人教B版2017年数学必修2同步练习2.3.2圆的一般方程含答案
- 格式:doc
- 大小:694.50 KB
- 文档页数:4
新高中数学2-3圆的方程2-3-1圆的标准方程2-3-2圆的一般方程自主训练新人教B 版必修2 圆的标准方程2.3.2 圆的一般方程自主广场我夯基 我达标1.下列方程中表示圆的是( )A.x 2+y 2-2x+2y+2=0B.x 2+y 2-2xy+y+1=0C.x 2+2y 2-2x+4y+3=0D.x 2+y 2+4x-6y+9=0思路解析:题中的4个选项都是二元二次方程,一个二元二次方程是否表示圆,要判断它是否同时满足以下这三个条件:(1)x 2、y 2项的系数相等且不为零,即A=C≠0;(2)没有xy 项,即B=0;(3)D 2+E 2-4F >0.根据这三个条件对每一个方程进行判断.因为选项A 中D 2+E 2-4F=4+4-8=0,所以选项A 不正确;因为选项B 中有-2xy 项,所以选项B 也不正确;因为选项C 中两个平方项的系数一个等于1,另一个等于2,不满足A=C 的条件,所以选项C 也不正确;选项D 同时满足这三个条件,所以选项D 是正确的.因此,选D.答案:D2.已知方程x 2+y 2-2kx+2k+3=0表示圆,则k 的取值范围是( )A.(-∞,-1)B.(3,+∞)C.(-∞,-1)∪(3,+∞)D. ∅思路解析:利用D 2+E 2-4F >0就可求得k∈(-∞,-1)∪(3,+∞).答案:C3.已知圆C 的方程为f(x ,y)=0,点A(x 0,y 0)是圆外的一点,那么方程f(x ,y)-f(x 0,y 0)=0表示的曲线是( )A.与圆C 重合的圆B.过点A 与圆C 相交的圆C.过点A 且与圆C 同心的圆D.可能不是圆思路解析:此题所给出的圆的方程是一个抽象的方程,实际上,我们只学习了两种圆的方程,完全可以分别用两种方程来分析这道题.这里还基于一个结论:圆外的点的坐标代入圆的方程后,方程就变成了不等式.因为点A(x 0,y 0)是圆外的一点,所以f(x 0,y 0)>0,由方程f(x ,y)-f(x 0,y 0)=0,得f(x ,y)=f(x 0,y 0),不妨设圆C 的方程f(x ,y)=0为方程(x-a)2+(y-b)2-r 2=0,则方程f(x ,y)=f(x 0,y 0)即为(x-a)2+(y-b)2=r 2+f(x 0,y 0),此方程表示的正是过点A 且与圆C 同心的圆.因此,选C.答案:C4.圆(x+2)2+y 2=5关于原点(0,0)对称的圆的方程为( )A.(x-2)2+y 2=5B.x 2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x 2+(y+2)2=5思路解析:求圆关于某点或直线的对称图形的方程,主要是求圆心关于点或直线的对称点.求出圆心(-2,0)关于(0,0)的对称点为(2,0).答案:A5.设P(x ,y)是曲线x 2+(y+4)2=4上任意一点,则22)1()1(-+-y x 的最大值为( ) A.26+2 B.26 C.5 D.6思路解析:此题的解题关键是要能从观察式子22)1()1(-+-y x 的特征中产生联想,即这个式子的几何意义是什么. 因为式子22)1()1(-+-y x 的几何意义是点P(x ,y)与点(1,1)之间的距离,又因为P(x ,y)是曲线x 2+(y+4)2=4上任意一点,所以22)1()1(-+-y x 的最大值即为在圆x 2+(y+4)2=4上求一点,使这个点到点(1,1)的距离最大.如图2-3-(1,2)-4所示,|CB|即为所求,而|CB|=|CA|+|AB|,圆x 2+(y+4)2=4的圆心坐标为A(0,-4),半径为2,即|AB|=2,而|AC|=26,所以|CB|=26+2,即22)1()1(-+-y x 的最大值为26+2.因此,选A.图2-3-(1,2)-4答案:A6.程x 2+y 2+x-2y+m=0表示圆时,m∈___________.思路解析:如果方程x 2+y 2+x-2y+m=0表示圆,则D 2+E 2-4F >0一定成立.根据这个条件可以把题意转化为不等式,从而求出m 的取值范围.因为方程x 2+y 2+x-2y+m=0表示圆,所以1+4-4m >0,解得m <45.所以m∈(-∞,45). 答案:(-∞, 45) 7.直线3x+4y-12=0和两坐标轴围成的三角形的外接圆的方程是_______________.思路解析:直线与两坐标轴的交点是A 、B ,AB 为圆的直径,即AB 的中点为圆心,AB 长的一半为圆的半径.答案:(x-2)2+(y-23)2=425 8.已知圆M :(x+cos θ)2+(y-sin θ)2=1,直线l :y=kx ,下面四个命题:A.对任意实数k 与θ,直线l 和圆M 相切B.对任意实数k 与θ,直线l 和圆M 有公共点C.对任意实数θ,必存在实数k ,使得直线l 与圆M 相切D.对任意实数k ,必存在实数θ,使得直线l 与圆M 相切其中真命题的代号是____________.(写出所有真命题的代号)思路解析:圆心坐标为(-cos θ,sin θ),圆的半径为1,圆心到直线的距离为d=2221|)sin(|11|sin cos |k k k k +++=+--ϕθθθ=|sin(θ+φ)|≤1,故选B 、D.答案:BD我综合 我发展9.求圆心在直线y=-4x 上,并且与直线l :x+y-1=0相切于点(3,-2)的圆的方程.思路分析:已知圆心在y=-4x 上,所以可设圆心为(a,-4a),利用圆心到直线l :x+y-1=0的距离等于圆心到点(3,-2)的距离等于半径,就可以求出圆的方程.解:依题意,设圆心为(a,-4a),则其到直线x+y-1=0的距离及其到点(3,-2)的距离都等于半径的长度.应用两点间的距离公式及点到直线的距离公式,可得圆心到点(3,-2)的距离=22)42()3(a a -+-,圆心到直线l 的距离=2211|14|+--a a ,即得22)42()3(a a -+-=2211|14|+--a a ,对这个式子两边平方并化简得a=1.