预应力损失的计算6
- 格式:pdf
- 大小:731.14 KB
- 文档页数:16
预应力混凝土预应力损失及计算方法预应力混凝土是一种常用于建筑结构中的高性能材料,其通过在混凝土构件中施加预应力,使其在受力过程中能够更好地承受荷载。
然而,由于各种原因,预应力混凝土中的预应力可能会发生一定的损失,影响结构的整体性能。
本文将就预应力混凝土预应力损失的原因以及计算方法进行探讨。
一、预应力混凝土预应力损失的原因预应力混凝土中的预应力损失主要包括材料损失、摩擦损失和开裂损失三个方面。
1. 材料损失材料损失是指预应力混凝土材料在施工、运输和使用过程中由于外界环境和条件的影响而导致的预应力损失。
常见的材料损失包括钢材弛豫损失、混凝土收缩和徐变等。
(1)钢材弛豫损失:在预应力混凝土构件的初张拉和释放过程中,钢材的初始应力会因为钢材的弛豫现象而逐渐减小,从而导致预应力的损失。
(2)混凝土收缩和徐变:混凝土存在收缩和徐变的现象,这也会导致预应力的损失。
混凝土在干燥过程中会发生收缩,而在受潮后则会发生徐变,这些变形会使得预应力逐渐减小。
2. 摩擦损失摩擦损失是指预应力混凝土构件中由于预应力钢束与混凝土之间的相对滑动而导致的预应力损失。
摩擦损失主要由于摩擦阻力和锚固器件的摩擦而引起。
(1)摩擦阻力:预应力钢束与混凝土之间存在一定的摩擦力,当受力端的锚固器件与混凝土之间的摩擦力大于预应力钢束处的摩擦力时,就会导致预应力损失。
(2)锚固器件的摩擦:锚固器件的摩擦也是导致预应力损失的原因之一。
锚固器件的设计和施工质量会直接影响摩擦损失的大小。
3. 开裂损失开裂损失是指预应力混凝土构件在施加预应力后由于荷载作用而引起的裂缝产生,从而导致预应力损失。
开裂会导致混凝土的强度明显下降,进而使得预应力损失。
二、预应力损失的计算方法为了准确计算预应力混凝土中的预应力损失,可以采用以下方法:1. 钢材弛豫损失的计算常用的计算钢材弛豫损失的方法包括弛豫系数法和易变程度法。
(1)弛豫系数法:根据预应力钢束的特性曲线,通过测量初始应力和一定时间后的应力变化,利用弛豫系数将时间换算积分得到弛豫损失。
预应力损失计算我们主要采用分项计算法,就是根据预应力损失产生的不同原因分别计算各阶段的预应力损失,再把分项损失相加得出总损失。
这也是目前我国现行规范采用的损失计算法。
2.1锚具变形和钢筋内缩引起的应力损失(σl1)预应力钢筋张拉后锚固时,锚具将受到相当大的压力,一方面使锚具本身及锚具下垫板压密产生变形;另一方面混凝土结构的接缝缝隙在压力的作用下也将压密变形。
这些变形导致 预应力钢筋向内回缩,产生预应力损失。
按圆弧形曲线计算,反向摩擦影响长度:1x 2()(1-)l con f c fl l μσσκγ=+ γc --圆曲线预应力筋的曲率半径,以m 计;x--张拉端至计算截面的水平距离,以m 计;μ--预应力筋的与孔道壁的摩擦系数;κ--孔道每米长度局部偏差的摩擦系数;l f --反向摩擦影响长度,以m 计,可按下式计算l f2.2 预应力筋与孔道壁之间摩擦引起的应力损失(σl2)距离张拉端x 时的预应力筋的应力损失为:21(1)l con e κχμθσσ+=-式中:σcon --预应力钢筋的控制张拉应力;x--预应力筋张拉端至计算截面的水平投影距离,以m 计;μ--预应力筋的与孔道壁的摩擦系数; κ--孔道每米长度局部偏差的摩擦系数;θ--张拉端至计算截面曲线孔道部分切线的夹角,以弧度计;Ay--预应力钢筋的截面积。
2.4 预应力筋松弛引起的应力损失(σl4)钢筋在持续高应力作用下,会产生随时间变化而增加的变形(内部晶体结构蠕变)。
