南京市、盐城市2018届高三年级第一次模拟考试数学
- 格式:doc
- 大小:270.50 KB
- 文档页数:17
江苏南京市盐城市2018届高三数学第一次模拟考试卷(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲.2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为▲.3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为▲.4.执行如图所示的伪代码,若0x =,则输出的y 的值为▲.5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为▲.6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为▲.7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是▲.8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为▲.9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是▲.10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为▲.11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =-有四个不同的零点,则实数m 的取值范围是▲.12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为▲.13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为▲.14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为▲.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ;(2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c b =.(1)若2C B =,求cos B 的值;(2)若AB AC CA CB ⋅=⋅ ,求cos()4B π+的值17.(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N .(1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?AB第13题ABCA 1B 1C 1MN第15题图ADCB EG FOM N H第17题-图甲NE FGH第17题-图乙M N18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点3(3,)2处时,点Q 的坐标为23(,0)3.(1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.19.(本小题满分16分)设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n ,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅- m 对任意的*n N ∈都成立,求m m的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈).(1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.xy O BN MPQ D第18题图数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D .若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内)22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.ABE DF O ·第21(A)图MABCDOP 第22题图23.(本小题满分10分)已知n N *∈,()0112112r r n n n n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.。
南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ . 3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是 ▲ .8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ .9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是 ▲ . 10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,时间(单位:分钟)50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 第4题图则2017S 的值为 ▲ .11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =-有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy中,若直线(y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为 ▲ . 13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点. (1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c已知2c =. (1)若2C B =,求cos B 的值; (2)若AB AC CA CB ⋅=⋅,求cos()4B π+的值.17.(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?第13题图 ABC A 1B 1C 1 MN第15题图F18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N运动到点处时,点Q的坐标为. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.19.(本小题满分16分)设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n …,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-卪对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立. 