于是容易计算得到此圆的圆心为(1,-4),半径长为22,于是得到此圆的方程为(x-1)2+(y+4)2=8.10.求过点A(-1,3),B(4,2),且在x 轴、y 轴上的四个截距之和是14的圆的方程.思路分析:本题所给的条件是过两个定点和截距三个条件,考虑到知道三点就可以求出圆的方程,所以考虑应用圆的一般式并结合根与系数的关系解决这个问题.解:设圆的一般式方程为x 2+y 2+Dx+Ey+F=0,①由题意可知⎪⎩⎪⎨⎧=++++=++++-.02424,033)1(2222F E D F E D 令①中的y=0,可得x 2+Dx+F=0,圆在x 轴上的截距之和为-D ;令①中的x=0,可得y 2+Ey+F=0,圆在y 轴上的截距之和为-E.结合以上的方程组可以解得D=-4,E=-10,F=16.所以我们得到此圆的方程为x 2+y 2-4x-10y+16=0.11.设A 、B 两点是圆心都在直线3x-2y+5=0上的相交两圆的两个交点,且A 的坐标是(-4,5),求点B 的坐标.思路分析:解本题要充分利用平面几何的知识.注意到两圆相交,则意味着两交点关于连心线对称,即B 点应为点A 关于直线3x-2y+5=0的对称点.解:设B(x ,y),因AB 垂直于直线l :3x-2y+5=0,且A(-4,5),故直线AB 的方程为y-5=32-(x+4). 解方程组⎪⎩⎪⎨⎧=+-+-=-,0523)4(325y x x y 得交点P(1331,131-). 又由中点坐标公式得251331,24131y x +=-=-.解得x=133,1350-=y . ∴B(133,1350-). 12.已知实数x 、y 满足方程x 2+y 2-4x+1=0.(1)求yx 的最大值和最小值; (2)求x 2+y 2的最大值和最小值.思路分析:方程x 2+y 2-4x+1=0表示圆心(2,0),半径为3的圆;x y 的几何意义是圆上一点与原点连线的斜率,x 2+y 2表示圆上一点到原点距离的平方,故可借助于平面几何知识,利用数形结合来求解.解:(1)原方程化为(x-2)2+y 2=3,表示以点(2,0)为圆心,以3为半径的圆. 设x y =k,即y=kx,当直线与圆相切时,斜率k 取最大值和最小值,此时有31|02|2=+-k k ,解得k=±3. 故xy 的最大值为3,最小值为-3. (2)x 2+y 2表示圆上一点到原点距离的平方,由平面几何知识知原点与圆心的连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为2,故(x 2+y 2)max =(2+3)2=7+43,(x 2+y 2)min =(2-3)2=7-43.。
第二章 2.3 2.3.2A 级 基础巩固一、选择题1.圆x 2+y 2-2x +y +14=0的圆心坐标和半径分别是 ( B )A .(-1,12);1B .(1,-12);1C .(1,-12);62D .(-1,12);62[解析] 圆x 2+y 2-2x +y +14=0化为标准方程为(x -1)2+(y +12)2=1,圆心坐标为(1,-12),半径是1,故选B . 2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是 ( D ) A .a <-2或a >23B .-23<a <2C .-2<a <0D .-2<a <23[解析] 由题知a 2+(2a )2-4(2a 2+a -1)>0,即(3a -2)(a +2)<0,因此-2<a <23.3.圆x 2+y 2-2x +6y +8=0的周长等于 ( C ) A .2π B .2π C .22πD .4π[解析] 圆的方程x 2+y 2-2x +6y +8=0 可化为(x -1)2+(y +3)2=2,∴圆的半径r =2,故周长l =2πr =22π.4.方程2x 2+2y 2-4x +8y +10=0表示的图形是 ( A ) A .一个点 B .一个圆 C .一条直线D .不存在 [解析] 方程2x 2+2y 2-4x +8y +10=0, 可化为x 2+y 2-2x +4y +5=0, 即(x -1)2+(y +2)2=0,∴方程2x 2+2y 2-4x +8y +10=0 表示点(1,-2).5.若直线mx +2ny -4=0始终平分圆x 2+y 2-4x -2y -4=0的周长,则mn 的取值范围是 ( D )A .(0,1)B .(0,1]C .(-∞,1)D .(-∞,1][解析] 可知直线mx +2ny -4=0过圆心(2,1),有2m +2n -4=0,即n =2-m ,则mn =m ·(2-m )=-m 2+2m =-(m -1)2+1≤1.6.已知点P 是圆C :x 2+y 2+4x +ay -5=0上任意一点,P 点关于直线2x +y -1=0的对称点在圆C 上,则实数a 等于 ( B )A .10B .-10C .20D .-20[解析] 由题意知,直线2x +y -1=0过圆C 的圆心(-2,-a 2),∴2×(-2)-a2-1=0,∴a =-10.二、填空题7.点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是__在圆C 外部__. [解析] 将点P (1,-2)代入圆的方程,得1+4+m 2-2+m 2=2m 2+3>0,∴点P 在圆C 外部.8.若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,4为半径的圆,则F =__4__. [解析] 由题意,知D =-4,E =8,r =(-4)2+82-4F2=4,∴F =4.三、解答题9.已知圆D 与圆C :x 2+y 2-x +2y =0关于直线x -y +1=0对称,求圆D 的一般方程. [解析] 圆C 的圆心坐标为(12,-1),半径r =52,C (12,-1)关于直线x -y +1=0对称的点D (-2,32),故所求圆D 的方程为(x +2)2+(y -32)2=54,即圆D 的一般方程为x 2+y 2+4x -3y +5=0.10.