如果预应力筋束在一定的张拉应力作用下,长度保持不变,则预应力筋束中的应力将会随时间延长而降低,这就是钢筋的松驰引起的应力损失。
当0.7f ptk ≤σcon ≤0.8f ptk 时 40.2(0.575)conl con ptk f σσσ=-2.5混凝土收缩和徐变引起的应力损失(σl5)对于混凝土结构构件来说,在持续应力作用下,随着时间的延续,混凝土会产生收缩和徐变,导致预应力混凝土结构构件缩短,因而引起应力损失,其值为:,5,55300115pccu l σσσσ+=+式中:σl5—受拉区预应力筋中由于混凝土收缩徐变所产生的预应力损失;σpc —受拉区预应力筋在各自合力点所产生的混凝土法向压应力;σ’—受拉区预应力筋与非预应力筋的配筋率(其值为受拉区预应力筋和非预应力筋的截面面积与混凝土结构截面面积之比);σ’cu -施加预应力时的混凝土立方体抗压强度。
第三章预应力与预应力损失计算预应力与预应力损失计算是结构工程领域中非常重要的一部分内容。
在第三章中,我们将深入探讨预应力的概念、计算方法和预应力损失的计算。
一、预应力概念预应力是指在结构正常使用过程中,在一定截面上施加的一种人为预先设置的压应力。
通过施加这种压应力,能够在结构中产生与它们相对应的弯矩和剪力,从而改善结构的控制性能、抗裂性能和承载性能。
二、预应力计算方法1. 预应力损失计算预应力损失是指预应力钢材所受的损失,主要分为两大类:瞬时损失和时间依赖性损失。
瞬时损失包括张拉初始损失、传递长度损失和锚固长度损失;时间依赖性损失包括徐变损失和材料损耗。
2. 预应力计算步骤(1)确定结构设计参数,包括材料参数、几何参数和受力状态等。
(2)计算预应力的大小和位置,根据结构受力分析确定所需的预应力大小和预应力钢材的位置。
(3)选择预应力的施加方式,包括预应力的初始张拉和锚固方式。
(4)进行预应力损失计算,按照相关规范和理论进行预应力损失的计算。
(5)校核预应力的效果,根据结构受力分析,检查预应力对结构性能的影响是否满足设计要求。
三、预应力损失计算1. 瞬时损失计算(1)张拉初始损失:包括初始张拉时应力的损失以及张拉应力在开锚后的递减。
(2)传递长度损失:由于预应力杆在传递过程中,受到局部应变的影响,导致预应力的损失。
(3)锚固长度损失:预应力锚固长度是指在预应力锚具有效长度之后的那部分长度,预应力损失主要发生在锚固长度的部分。
2. 时间依赖性损失计算(1)徐变损失:预应力杆所受到的长期荷载会导致预应力的逐渐减小,这部分损失称为徐变损失。
(2)材料损耗:主要指预应力钢材的弹性模量随时间的增加而减小,造成预应力的损失。
四、案例分析以某桥梁结构为例,根据设计参数进行预应力的计算和预应力损失的计算。
首先确定结构的受力状态、材料参数和几何参数,然后按照计算步骤进行预应力的计算,并考虑瞬时损失和时间依赖性损失的计算,最后校核预应力的效果是否满足设计要求。
WYKL3(直线孔)钢绞线伸长值计算:1、张拉控制应力:σcon =1860×0.75fptk=1395Mpa单根张拉力:P=1395×140mm²=196300N单根超张拉3%拉力:195300×1.03=201159N(1)每束为12根拉力:201159N×12根=2413908N=213.908KN (2)每束为9根拉力:201159N×9根=1810431N=1810.431K2、直线孔的钢绞线伸长值:直线孔长:L=31500+1300×2-700(锚固端)=33400m代入式ΔL=P.L T/A P.E