.91100ml水和140ml95%的聚丙烯聚乙烯酒精55-4的酒精溶液0.925100ml水和124ml95%的酒精高压聚乙烯低压聚乙烯氯化钙水溶液1.27100g的氯化钙(工业用)和150ml水聚苯乙烯,有机玻璃,ABS聚乙烯聚氯乙烯,酚醛塑料塑料系列简易鉴别法——加热鉴别方法(二)上述三类塑料的加热特征也是各不相同的,通过加热的方法可以鉴别。
结晶度测试方法及研究意义郑 浩武汉科技大学材料与冶金学院 金材系 学号:201102710056摘要:本文主要对结晶度的定义进行了概括,总结了目前用于计算聚合物结晶度的常用方法,包括:差示扫描量热法;广角X 衍射法;密度法;红外光谱法;反气相色谱法等,并且对这些方法进行了对比分析,最后对研究聚合物结晶度的意义进行了总结。
关键词:结晶度; 测试方法; 研究意义引言结晶度时表征聚合物性质的重要参数,聚合物的一些物理性能和机械性能与其结晶度有着密切的关系。
结晶度愈大,尺寸稳定性愈好,其强度、硬度、刚度愈高;同时耐热性和耐化学性也愈好,但与链运动有关的性能如弹性、断裂伸长、抗冲击强度、溶胀度等降低。
因而高分子材料结晶度的准确测定和描述对认识这种材料是很关键的。
所以有必要对各种测试结晶度的方法做一总结和对比[1]。
1.结晶度定义结晶就是指材料中的原子、离子或分子按一定的空间次序排列形成长程有序的过程。
结晶度就是材料中结晶部分含量的量度,通常以重量百分数cwf或体积分数v cf 。
%100⨯+=Wa Wc Wcc w f%100⨯+=Va Vc Vc c w f上式中,W 表示重量,V 表示体积,下标c 表示结晶,a 表示非晶。
结晶度的概念虽然沿用了很久,但是由于高聚物的晶区与非晶区的界限不明确:在一个样品中,实际上同时存在着不同程度的有序状态,这自然要给准确确定结晶部分的含量带来了困难,由于各种测试结晶度的方法涉及不同的有序状态,或者说,各种方法对晶区和非晶区的理解不同,有时甚至会有很大出入。
下表给出了用不同方法测得的结晶度数据,可以看到,不同方法得到的数据的差别超过测量的误差。
因此,指出某种聚合物的结晶度时,通常必须具体说明测量方法。
表1.1用不同方法测得的结晶度比较密度法60 20 20 77 55X射线衍射法80 29 2 78 57红外光谱法-- 61 59 76 53水解法93 -- -- -- -- 甲酰化法87 -- -- -- -- 氘交换法56 -- -- -- --由表1.1我们可以清楚的看到采用不同方法测试所得结晶度的差异。
聚合物检测方法聚合物是由重复单元组成的高分子化合物,应用广泛于塑料制品、橡胶制品、纺织品、化妆品等领域。
随着聚合物制品的不断增多和应用领域的不断拓展,对聚合物的检测方法也提出了更高的要求。
本文将从传统的物理检测方法到现代的化学和生物技术检测方法进行综合介绍,以期为聚合物检测领域的科研和实践工作者提供一些参考和借鉴。
一、传统的物理检测方法1. 热分析法热分析法是通过测量聚合物在一定温度范围内的热学性质来判断其性能的一种方法。
其中包括差热分析法(DSC)、热重分析法(TGA)等。
通过观察聚合物在升温或降温过程中的吸热、放热,以及失重情况,可以初步判断其组成和性质。
2. 拉伸实验拉伸实验是一种简单直观的物理检测方法,通过对聚合物样品在一定温度下的拉伸过程进行观察,获得相关的拉伸特性参数。
这种方法适用于常见的塑料和橡胶制品,可以直接反映材料的物理性能。
二、化学分析方法1. 光谱分析紫外-可见光谱(UV-Vis)、红外光谱(FTIR)、核磁共振氢谱(HNMR)等光谱分析方法可用于聚合物材料的结构表征和成分分析。
通过检测聚合物在特定波长下的吸收、发射或散射情况,可以分析其分子链结构和可能的功能团。
2. 质谱分析质谱分析是一种高灵敏度的化学分析方法,适用于聚合物样品中微量成分的检测。
通过检测聚合物样品中分子离子的质荷比,可以确定其相对分子质量、分子结构和可能的附加元素。
三、生物技术检测方法1. 核酸检测法聚合物中常常携带有一定的核酸成分,利用聚合酶链式反应(PCR)等核酸检测技术可以对聚合物样品中的核酸成分进行扩增和鉴定。
这种方法对于化妆品等含有生物成分的聚合物制品有着重要的应用价值。
2. 生物传感器检测法生物传感器是一种利用生物材料(如酶、抗体)和传感器结合的检测技术。
通过将特定的生物材料与聚合物样品接触,观察其生物传感反应产生的信号变化,可以实现对聚合物样品中特定成分的快速检测和定量分析。
随着科学技术的发展,聚合物检测方法也在不断创新和完善。
聚乙烯高密度测定法的原理聚乙烯高密度测定法是一种常用的确定聚乙烯样品中高密度聚乙烯含量的分析方法。
具体原理如下:聚乙烯高密度测定法基于聚乙烯分子的尺寸和构型对测量结果的影响。
高密度聚乙烯的分子链相对较短,分子之间的断裂和再结晶现象比较常见,这使得高密度聚乙烯的熔体黏度较低。
通过测量样品的熔体黏度,我们可以间接地确定样品中高密度聚乙烯的含量。
聚乙烯高密度测定法的步骤如下:1. 样品制备:将聚乙烯样品切碎并干燥。
确保样品中没有其他杂质和添加剂,并记录样品的质量。
2. 样品溶解:将样品加入溶解剂中,充分搅拌使样品完全溶解。
常用的溶解剂包括四氯化碳和苯。
3. 配制标准库:制备一系列已知浓度的高密度聚乙烯溶液。
这些溶液应涵盖一定浓度范围,以便进行测定曲线的构建。
4. 测定熔体黏度:将样品和标准溶液分别加入硅油质量测定系统中的装置中。
通过将一段硅油从高处往下流动,使其在一段时间内通过装置中的样品和标准溶液,测定其流速。
通过测量流速和样品在装置中的长度,可以计算出样品和标准溶液的黏度。
5. 绘制标准曲线:将标准样品的浓度与其对应的熔体黏度绘制在图表上。
根据绘制的标准曲线,可以通过测量待测样品的熔体黏度,确定其高密度聚乙烯的含量。
聚乙烯高密度测定法的最大优点之一是简单易行。
它只需要一些基本的试剂和仪器设备,并且可以在实验室中快速进行。
此外,该方法所需的样品量相对较少,通常只需要几克即可进行分析。
然而,聚乙烯高密度测定法也存在一些局限性。
首先,该方法只适用于测定高密度聚乙烯的含量,对于其他类型的聚乙烯(如低密度聚乙烯和线性低密度聚乙烯)不适用。
其次,该方法需要标准样品进行校准,并且需要绘制标准曲线。
因此,如果没有已知浓度的标准样品,该方法将无法应用。
总之,聚乙烯高密度测定法是一种确定聚乙烯样品中高密度聚乙烯含量的常用方法。
通过测量样品的熔体黏度,并与已知浓度的标准样品进行比较,可以确定样品中高密度聚乙烯的含量。
这种方法简单易行,但只适用于测定高密度聚乙烯的含量,并需要标准样品进行校准。