一动点到A (-4,0)的距离是到B (2,0)的距离的2倍,求动点的轨迹方程.[解析] 设动点M 的坐标为(x ,y ), 则|MA |=2|MB |, 即(x +4)2+y 2=2(x -2)2+y 2,整理得x 2+y 2-8x =0.∴所求动点的轨迹方程为x 2+y 2-8x =0.B 级 素养提升一、选择题1.一束光线从点A (-1,1)出发经x 轴反射到圆C :x 2+y 2-4x -6y +12=0上的最短路程是 ( A )A .4B .5C .32-1D .2 6[解析] 将方程C :x 2+y 2-4x -6y +12=0配方,得(x -2)2+(y -3)2=1,即圆心为C (2,3),半径为1. 由光线反射的性质可知:点A 关于x 轴的对称点A ′(-1,-1)到圆上的最短距离就是所求的最短路程,即|A ′C |-r =(2+1)2+(3+1)2-1=5-1=4,故选A .2.已知x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为 ( D ) A .9 B .14 C .14-6 5D .14+6 5[解析] 已知方程表示圆心为(-2,1),r =3的圆. 令d =x 2+y 2,则d 表示(x ,y )与(0,0)的距离,∴d max =(-2-0)2+(1-0)2+r =5+3,∴(x 2+y 2)max =(5+3)2=14+6 5.3.如果直线l 将圆x 2+y 2-2x -6y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是 ( A )A .[0,3]B .[0,1]C .⎣⎡⎦⎤0,13 D .⎣⎡⎭⎫0,13 [解析] l 过圆心C (1,3),且不过第四象限. 由数形结合法易知:0≤k ≤3.4.已知圆x 2+y 2+kx +2y +k 2=0,当该圆的面积取最大值时,圆心坐标是 ( A ) A .(0,-1) B .(1,-1) C .(-1,0)D .(-1,1)[解析] 圆的半径r =124-3k 2,要使圆的面积最大,即圆的半径r 取最大值,故当k=0时,r 取最大值1,∴圆心坐标为(0,-1).二、填空题5.圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,圆心为P ,若∠APB =90°,则c 等于__-3__. 导学号 92434810[解析] 圆与y 轴的交点A 、B 的坐标为(0,-1±1-c ),点P 坐标为(2,-1),由∠APB =90°,得k P A ·k PB =-1,∴c =-3.6.若x 20+y 20+Dx 0+Ey 0+F >0,则点P (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0的__外部__.导学号 92434811[解析] ∵x 20+y 20+Dx 0+Ey 0+F >0,∴点P (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0的外部.三、解答题7.经过两点P (-2,4)、Q (3,-1),且在x 轴上截得的弦长为6的圆的方程. 导学号 92434812[解析] 设圆的方程为x 2+y 2+Dx +Ey +F =0,将P 、Q 两点的坐标分别代入,得⎩⎪⎨⎪⎧2D -4E -F =203D -E +F =-10①②又令y =0,得x 2+Dx +F =0.由已知,|x 1-x 2|=6(其中x 1,x 2是方程x 2+Dx +F =0的两根),∴D 2-4F =36,③ ①、②、③联立组成方程组,解得⎩⎪⎨⎪⎧D =-2E =-4F =-8,或⎩⎪⎨⎪⎧D =-6E =-8F =0.∴所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.C 级 能力拔高1.(2016·唐山调研)已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |. 导学号 92434813 (1)若点P 的轨迹曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.[解析] (1)设点P 的坐标为(x ,y ),则 (x +3)2+y 2=2(x -3)2+y 2.化简可得(x -5)2+y 2=16,此方程即为所求.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图所示.由直线l 2是此圆的切线,连接CQ ,则 |QM |=|CQ |2-|CM |2=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,此时|CQ |=|5+3|2=42,则|QM |的最小值为32-16=4.2.已知方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )的图形是圆. 导学号 92434814(1)求t 的取值范围;(2)当实数t 变化时,求其中面积最大的圆的方程. [解析] (1)方程即(x -t -3)2+(y +1-4t 2)2 =(t +3)2+(1-4t 2)2-16t 4-9.∴r 2=-7t 2+6t +1>0,∴-17<t <1.(2)∵r =-7t 2+6t +1=-7⎝⎛⎭⎫t -372+167, ∴当t =37∈⎝⎛⎭⎫-17,1时r max =477, 此时圆面积最大,所对应的圆的方程是⎝⎛⎭⎫x -2472+⎝⎛⎭⎫y +13492=167.。