S=2413908N×33400m/140mm²×12根×1.95×10=2413908×33400/1680×19500=80624527200/327600000=246.1mmWYKL4(直线孔)钢绞线伸长值计算:1、张拉控制应力:σcon =1860×0.75fptk=1395Mpa单根张拉力:P=1395×140mm²=196300N单根超张拉3%拉力:195300×1.03=201159N(1)每束为12根拉力:201159N×12根=2413908N=213.908KN (2)每束为9根拉力:201159N×9根=1810431N=1810.431K2、直线孔的钢绞线伸长值:直线孔长:L=35050+1300×2=37650mm代入式:ΔL=P.L T/A P.E S=2413908×37650/327600000=90883636200/327600000 =277.4mmWYKL3、WYKL2(曲线孔)钢绞线伸长值计算(附图1): AB 段T L =1300mmBC 段T L =3150×[22)23150(3)13201600(81⨯⨯-⨯+]=3167mm CD 段T L =12600×[22)212600(3)2351320(81⨯⨯-⨯+]=12662mm DE 段T L =CD 段T L =12662mm BF 段T L =BC 段T L =3167mm FG 段T L =1300-700=600mm AB 段θ=0 BC 段θ=23150)13201600(4⨯-⨯=0.178radCD 段θ=23150)2351320(4⨯-⨯=0.172radDE 段θ= CD 段θ=0.172rad EF 段θ= BC 段θ=0.178rad FG 段θ=0=con σ0.75×1860=1395 N/mm 2 张拉σ=con σ×1.03=1437 N/mm 2K=0.003μ=0.3WYKL1(1)、WYKL2(1)(曲线孔)钢绞线伸长值计算(附图二): AB 段T L =1300mmBC 段T L =3.505×[22)23505(3)12301450(81⨯⨯-⨯+]=3514mm CD 段T L =14020×[22)214020(3)3501230(81⨯⨯-⨯+]=14057mmAB 段 θ=0 BC 段 θ=23505)12301450(4⨯-⨯=0.126radCD 段 θ=23150)3501230(4⨯-⨯=0.126rad=con σ0.75×1860=1395 N/mm 2 张拉σ=con σ×1.03=1437 N/mm 2K=0.003μ=0.31附图。
预应力损失的计算预应力损失的大小影响到已建立的预应力,当然也影响到结构的工作性能,因此,如何计算预应力损失值,是预应力混凝土结构设计的一个重要内容。
引起预应力损失的原因很多,而且许多因素相互制约、影响,精确计算十分困难。
我国新的《混凝土结构设计规范》GB50010-2002经历四年半修订,已顺利完成。
此次修订对原规范GBJ10-89进行补充和完善,增加和改动了不少内容。
现就其中预应力损失计算部分谈谈自己的理解,供大家参考指正。
1.预应力损失基本计算在预应力损失值的计算原则方面,各国规范基本一致,均采用分项计算然后叠加以求得总损失。
全部损失由两部分组成,即瞬时损失和长期损失。
其中,瞬时损失包括摩擦损失,锚固损失(包括锚具变形和预应力筋滑移)和混凝土弹性压缩损失。
长期损失包括混凝土的收缩,徐变和预应力钢材的松弛等三项,它们需要经过较长时间才能完成。
我国新规范采用分项计算然后按时序逐项叠加的方法。
下面将分项讨论引起预应力损失的原因,损失值的计算方法。
1.1孔道摩擦损失σl2孔道摩擦损失是指预应力钢筋与孔道壁之间的摩擦引起的预应力损失。