求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值; (2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.A B ED F O · 第21(A)图C .(选修4-4:坐标系与参数方程) 在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n n n n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.M A CD O P 第22题图南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞8.34π 9.1(0,]4 10.4034 11.9[1,)412. 13.24 14.100二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N . 所以四边形1A NBM是平行四边形,从而1//A M BN . ……………4分又BN ⊄平面1A M C,1A M ⊂平面1A M C ,所以BN ∥面1A MC . ……………6分(2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥. 则由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC,得CM ⊥侧面11ABB A . ……………8分又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M =,所以1AB ⊥平面1A M C . ……………12分又1AC ⊂平面1A MC,所以11AB A C ⊥. ……………14分16.解:(1)因为c =,则由正弦定理,得sin C B =. ……………2分 又2C B =,所以s i n 2s i n2B B =,即4sn c o s 5sinB B =. ……………4分又B 是ABC ∆的内角,所以s i nB >,故c o s 4B =. ……………6分(2)因为AB AC CA CB ⋅=⋅, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而223cos 25a c bB ac+-===, (12)分又0B π<<,所以4sin 5B ==. 从而3c o 44B Bππ+=. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2RM T O MO T =-=. 从而2R B EMT==,即22R BE ==. ……………2分故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒= ……………4分 又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积E为163π-. …………………6分 (2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=.又所得柱体的高62EG x =-,所以V S =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分答:当BE 的长为2分米时,折卷成的包装盒的容积最大.…………………14分 18.解:(1)由2N Q ,得直线NQ 的方程为32y x =- …………………2分 令0x =,得点B 的坐标为(0,.所以椭圆的方程为22213x y a +=. …………………4分 将点N 的坐标)2代入,得222213a+=,解得24a =. 所以椭圆C 的标准方程为22143x y +=.…………………8分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为y kx =-.在y kx =-0y =,得P x k =,而点Q 是线段OP 的中点,所以2Q x k =. 所以直线BN的斜率2BN BQ k k k ===. ………………10分联立22143y kx x y ⎧=-⎪⎨+=⎪⎩,消去y,得22(34)0k x +-=,解得M x = 用2k 代k ,得2163316N x k =+. ………………12分 又2DN NM =,所以2(N M N x x x =-,得23M N x x =. ………………14分故222334316k k ⨯=⨯++,又0k >,解得2k =. 所以直线BM的方程为y x =- ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为11y y x x =0y =,得P x =.同理,得Q x =.而点Q 是线段OP的中点,所以2P Qx x =,故=. …………………10分 又2DN NM =,所以2122()x x x =-,得21203x x =>4=解得2143y y =+. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=+⎪⎩代入到椭圆C的方程中,得2119x =. 又22114(1)3y x =-,所以21214(1)(431927y y -+=21120y +=, 解得1y =(舍)或1y =.又10x >,所以点M 的坐标为(3M .……………14分故直线BM的方程为2y x =- …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+, 化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分(2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-…,即12n r n m --⋅…对任意*n N ∈都成立,则172n n m --⋅…,所以172n n m --…对任意*n N ∈都成立. ………………8分令172n n n b --=,则11678222n nn n n n n nb b +-----=-=, 所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分 (3)因为数列{}n a 不是常数列,所以2T ….①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=.则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-;由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-;由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意. 所以T的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,.