直线系、圆系方程1、过定点直线系方程在解题中的应用过定点(0x ,0y )的直线系方程:00()()0A x x B y y -+-=(A,B 不同时为0). 例 1 求过点(14)P -,圆22(2)(3)1x y -+-=的切线的方程.分析:本题是过定点直线方程问题,可用定点直线系法.解析:设所求直线的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=,∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1,故1=,整理,得(43)0A A B -=,即0A =(这时0B ≠),或304A B =≠. 故所求直线l 的方程为4y =或34130x y +-=.点评:对求过定点(0x ,0y )的直线方程问题,常用过定点直线法,即设直线方程为: 00()()0A x x B y y -+-=,注意的此方程表示的是过点00()P x y ,的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素的限制,在实际解答问题时可以避免分类讨论,有效地防止解题出现漏解或错解的现象.练习: 过点(14)P -,作圆22(2)(3)1x y -+-=的切线l ,求切线l 的方程. 解:设所求直线l 的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=,∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1,故1=,整理,得(43)0A A B -=,即0A =(这时0B ≠),或304A B =≠. 故所求直线l 的方程为4y =或34130x y +-=.2、过两直线交点的直线系方程在解题中的应用过直线l :1110A x B y C ++=(11,A B 不同时为0)与m :2220A x B y C ++=(22,A B 不同时为0)交点的直线系方程为:111222()0A x B y C A x B y C λ+++++=(R λ∈,λ为参数).例2 求过直线:210x y ++=与直线:210x y -+=的交点且在两坐标轴上截距相等的直线方程.分析:本题是过两直线交点的直线系问题,可用过交点直线系求解. 解析:设所求直线方程为:21(21)0x y x y λ+++-+=, 当直线过原点时,则1λ+=0,则λ=-1,此时所求直线方程为:20x y -=;当所求直线不过原点时,令x =0,解得y =12λλ+-, 令y =0,解得x =121λλ+-+, 由题意得,12λλ+-=121λλ+-+,解得13λ=, 此时,所求直线方程为:5540x y ++=.综上所述,所求直线方程为:20x y -=或5540x y ++=.3、求直线系方程过定点问题例3 证明:直线10mx y m +--=(m 是参数且m ∈R )过定点,并求出定点坐标.分析:本题是证明直线系过定点问题,可用恒等式法和特殊直线法. 解析:(恒等式法)直线方程化为:(1)10x m y -+-=,∵m ∈R, ∴1010x y -=⎧⎨-=⎩,解得,1x =,1y =,∴直线10mx y m +--=(m 是参数且m ∈R )过定点(1,1). (特殊直线法)取m =0,m =1得,1y =,20x y +-=,联立解得,1x =,1y =,。
1.2.3第3课时一、选择题1.若平面α与平面β不垂直,那么平面α内能与平面β垂直的直线有()A.0条B.1条C.2条D.无数条[答案] A[解析]假设平面α内存在一条直线l⊥β,则α⊥β,这与α与β不垂直矛盾,故平面α内不存在能与平面β垂直的直线.2.给出下列四个命题:①若直线l与平面α内无数条直线垂直,则直线l⊥平面α;②平面α与β分别过两条互相垂直的直线,则α⊥β;③若直线l⊥平面α,则存在a⊂α,使l∥a;④若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥β.其中正确命题的个数为()A.1 B.2C.3 D.4[答案] A[解析]当l与平面α内的无数条平行直线垂直时,l不一定与α垂直,①错误;当平面α与β分别过两条互相垂直的直线时,α,β可能垂直,也可能不垂直,②错误;根据直线与平面垂直的定义,知直线l⊥平面α时,l与α内的所有直线都垂直,不可能存在直线与l平行的情况,③错误;根据线面垂直的判定定理知④正确.选A.3.直线a和平面α内两条直线b、c都垂直,给出下列说法,正确的说法是()①a∥α可能成立;②a⊥α;③平面α可能经过a;④a有可能与平面α相交.A.①②③④ B.③④C.①②④D.①③④[答案] D[解析]如图所示,a∥α,b⊂α,c⊂α,a⊥b,a⊥c,故①正确,②不正确,故选D.4.空间四边形ABCD中,若AB=BC=CD=DA=AC=BC,E、F、G、H分别是AB、BC、CD、DA的中点.则四边形EFGH的形状是()A.平行四边形 B.长方形C.菱形D.正方形[答案] D[解析] 如图所示,∵E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,∴EF 綊12AC ,HG 綊12AC ,∴四边形EFGH 是平行四边形,又EH =12BD ,BD =AC ,∴EH =EF ,∴四边形EFGH 是菱形.取BD 中点M ,连结AM 、CM ,∵AB =AD ,∴AM ⊥BD ,又CB =CD ,∴CM ⊥BD ,又AM ∩CM =M ,∴BD ⊥平面ACM , ∴BD ⊥AC .又EF ∥AC ,BD ∥EH ,∴EF ⊥EH ,∴四边形EFGH 是正方形.5.α、β、γ、ω是四个不同平面,若α⊥γ,β⊥γ,α⊥ω,β⊥ω,则( ) A .α∥β且γ∥ω B .α∥β或γ∥ωC .这四个平面中可能任意两个都不平行D .这四个平面中至多有一对平面平行 [答案] B[解析] 设α∩β=a .∵α⊥γ,β⊥γ.∴a ⊥γ.同理a ⊥ω.∴γ∥ω;若α∥β,则γ与ω相交或平行. ∴α∥β或γ∥ω.6.设a 、b 是异面直线,下列命题正确的是( )A .过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交B .过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直C .