包括长度效应(kx)和曲率效应(μθ)引起的损失。
宜按下列公式计算:σl2=σcon(1-1/e kx+μθ)当(kx+μθ)≤0.2时(原规范GBJ10-89为0.3),σl2可按下列近似公式计算:σl2=(kx+μθ)σcon1.张拉端 2.计算截面式中:X--张拉端至计算截面的孔道长度(m),可近似取该段孔道在纵轴上的投影长度;θ--张拉端至计算截面曲线孔道部分切线的夹角(rad);K--考虑孔道每米长度局部偏差的摩擦系数,按规范取值;μ--预应力钢筋与孔道壁之间的摩擦系数,按规范取值。
对摩擦损失计算用的K,μ值取为定值,是根据当前国内有关试验值确定的,与原规范GBJ10-89不同,与国外相比,μ值较高,是由于铁皮管质量不高或预压力筋与混凝土直接接触,从而增大摩擦力的缘故。
预应力损失计算在预应力结构中,预应力损失的准确计算至关重要。
预应力损失是指在预应力施加后,由于各种因素的影响,预应力筋中的预拉应力逐渐减小的现象。
这一现象直接关系到预应力结构的性能和安全性,因此对预应力损失的计算必须精确可靠。
预应力损失主要包括以下几个方面:首先是锚具变形和钢筋内缩引起的损失。
当预应力筋在锚固过程中,锚具会发生一定的变形,同时钢筋也会向内收缩,这就导致了预应力的损失。
这种损失的大小与锚具的类型、尺寸,以及预应力筋的直径等因素有关。
例如,采用夹片式锚具时,由于夹片的嵌入和锚具的变形,会产生相对较大的损失;而对于镦头锚具,其损失则相对较小。
其次是预应力筋与孔道壁之间的摩擦引起的损失。
在预应力筋通过弯曲的孔道时,由于摩擦力的作用,预应力筋中的应力会逐渐减小。
这种摩擦损失与孔道的形状、预应力筋的类型以及施工工艺等因素密切相关。
例如,采用较长且弯曲度较大的孔道时,摩擦损失会显著增加;而使用光滑的孔道壁材料和良好的润滑措施,则可以减小摩擦损失。
接着是混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间的温差引起的损失。
在混凝土养护过程中,如果预应力筋和张拉设备之间存在温差,就会导致预应力筋的伸长量不同,从而产生预应力损失。
为了减少这种损失,可以采取同步升温的养护措施,或者在计算中合理考虑温差的影响。
然后是钢筋应力松弛引起的损失。
钢筋在高应力长期作用下会发生应力松弛,即应力逐渐降低。
这种松弛损失与钢筋的种类、初始应力水平以及时间等因素有关。
高强度钢材通常具有较大的应力松弛特性,初始应力越高、时间越长,松弛损失也就越大。
再者是混凝土收缩和徐变引起的损失。
混凝土在硬化过程中会发生收缩,在长期荷载作用下会产生徐变。
这两种现象都会导致预应力筋的回缩,从而引起预应力损失。
收缩和徐变损失的大小与混凝土的配合比、养护条件、加载龄期以及结构的尺寸等因素有关。
例如,使用高强度等级的水泥、减少水灰比、加强养护等措施,可以减小混凝土的收缩和徐变,从而降低预应力损失。
预应力损失计算预应力损失是指预应力混凝土中的张应力在时间和负荷作用下逐渐降低的现象。
它是影响预应力混凝土结构设计与安全的重要因素。
预应力损失的计算是预应力混凝土结构设计中的重要环节之一。
本文将介绍预应力损失的计算方法。
1. 预应力损失的分类预应力损失可分为两类: 1. 瞬时损失:由预应力杆弯曲形变、压缩和张拉过程中配合件弹性形变等因素引起的损失; 2. 长期损失:由混凝土的干缩、蠕变、徐变、温度变化和杆件氧化等因素引起的损失。
2. 预应力损失的计算方法预应力损失的计算方法主要有以下两种: 1. 经验公式法:根据预应力杆的长度、直径、工作时间、张拉应力等参数,查找相应的预应力损失系数表得出。