当c =时,()b g x ax x=+,所以2()b g x a x '=-,所以(1)g a b '=-. ………………2分因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分 (2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aa x c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩, 所以3)c a t >--对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以23=(当且仅当32a =时取等号), 又0t -<,所以t 的取值范围是(,3)-∞,所以3c …. 故c 的最小值为3. ………………10分(3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x c x b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x xx x x -<<-. ………………14分令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述,实数12,x x 满足122x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即02x x y y =⎧⎨=⎩,解得0012x xy y⎧=⎪⎨⎪=⎩, ………………5分 代入22001x y +=,得2214x y +=,即为所求的曲线方程. ………………10分(C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=, 得直线的直角坐标方程为20x -=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.ABE DF O · 第21(A)图因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1](1x x ++≥⨯+, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由13x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得x y ⎧=⎪⎪⎨⎪=⎪⎩,所以当且仅当x y ==时,max ()x y += 所以当x y+取最大值时x 的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -. 所以(2,0,4)AP =-,(1,1,2)BM =--,10AP BM ⋅=,||25AP =,||6BM =.则cos ,||||2AP BM AP BM AP BM ⋅<>===. 故直线AP 与BM 所成角的余弦值为6. ………5分 (2)(2,1,0)AB =-,(1,1,2)BM =--.设平面ABM 的一个法向量为(,,)n x y z =,则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB =,所以n 4OB ⋅=,||29n =,||1OB =.则cos ,||||29n OB n OB n OB ⋅<>===故平面ABM 与平面PAC 所成锐二面角的余弦值为………………10分 23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,C第22题图在①中令1n =,得()011111f C C ==. ………………1分在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分 (2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n …时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n n C C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+.而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)n nxx-++()()0111n nn n C C x------=++++++++,所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立. 综上,()21nn f n C -=成立. ………………10分方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn n C C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n nn n C C C C C C -----+++.另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21nn C -.故0111121111n n n n n n n n n n nC C C C C C C ------=++,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n n n n n n x C C x C x C x +=++++ ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++ ④.③×④,得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n nC C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n nn n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21nn f n C -=成立. ………………10分。