过a 一定可以作一个平面与b 垂直D .过a 一定可以作一个平面与b 平行 [答案] D[解析] A 不正确,若点P 和直线a 确定平面α,当b ∥α时,满足条件的直线不存在;B 不正确,若存在,则有a ∥b ,这与a 、b 是异面直线矛盾;C 不正确,只有a 、b 垂直时,才能作出满足条件的平面.只有D 正确.二、填空题7.给出下列四个命题:①经过平面外一点有且仅有一个平面与已知平面垂直;②如果一条直线和两个垂直平面中的一个垂直,它必和另一个平行;③过不在平面内的一条直线可作无数个平面与已知平面垂直;④如果两个平面互相垂直,经过一个平面内一点与另一个平面垂直的直线在这个平面内.其中正确的是________.[答案] ④[解析] 过平面外一点可作一条直线与平面垂直,过该直线的任何一个平面都与已知平面垂直,①不对;若α⊥β,a ⊥α,则a ⊂β或a ∥β,②不对;当平面外的直线是平面的垂线时可以作无数个,否则只能作一个,③不对,故只有④对.8.平行四边形ABCD 的对角线交点为O ,点P 在平行四边形ABCD 所在平面外,且P A =PC ,PD =PB ,则PO 与平面ABCD 的位置关系是________________.[答案] PO ⊥平面ABCD[解析] 如图所示,∵O 为平行四边形ABCD 对角线的交点,∴OA =OC ,又P A =PC ∴△POA ≌△POC , ∴∠POA =∠POC =90°, ∴PO ⊥AC .同理PO ⊥BD ,又AC ∩BD =O ,∴PO ⊥面ABCD .9.(2010·湖南文,13)如下图中的三个直角三角形是一个体积20cm 3的几何体的三视图,则h =________ cm.[答案] 4[解析] 该几何体是一个底面是直角三角形,一条侧棱垂直于底面的三棱锥如图,V =13×⎝⎛⎭⎫12×5×6×h =20,∴h =4 cm.10.已知:直线l 和平面α,β,且l ⊄α,l ⊄β,若从①l ⊥α,②α⊥β,③l ∥β中任取两个作为条件,余下一个作为结论,在构成的诸命题中,写出你认为正确的一个命题:______________.[答案] ①③⇒②(答案不惟一)[解析] 如图所示,∵l ∥β,∴过直线l 作平面γ∩β=a ,∴l ∥a , ∵l ⊥α,∴a ⊥α,又a ⊂β,∴α⊥β. 三、解答题11.如右图所示,四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知∠ABC =45°,SA =SB .求证:SA ⊥BC .[解析] 作SO ⊥BC ,垂足为O ,连结AO ,∵侧面SBC ⊥底面ABCD ,∴SO ⊥底面ABCD . ∵SA =SB ,∴AO =BO .又∠ABC =45°,故△AOB 为等腰直角三角形,即AO ⊥BO ,又BC ⊥SO ,且SO ∩OA =O ,∴BC ⊥平面SOA ,∴SA ⊥BC .12.(2010·辽宁文,19)如图,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,B 1C ⊥A 1B .(1)证明:平面AB 1C ⊥平面A 1BC 1;(2)设D 是A 1C 1上的点,且A 1B ∥平面B 1CD ,求A 1D DC 1的值. [解析] (1)∵侧面BCC 1B 1是菱形,∴B 1C ⊥BC 1, 又∵B 1C ⊥A 1B ,且A 1B ∩BC 1=B , ∴B 1C ⊥平面A 1BC 1,又B 1C ⊂平面AB 1C∴平面AB 1C ⊥平面A 1BC 1 .(2)设BC 1交B 1C 于点E ,连结DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线. ∵A 1B ∥平面B 1CD ,A 1B ⊂平面A 1BC 1,平面A 1BC 1∩平面B 1CD =DE ,∴A 1B ∥DE . 又E 是BC 1的中点,∴D 为A 1C 1的中点. 即A 1D DC 1=1.13.我国北方冬季种植蔬菜时要在温室里进行,如图,某蔬菜专业户要借助自家围墙修建一温室,温室由两墙面、地面和塑料薄膜四个面围成,已知:两墙的长度分别为a 米和b 米,高为c 米,假定两墙面、地面彼此的交线互相垂直.问:修建温室需要多少塑料薄膜?[解析] ∵OC ⊥OA ,OC ⊥OB ,OA ∩OB =0,∴OC ⊥平面AOB ,∴OC ⊥AB .过点O 作OM ⊥AB 于M ,则AB ⊥平面COM ,∴AB ⊥CM .在Rt △AOB 中,AB =OA 2+OB 2=a 2+b 2, ∴OM =OA ·OB AB =ab a 2+b2.在Rt△COM中,CM=OC2+OM2=a2b2+b2c2+c2a2a2+b2.∴S△ABC=12AB·CM=a2b2+b2+c2+c2a22.故修建温室需要塑料薄膜a2b2+b2c2+c2a22平方米.14.如图所示,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°的菱形,侧面P AD 为正三角形,其所在平面垂直于底面ABCD.(1)求证:AD⊥PB;(2)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.[解析](1)设G为AD的中点,连结PG,∵△P AD为正三角形,∴PG⊥AD.在菱形ABCD中,∠DAB=60°,G为AD的中点,∴BG⊥AD.又BG∩PG=G,∴AD⊥平面PGB.∵PB⊂平面PGB,∴AD⊥PB.(2)当F为PC的中点时,满足平面DEF⊥平面ABCD.取PC的中点F,连结DE、EF、DF,在△PBC中,EF∥PB.在菱形ABCD中,GB∥DE,而EF⊂平面DEF,DE⊂平面DEF,EF∩DE=E,∴平面DEF∥平面PGB,由(1)得PG⊥平面ABCD,而PG⊂平面PGB,∴平面PGB⊥平面ABCD,∴平面DEF⊥平面ABCD.15.在长方体ABCD-A1B1C1D1中,E∈CC1,B1E⊥BC1,AB=AD,求证:AC1⊥面B1ED1.[解析]∵ABCD-A1B1C1D1为长方体,∴AB⊥平面BB1C1C,又∴B1E⊂平面BB1,C1C,∴AB⊥B1E,又∵B1E⊥BC1,AB∩BC1=B,∴B1E⊥平面ABC1,∴B1E⊥AC1,连结A1C1,∵AB=AD,∴长方体上、下底面ABCD、A1B1C1D1为正方形.∴A1C1⊥B1D1.又∵AA1⊥平面A1B1C1D1,∴AA1⊥B1D1,AA1∩A1C1=A1,∴B1D1⊥平面AA1C1,∴B1D1⊥AC1,B1E∩B1D1=B1,∴AC1⊥平面B1ED1.。