2. 数值模拟法:根据预应力混凝土结构的具体情况,应用数值方法进行模拟计算。
2.1 经验公式法经验公式法是一种常用的快速计算预应力损失的方法。
该方法的核心是利用预应力损失系数表进行计算。
预应力损失系数表中记录了不同工作时间、预应力杆直径、张拉应力等参数组合下的预应力损失系数,可以根据实际情况选择相应的系数进行计算。
预应力损失系数表的编制方法主要有以下两种: 1. 基于试验得出的经验关系进行编制; 2. 基于数值模拟结果进行编制。
经验公式法的主要计算公式为:$$ \\Delta P = k \\cdot fpu \\cdot A_{p}^{'} \\cdot \\frac{l}{E_{p}} $$其中, $\\Delta P$:预应力损失量;k:预应力损失系数;fpu:预应力杆应变量(或应力);A p′:预应力杆工作期间考虑锚固代价的有效截面积(通常在初锚段的截面减少10%);l:预应力杆工作长度;E p:预应力钢的弹性模量。
2.2 数值模拟法数值模拟法是通过建立预应力混凝土结构的有限元模型,针对不同因素的影响,进行数值模拟计算得出预应力损失量。
该方法计算精度较高,适用于大型、复杂的结构设计。
但由于计算复杂度较高,需要一定的计算能力和计算时间。
预应力损失计算预应力损失是指在预应力构件施工过程中由于各种原因导致的预应力损失的情况。
准确计算预应力损失对于工程的安全性和可靠性具有重要意义。
本文将介绍预应力损失的计算方法及其相关的内容。
1. 引言预应力技术在现代工程中得到广泛应用,其主要目的是通过施加预应力力量来提高结构的承载能力和变形性能。
然而,在预应力施工过程中,由于各种原因,如材料的初始应力损失、锚固滑移等,会导致预应力的损失,影响结构的设计效果和安全性。
2. 预应力损失的分类预应力损失可以分为初始应力损失、锚固应力损失和滑移应力损失三类。
2.1 初始应力损失初始应力损失是指在预应力构件施加初始应力后,在预应力锚固前由于材料的弹性和非弹性变形而产生的应力损失。
初始应力损失的计算可以采用材料本身的力学性能和试验数据来确定。
2.2 锚固应力损失锚固应力损失是指预应力钢束被锚固在构件内部时由于锚具的工作性能以及搭接长度的不同而导致的应力损失。
锚固应力损失的计算可借助于锚固试验和相关标准规范来确定。
2.3 滑移应力损失滑移应力损失是指在预应力钢束和混凝土之间产生滑移时,由于滑移长度和滑移阻力不同而导致的应力损失。
滑移应力损失的计算可以通过基于试验和经验公式来确定。
3. 预应力损失计算方法预应力损失的计算一般采用综合计算法,其基本原理是将初始应力损失、锚固应力损失和滑移应力损失综合考虑。
3.1 初始应力损失计算初始应力损失计算的一般步骤如下:- 根据预应力构件的几何特征、材料性能和施工工艺确定初始张拉时钢束的初始应力;- 根据预应力钢束的应力松弛特性和锚固后的应力变化规律,计算初始应力损失。
3.2 锚固应力损失计算锚固应力损失计算的一般步骤如下:- 根据预应力锚具的特性和设计要求确定锚固力的大小;- 根据预应力钢束与锚具之间的滑移长度和工作性能,计算锚固应力损失。
3.3 滑移应力损失计算滑移应力损失计算的一般步骤如下:- 根据预应力钢束与混凝土之间的滑移长度和试验数据,计算滑移应力损失;- 根据试验和经验公式,确定滑移应力损失的大小。
第6章 预应力损失及有效应力的计算本桥预采用后张法,应力损失包括: 摩阻损失、锚具变形及钢筋回缩、混凝土的弹性压缩、预应力筋的应力松弛、混凝土的收缩与徐变等5项。