2018届南京、盐城高三年级第一次模拟考试数学参考答案1. {1}2. 13. 1 2004. 15. 23 6. 67. (-∞,2] 8.3π49. ⎝⎛⎦⎤0,14 10. 4 034 11. ⎣⎡⎭⎫1,94 12. -3 13. 24 14. 100 15. 解析:(1) 因为ABCA 1B 1C 1是直三棱柱, 所以AB ∥A 1B 1,且AB =A 1B 1.又M ,N 分别是AB ,A 1B 1的中点, 所以MB =A 1N ,且MB ∥A 1N , 所以四边形A 1NBM 是平行四边形, 从而A 1M ∥BN.(4分)又BN ⊄平面A 1MC ,A 1M ⊂平面A 1MC , 所以BN ∥平面A 1MC.(6分)(2) 因为ABCA 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,而AA 1⊂侧面ABB 1A 1, 所以侧面ABB 1A 1⊥底面ABC.又CA =CB ,且M 是AB 的中点,所以CM ⊥AB.因为由侧面ABB 1A 1⊥底面ABC ,侧面ABB 1A 1∩底面ABC =AB ,CM ⊥AB ,且CM ⊂底面ABC ,所以CM ⊥侧面ABB 1A 1.(8分)又AB 1⊂侧面ABB 1A 1,所以AB 1⊥CM.(10分)又AB 1⊥A 1M ,A 1M ,MC ⊂平面A 1MC ,且A 1M ∩MC =M , 所以AB 1⊥平面A 1MC.(12分)又A 1C ⊂平面A 1MC ,所以AB 1⊥A 1C.(14分)16. 解析:(1) 因为c =52b , 所以由正弦定理得sin C =52sin B.(2分) 又C =2B ,所以sin 2B =52sin B , 即4sin B cos B =5sin B.(4分) 又B 是△ABC 的内角, 所以sin B>0,故cos B =54.(6分) (2) 因为AB →·AC →=CA →·CB →,所以cb cos A =ba cos C ,由余弦定理得b 2+c 2-a 2=b 2+a 2-c 2,得a =c ,(10分) 从而cos B =a 2+c 2-b 22ac=c 2+c 2-⎝⎛⎭⎫25c 22c 2=35.(12分)又0<B<π,所以sin B =1-cos 2B =45,从而cos ⎝⎛⎭⎫B +π4=cos B cos π4-sin B sin π4=35×22-45×22=-210.(14分)17. 解析:(1) 在图1中,连结MO 交EF 于点T.设OE =OF =OM =R.在Rt △OET 中,因为∠EOT =12∠EOF =60°,所以OT =R 2,则MT =OM -OT =R2,从而BE =MT =R2,即R =2BE =2.(2分)故所得柱体的底面积S =S 扇形OEF -S △OEF =13πR 2-12R 2sin 120°=4π3- 3.(4分)因为所得柱体的高EG =6-1×2=4, 所以V =S·EG =16π3-4 3.故当BE 长为1分米时,折卷成的包装盒的容积 为⎝⎛⎭⎫16π3-43立方分米.(6分)(2) 设BE =x ,则R =2x ,所以所得柱体的底面积S =S 扇形OEF -S △OEF =13πR 2-12R 2sin 120°=⎝⎛⎭⎫4π3-3x 2.因为所得柱体的高EG =6-2x , 所以V =S·EG =⎝⎛⎭⎫8π3-23(-x 3+3x 2),其中0<x<3.(10分) 令f(x)=-x 3+3x 2,x ∈(0,3),则由f′(x)=-3x 2+6x =-3x(x -2)=0,解得x =2.(12分)当x 变化时,f ′(x),f(x)的变化情况如下:所以当x =2时,f(x)取得最大值.故当BE 的长为2分米时,折卷成的包装盒的容积最大.(14分)18. 解析:(1) 由N ⎝⎛⎭⎫3,32,Q ⎝⎛⎭⎫233,0得直线NQ 的方程为y =32x - 3.(2分) 令x =0,得点B 的坐标为(0,-3). 所以椭圆的方程为x 2a 2+y 23=1.(4分)将点N 的坐标⎝⎛⎭⎫3,32代入,得(3)2a 2+⎝⎛⎭⎫3223=1,解得a 2=4. 所以椭圆C 的标准方程为x 24+y 23=1.(8分)(2) 设直线BM 的斜率为k(k>0),则直线BM 的方程为y =kx - 3. 在y =kx -3中,令y =0,得x P =3k, 而Q 是线段OP 的中点,所以x Q =32k. 所以直线BN 的斜率k BN =k BQ =0-(-3)32k-0=2k.(10分)联立⎩⎪⎨⎪⎧y =kx -3,x 24+y 23=1,消去y ,得(3+4k 2)x 2-83kx =0,解得x M =83k 3+4k2. 用2k 代k ,得x N =163k3+16k 2.(12分)又DN →=2NM →,所以x N =2(x M -x N ), 所以2x M =3x N .(14分) 故2×83k 3+4k 2=3×163k3+16k 2.又k>0,解得k =62, 所以直线BM 的方程为y =62x - 3.(16分) 19. 解析:(1) 由题意,可得a 2n =(a n +d)(a n -d)+λd 2, 化简得(λ-1)d 2=0,又d ≠0,所以λ=1.(4分)(2) 将a 1=1,a 2=2,a 3=4代入条件,可得4=1×4+λ,解得λ=0,所以a 2n =a n +1a n -1,所以数列{a n }是首项为1,公比q =2的等比数列,所以a n =2n -1. (6分)欲存在r ∈[3,7],使得m·2n -1≥n -r 恒成立,即r ≥n -m ·2n -1对任意n ∈N *都成立,则7≥n -m ·2n -1,所以m ≥n -72n -1对任意n ∈N *都成立.(8分) 令b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n2n ,所以当n >8时,b n +1<b n ;当n =8时,b 9=b 8;当n <8时,b n +1>b n .所以b n 的最大值为b 9=b 8=1128, 所以m 的最小值为1128.(10分)(3) 因为数列{a n }不是常数列,所以T ≥2.①若T =2,则a n +2=a n 恒成立,从而a 3=a 1,a 4=a 2,所以⎩⎪⎨⎪⎧a 22=a 21+λ(a 2-a 1)2,a 21=a 22+λ(a 2-a 1)2, 所以λ(a 2-a 1)2=0.又λ≠0,所以a 2=a 1,可得{a n }是常数列,与题干矛盾. 所以T =2不合题意.(12分)②若T =3,取a n =⎩⎪⎨⎪⎧1, n =3k -2,2, n =3k -1,-3, n =3k(k ∈N *)(*),满足a n +3=a n 恒成立.(14分)由a 22=a 1a 3+λ(a 2-a 1)2得λ=7. 则条件式变为a 2n =a n +1a n -1+7.由22=1×(-3)+7,知a 23k -1=a 3k -2a 3k +λ(a 2-a 1)2;由(-3)2=2×1+7,知a 23k =a 3k -1a 3k +1+λ(a 2-a 1)2;由12=(-3)×2+7,知a 23k +1=a 3k a 3k +2+λ(a 2-a 1)2. 所以数列(*)适合题意. 所以T 的最小值为3.(16分)20. 解析:(1) 由f(x)=ln x 得f(1)=0.又f′(x)=1x,所以f′(1)=1.当c =0时,g(x)=ax +b x ,所以g′(x)=a -bx 2,所以g′(1)=a -b.(2分)因为函数f(x)与g(x)的图象在x =1处有相同的切线,所以⎩⎪⎨⎪⎧f ′(1)=g′(1),f (1)=g (1),即⎩⎪⎨⎪⎧a -b =1,a +b =0, 解得⎩⎨⎧a =12,b =-12.(4分)(2) 当x 0>1时,f(x 0)>0. 又b =3-a ,设t =f(x 0),则题意可转化为方程ax +3-ax -c =t(t>0)在(0,+∞)上有两相异实根x 1,x 2,(6分)即关于x 的方程ax 2-(c +t)x +(3-a)=0(t>0)在(0,+∞)上有两相异实根x 1,x 2,所以⎩⎪⎨⎪⎧0<a<3,Δ=(c +t )2-4a (3-a )>0,x 1+x 2=c +ta >0,x 1x 2=3-a a >0,得⎩⎪⎨⎪⎧0<a<3,(c +t )2>4a (3-a ),c +t>0,所以c>2a (3-a )-t 对t ∈(0,+∞),a ∈(0,3)恒成立.