人教B版高中数学必修课后习题答案第一章函数与方程1.1 函数的概念和性质课后习题答案1.函数的定义:函数是一种规定了输入和输出之间关系的映射关系。
在数学中,函数常用字母 f、g 或 h 来表示。
例如,函数 f(x) = 2x 将输入的值 x 加倍作为输出。
2.函数的性质:–单调性:函数的值随自变量的增减而有规律地增减。
–奇偶性:函数通过原点对称称为奇函数,函数经过坐标轴的对称称为偶函数。
–周期性:函数的图像在某个长度为 T 的区间上有特定的重复性。
1.2 二次函数的图像和性质课后习题答案1.二次函数的定义:二次函数是函数的一种形式,其公式为 f(x) = ax^2 + bx + c,其中 a、b 和 c 是常数。
2.二次函数的图像特点:–对称轴:二次函数的图像关于对称轴对称。
–顶点坐标:顶点坐标为 (-b/2a, f(-b/2a))。
–开口方向:当 a>0 时,二次函数开口向上;当a<0 时,二次函数开口向下。
1.3 四种函数的比较与选择课后习题答案1.线性函数:线性函数的表达式为 f(x) = kx + b,其中k 和 b 是常数。
线性函数图像为一条直线,即斜率为 k,截距为 b 的直线。
2.一次函数:一次函数是线性函数的一个特例,当 b= 0 时,一次函数就是线性函数。
一次函数图像为一条经过原点的直线。
3.二次函数:二次函数的图像为一条开口向上或开口向下的抛物线。
二次函数有一个顶点,它是图像的最高点或最低点。
4.指数函数:指数函数的表达式为 f(x) = a^x,其中 a 是常数。
指数函数的图像是一条通过点(0,1) 的递增曲线,当 a>1 时,曲线增长迅速;当 0<a<1 时,曲线递减缓慢。
5.对数函数:对数函数的表达式为f(x) = logₐx,其中a 是常数。
对数函数的图像是一条斜率始终为正的递增曲线,当 x 增大时,函数值也相应增大。
1.4 反函数的概念和性质课后习题答案1.反函数的定义:如果函数 f 将集合 A 中的每一个元素 x 对应到集合 B 中唯一确定的 f(x),则称 f 为从 A 到 B的一对一的映射。
人教B 版 数学 必修2:直线的两点式方程一、选择题1、如果AC<0, 且BC<0,那么直线0=++C By Ax 不通过 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、经过点A (1,2)并且在坐标轴上截距的绝对值相等的直线共有( )A. 4条B. 3条C. 2条D.1条3、ABC ∆的一个顶点是A (3,1),∠B 、∠C 的平分线分别是x=0、x=y ,则直线AB 的方程为( )A. 32+=x yB. 53+=x yC. 252+-=x y D. 52+=x y 4、设A、B是x 轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y +1=0,则直线PB的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .2x +y -7=05、下列命题中正确的是( )A. 经过点P 0(x 0,y 0)的直线都可以用方程y -y 0=k(x -x 0)表示B. 经过定点A(0,b)的直线都可以用方程y=kx +b 表示.C. 经过任意两个不同点P 1(x 1,y 1), P 2(x 2,y 2)的直线都可用方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x-x 1)表示. D. 不经过原点的直线都可以用方程a x +by=1表示. 二、填空题6、直线043=+-k y x 在两坐标轴上截距之和为2,则实数=k __________________.7、直线053=-+y mx 经过连接A (-1,-2)、B (3,4)的线段的中点,则实数=m __________________.8、直线024=-+y Ax 与052=+-C y x 垂直,垂足为),1(m ,则=++m C A __________________.9、直线1=+by ax )0(≠ab 与两坐标轴围成的面积是__________________.10、已知三点A (2,-1)、B (5,7)、C (-1,-3),则通过ABC ∆的重心G 及顶点A 和原点连线的中点M 的直线方程是__________________. 三、解答题11、已知正方形边长为4,其中心在原点,对角线在坐标轴上,求正方形各边所在的直线的方程。
4.1.2圆的一般方程姓名:___________班级:______________________1.圆x2+y2+4x-6y-3=0的圆心和半径分别为 ( )A.(4,-6),r=16B.(2,-3),r=4C.(-2,3),r=4D.(2,-3),r=162.若方程x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是( )A.RB.(-∞,1)C.(-∞,1]D.[1,+∞)3.方程x2+y2+4x-2y+5=0表示的曲线是 ( )A.两直线B.圆C.一点D.不表示任何曲线4.如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,则必有( )A.D=EB.D=FC.F=ED.D=E=F5.两圆x2+y2-4x+6y=0和x2+y2-6x=0的圆心连线方程为( )A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=06.