根据《桥规》(JTG D62-2004)第6.2.1条规定,后张法预应力混凝土构件在正常使用极限状态计算中,应考虑由下列因素引起的预应力损失:预应力钢筋与管道壁之间的摩擦 σl1 锚具变形、钢筋回缩和接缝压缩 σl2 混凝土的弹性压缩 σl4 预应力钢筋的应力松弛 σl5 混凝土的收缩和徐变 σl66.1 预应力损失的计算6.1.1 摩阻损失预应力钢筋与管道之间摩擦引起的应力损失可按下式计算:]1[)(1kx con l e +--=μθσσ (6-1)σcon ——张拉钢筋时锚下的控制应力(跟据《桥规》规定σcon ≤0.75pk f ); μ——预应力钢筋与管道壁的摩擦系数,对金属波纹管,取0.2,具体取值见表6-1; θ——从张拉端至计算截面曲线管道部分切线的夹角之和,以rad 计; k ——管道每米局部偏差对摩擦的影响系数,取0.0015,具体取值见表6-1; x ——从张拉端至计算截面的管道长度,以米计。
表6-1 系数k 及μ的值管道类型Kμ 橡胶管抽芯成型的管道 0.0015 0.55 铁皮套管 0.00300.35金属波纹管0.0020~0.00300.20~0.266.1.2 锚具变形损失由锚具变形、钢筋回缩和接缝压缩引起的应力损失,可按下式计算:Pl Ell ∑∆=2σ (6-2)∆l ——锚具变形、钢筋回缩和接缝压缩值;统一取6mm ; L ——预应力钢筋的有效长度;E P ——预应力钢筋的弹性模量。
取195GPa 。
6.1.3 混凝土的弹性压缩后张预应力混凝土构件的预应力钢筋采用分批张拉时,先张拉的钢筋由于张拉后批钢筋所产生的砼弹性压缩引起的应力损失,可按下式计算pc EP l4ΔσΣασ= (6-3)式中, pc Δσ——在先张拉钢筋重心处,由后张拉各批钢筋而产生的混凝土法向应力;EP α——预应力钢筋与混凝土弹性模量比。
预应力损失值计算预应力损失值计算是工程结构设计中的重要环节,它涉及到对于预应力混凝土结构的设计和分析。
准确计算预应力损失值可以帮助工程师评估结构的安全性和可靠性,从而保证建筑物的稳定性和使用寿命。
本文将介绍预应力损失值计算的主要方法和关键因素。
一、背景介绍预应力结构是通过在混凝土构件中施加预先拉紧的钢材,使得混凝土获得自身的预压力,以提高承载能力和抗震性能的建筑结构。
然而,在预应力系统的使用过程中,由于材料和施工工艺的原因,预应力损失是不可避免的。
预应力损失是指在施工和使用的过程中,预应力混凝土中的预应力损失所引起的预应力力值的减小。
二、预应力损失的分类根据预应力损失的原因和计算方法,预应力损失可以分为以下几类:1. 瞬时损失:指在预应力张拉完成时和切割钢束前的时间段内,由于混凝土收缩、蠕变等因素引起的预应力力值的减小。
2. 逐渐损失:指随着时间的推移,由于混凝土的收缩、蠕变、材料老化等因素引起的预应力力值的减小。
3. 长期损失:指从混凝土开始硬化后到结构使用寿命结束的整个时间段内,由于混凝土的收缩、蠕变、材料老化等因素引起的预应力力值的减小。
三、预应力损失的计算方法预应力损失的计算是一个复杂的过程,需要综合考虑多种因素。
一般来说,预应力损失的计算方法可以分为以下几种:1. 理论计算法:通过根据结构的材料性能和几何形状等参数,利用公式和模型进行理论计算。
2. 经验计算法:根据已有工程的实际经验总结出来的预应力损失值。
3. 验证计算法:通过对已有工程的预应力结构进行监测和测试,得到实际的预应力损失数据,进行验证和修正计算结果。
四、预应力损失影响因素预应力损失的计算结果受到多种因素的影响,主要包括以下几个方面:1. 材料因素:包括混凝土的材料性能、钢材的材料性能等。
2. 结构因素:包括结构的几何形状、构件的截面尺寸、构件的长度等。
3. 施工因素:包括预应力张拉的过程、预应力钢束的锚固长度、预应力钢束的切割等。