若圆x2+y2+Dx+Ey+F=0与x轴切于原点,则( )A.D=0,E=0,F≠0B.F=0,D≠0,E≠0C.D=0,F=0,E≠0D.E=0,F=0,D≠07.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限8.在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )A. C.9.圆心是(-3,4),经过点M(5,1)的圆的一般方程为 .10.已知圆C:x2+y2-2x+2y-3=0,AB为圆C的一条直径,点A(0,1),则点B的坐标为________.11.若实数x,y满足x2+y2+4x-2y-4=0,的最大值是__________.12.求经过两点P(-2,4),Q(3,-1),并且在x轴上截得的弦长等于6的圆的方程.13.已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆的半径r的取值范围.程.参考答案1.C【解析】由圆的一般方程可知圆心坐标为(-2,3),半径 4.r ==故选C. 考点:圆的一般方程.2.B【解析】由D 2+E 2-4F =(-4)2+22-4×5k=20-20k >0,得k <1.考点:圆的一般方程.3.C【解析】原方程变形为222)(1)0x y ++-=(,所以方程表示的曲线是一个点(−2,1),故选C.考点:方程的曲线.4.A【解析】由题知圆心(2D - , 2E -)在直线y =x 上,即2E -=2D -, ∴D=E.故选A.考点:圆的一般方程.5.C【解析】两圆的圆心分别为(2,-3)、(3,0),直线方程为y =3(x -3),即3x -y -9=0,故选C.考点:圆的一般方程及直线方程.6.C【解析】点(0,0)在圆上,代入圆的方程可得F =0.因为圆x 2+y 2+Dx +Ey +F =0与x 轴切于原点,所以圆心的横坐标为0,即02D -=,∴D=0.由D 2+E 2-4F >0,可得E 2>0,∴E≠0,故选C.考点:圆的一般方程.7.D【解析】圆x 2+y 2-2ax +3by =0的圆心为(a,32b -),则a <0,b >0.直线y =1x a --b a ,其斜率k =1a ->0,在y 轴上的截距为-b a>0,所以直线不经过第四象限,故选D. 考点:圆与直线.8.B【解析】x 2+y 2-2x -6y =0化成标准方程为(x -1)2+(y -3)2=10,则圆心坐标为M(1,3),半径为.由圆的几何性质可知:过点E 的最长弦AC 为点E 所在的直径,则|AC|=是过点E 的最短弦,则点E 为线段BD 的中点,且AC⊥BD ,E 为AC 与BD 的交点,则由垂径定理可是|BD|===.从而四边形ABCD 的面积为12|AC||BD|=12×故选B. 考点:圆的弦长及四边形的面积.9.x 2+y 2+6x -8y -48=0【解析】圆的半径r == ∴圆的标准方程为(x +3)2+(y -4)2=73,整理得,x 2+y 2+6x -8y -48=0.考点:圆的一般方程.10.(2,-3)【解析】由x 2+y 2-2x +2y -3=0,得(x -1)2+(y +1)2=5,所以圆心为C(1,-1).设B(x 0,y 0),由中点坐标公式得0002,12,x y +=⎧⎨+=-⎩解得002,3,x y =⎧⎨=-⎩所以点B 的坐标为(2,-3).考点:圆心及中点坐标.3【解析】实数x,y 满足方程x 2+y 2+4x -2y -4=0,所以(x,y)为方程所表示的曲线上的动点. =,几何意义为:动点(x,y)到原点(0,0)的距离.对方程进行配方得:(x +2)2+(y -1)2=9,它表示以C(-2,1)为圆心,半径R =3的圆,原点在圆内.连接CO,由圆的几何性质可知,所求的最大值为|OC|+R 3.考点:利用曲线的几何意义求最值.12.x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0【解析】设圆的方程为x 2+y 2+Dx +Ey +F =0,将P(-2,4),Q(3,-1)代入圆的方程得2420,310,D E F D E F --=⎧⎨-+=-⎩ 令y =0得x 2+Dx +F =0.设x 1,x 2为方程x 2+Dx +F =0的两根.由|x 1-x 2|=6有D 2-4F =36,解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0.∴圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.考点:求圆的方程.13.(1)-17<m <1 (2)0 【解析】(1)要使方程表示圆,则4(m +3)2+4(1-4m 2)2-4(16m 4+9)>0,即4m 2+24m +36+4-32m 2+64m 4-64m 4-36>0,整理得7m 2-6m -1<0,解得-17<m <1.(2)r===,.考点:圆的方程与轨迹.14.x2+y2-2x+4y-20=0【解析】设圆的一般方程为x2+y2+Dx+Ey+F=0.∵圆经过点(4,2)和(-2,-6),∴42200, 26400,D E FD E F+++=⎧⎨+--=⎩①②设圆在x轴上的截距为x1、x2,它们是方程x2+Dx+F=0的两个根,得x1+x2=-D.设圆在y 轴上的截距为y1、y2,它们是方程y2+Ey+F=0的两个根,得y1+y2=-E.由已知,得-D+(-E)=-2,即D+E-2=0. ③由①②③联立解得D=-2,E=4,F=-20.∴所求圆的方程为x2+y2-2x+4y-20=0.考点:圆的方程.。
1.已知圆的方程为x2+y2+2x-4y-10=0,那么经过圆心的一条直线的方程是().A.x-3y+7=0B.3x-y+7=0
C.x-3y-7=0 D.3x-y-7=0
2.如果方程2x2+2y2-ax+2y+5
8
a=0表示的曲线是圆,则实数a的取值范围是().
A.a>4或a<1 B.a R
C.1<a<4 D.a≥4或a≤1
3.已知A(-2,0)、B(0,2),点C是圆x2+y2-2x=0上任意一点,则△ABC的面积的最大值为().
A.3B.4C D.3
4.圆x2+y2-4x+2y+m=0与y轴交于A、B两点,其圆心为P,若∠APB=90°,则实数m的值是().
A.-3B.3 C.D.8
5.已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m R),若圆的圆心一定在直线l上,则l的方程为______________________.
6.已知圆C:x2+y2+2x+ay-3=0(a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=____.
7.在平面上,已知定点A、B,且|AB|=2a.如果动点P到点A的距离和到点B的距离之比为2∶1,那么求动点P的轨迹.
8.在平面直角坐标系xOy中,设二次函数f(x)=x2+2x+b(x R)的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.
(1)求实数b的取值范围;
(2)求圆C的方程;
(3)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论.
9.已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).
(1)若点P(m,m+1)在圆C上,求直线PQ的方程;
(2)若M是圆C上任一点,求|MQ|的最大值和最小值;
(3)若点N(a,b)满足关系a2+b2-4a-14b+45=0,
求
3
2
b
u
a
-
=
+
的最大值和最小值.
参考答案
1. 答案:A
2. 答案:A
3. 答案:D
解析:要使△ABC 的面积最大,即要求点C 到AB 的距离最大,亦即求圆上点中到直线AB 距离的最大值,应为圆心到直线AB 距离d 与半径r 之和.由于圆心(1,0)到直线AB :x -y +2=0的距离d
=即C 到AB
1,故△ABC
面积的最大值为1|AB|1)32
⨯⨯=+ 4. 答案:A 解析:
由题意得r =令x =0得y 2+2y +m =0,
∴y 1+y 2=-2,y 1y 2=m .∴|AB |2=|y 1-y 2|2=(y 1+y 2)2-4y 1y 2=4-4m .
又∵∠APB =90°,∴2r 2=|AB |2.
∴2(5-m )=4-4m .解得m =-3. 5. 答案:x -3y -3=0
解析:设圆心坐标为(x ,y ),则3,1,x m y m =⎧⎨
=-⎩消去m 得x -3y -3=0. 6. 答案:-2
7. 解:如图所示,取AB 所在直线为x 轴,从A 到B 为正方向,以AB 的中点O 为原点,以AB 的中垂线为y 轴,建立直角坐标系,则A (-a ,0),B (a ,0).
设P (x ,y),由21PA
PB =
2=,
化简整理,得3x 2+3y 2-10ax +3a 2=0,即222516()39
x a y a -+=. 这就是动点P 移动形成的曲线的方程,它表示以C (
53a ,0)为圆心,43a 为半径的圆. 8. 解:(1)令x =0,得抛物线与y 轴的交点是(0,b ).
令f (x )=0,得x 2+2x +b =0,由题意b ≠0,且△>0,解得b <1且b ≠0.
(2)设所求圆的一般方程为x 2+y 2+Dx +Ey +F =0,
令y =0,得x 2+Dx +F =0,这与x 2+2x +b =0是同一个方程,故D =2,F =b . 令x =0,得y 2+Ey +b =0,此方程有一个根为b ,将b 代入方程得E =-b -1. 所以圆C 的方程为x 2+y 2+2x -(b +1)y +b =0.
(3)圆C 必过定点(0,1)和(-2,1).
证明如下:将(0,1)代入圆C 的方程,
得左边=02+12+2×0-(b +1)+b =0,右边=0.
所以圆C 必过定点(0,1).
同理可证圆C 必过定点(-2,1).
9. 解:将圆C 的方程变形,得(x -2)2+(y -7)2=8,
所以圆心C 为(2,7).
(1)因为点P (m ,m +1)在圆C 上,所以将点P 的坐标代入圆C 的方程,得(m -2)2+(m +1-7)2=8,解得m =4.
∴点P 的坐标为(4,5),
∴经过P 、Q 两点的直线方程为535(4)4(2)
y x --=---,即x -3y +11=0. (2)经过Q 、C 两点的直线方程为733[(2)]2(2)y x --=
----,即y =x +5. M 是圆C 上任一点,要使点M 到点Q 的距离达到最大或最小,点M 必是直线QC 与圆C 的交点,因此解方程组225,(2)(7)8,y x x y =+⎧⎨-+-=⎩ 得0,5x y =⎧⎨=⎩或4,9.x y =⎧⎨=⎩
所以,得到M ′(0,5)、M ″(4,9).
故min |||'|MQ M Q ===
max ||MQ M Q "=
(3)由题意可得,点N 在圆C 上,因此求u 的最大与最小值,就是求直线NQ 的斜率的最大与最小值,也就是求过点Q ,且与圆C 相切的直线的斜率.
设直线NQ 的斜率为k ,则直线NQ 的方程为:y =kx +2k +3,将y =kx +2k +3代入圆C 的方程,并化简得
(1+k 2)x 2+(4k 2-8k -4)x +4k 2-16k +12=0,
令△=(4k 2-8k -4)2-4(1+k 2)(4k 2-16k +12)=0,
解得2k =±
所以max 2u =,min 2u =.。