(8分) 因为0<a<3,所以2a (3-a )≤2×⎝⎛⎭⎫a +(3-a )22=3,当且仅当a =32时取等号.又-t<0,所以2a (3-a )-t 的取值范围是(-∞,3),所以c ≥3.故c 的最小值为3.(10分)(3) 当a =1时,因为函数f(x)与g(x)的图象交于A ,B 两点, 所以⎩⎨⎧ln x 1=x 1+bx 1-c ,ln x 2=x 2+bx 2-c ,两式相减,得b =x 1x 2⎝ ⎛⎭⎪⎫1-ln x 2-ln x 1x 2-x 1.(12分)要证明x 1x 2-x 2<b<x 1x 2-x 1,即证x 1x 2-x 2<x 1x 2(1-ln x 2-ln x 1x 2-x 1)<x 1x 2-x 1,即证1x 2<ln x 2-ln x 1x 2-x 1<1x 1,即证1-x 1x 2<ln x 2x 1<x 2x 1-1.(14分)令x 2x 1=t ,则t>1,此时即证1-1t<ln t<t -1. 令φ(t)=ln t +1t -1,所以φ′(t)=1t -1t 2=t -1t 2>0,所以当t>1时,函数φ(t)单调递增.又φ(1)=0,所以φ(t)=ln t +1t -1>0,即1-1t<ln t 成立;再令m(t)=ln t -t +1,所以m′(t)=1t -1=1-t t <0,所以当t>1时,函数m(t)单调递减,又m(1)=0,所以m(t)=ln t -t +1<0,即ln t<t -1也成立.综上所述, 实数x 1,x 2满足x 1x 2-x 2<b<x 1x 2-x 1.(16分) 21. A. 解析:如图,连结AE ,OE .因为直线DE 与⊙O 相切于点E ,所以DE ⊥OE . 因为AD ⊥DE ,所以AD ∥OE , 所以∠DAE =∠OEA .① 在⊙O 中,因为OE =OA ,所以∠OEA =∠OAE ,②(5分)由①②得∠DAE =∠OAE ,即∠DAE =∠F AE . 因为∠ADE =∠AFE ,AE =AE , 所以△ADE ≌△AFE ,所以DE =FE . 又因为DE =4,所以FE =4,即点E 到直径AB 的距离为4.(10分)B. 解析:设P (x 0,y 0)是圆x 2+y 2=1上任意一点,则x 20+y 20=1.设点P (x 0,y 0)在矩阵M 对应的变换下所得的点为Q (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2001⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =2x 0,y =y 0,解得⎩⎪⎨⎪⎧x 0=12x ,y 0=y ,(5分) 代入x 20+y 20=1,得x 24+y 2=1,即为所求的曲线方程.(10分)C. 解析:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系, 由ρcos ⎝⎛⎭⎫θ+π3=1,得ρ(cos θcos π3-sin θsin π3)=1,所以直线的直角坐标方程为x -3y -2=0. (5分)因为曲线ρ=r 转化成直角坐标方程为圆x 2+y 2=r 2,所以圆心到直线的距离d =|0-3×0-2|1+3=1.因为直线ρcos ⎝⎛⎭⎫θ+π3=1与曲线ρ=r (r >0)相切,所以r =d ,即r =1.(10分)D. 解析:由柯西不等式,得[x 2+(3y )2][12+⎝⎛⎭⎫332]≥⎝⎛⎭⎫x ×1+3y ×332, 即43(x 2+3y 2)≥(x +y )2. 又x 2+3y 2=1,所以(x +y )2≤43,所以-233≤x +y ≤233,(5分)由⎩⎨⎧x 1=3y 33,x +y =233,得⎩⎨⎧x =32,y =36,所以当且仅当x =32,y =36时,(x +y )max =233. 所以当x +y 取最大值时x 的值为x =32. (10分) 22. 解析:(1) 因为四边形ABCD 是菱形, 所以AC ⊥BD.因为OP ⊥平面ABCD ,以O 为原点,直线OA ,OB ,OP 分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A(2,0,0),B(0,1,0),P(0,0,4),C(-2,0,0),M(-1,0,2),所以AP →=(-2,0,4),BM →=(-1,-1,2),AP →·BM →=10, 所以|AP →|=25,|BM →|=6,所以cos 〈AP →,BM →〉=AP →·BM →|AP →||BM →|=1025×6=306.故直线AP与BM 所成角的余弦值为306. (5分)(2) AB →=(-2,1,0),BM →=(-1,-1,2). 设平面ABM 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n·AB →=0,n·BM →=0,即⎩⎪⎨⎪⎧-2x +y =0,-x -y +2z =0.令x =2,则y =4,z =3,所以平面ABM 的一个法向量为n =(2,4,3). 因为平面P AC 的一个法向量为OB →=(0,1,0), 所以n·OB →=4,|n|=29,|OB →|=1, 所以cos 〈n ,OB →〉=n·OB →|n||OB →|=429=42929,故平面ABM 与平面P AC 所成锐二面角的余弦值为42929. (10分)23. 解析:(1) 由条件nf(n)=C 0n C 1n +2C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C nn ,①在①中令n =1,即f(1)=C 01C 11=1.(1分)在①中令n =2,得2f(2)=C 02C 12+2C 12C 22=6,即f(2)=3.(2分)在①中令n =3,得3f(3)=C 03C 13+2C 13C 23+3C 23C 33=30,即f(3)=10. (3分)(2) 猜想:f(n)=C n 2n -1(或f(n)=C n -12n -1).(5分)欲证猜想成立,只要证等式n C n 2n -1=C 0n C 1n +2C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C nn 成立. 当n =1时,等式显然成立;当n ≥2时,因为r Cr n=r ×(n !)r !(n -r )!=n !(r -1)!(n -r )!=n ×(n -1)!(r -1)!(n -r )!=n C r -1n -1, 故r C r -1n C r n =(r C r n )C r -1n =n C r -1n -1C r -1n .故只需证明n C n 2n -1=n C 0n -1C 0n +n C 1n -1C 1n +…+n C r -1n -1C r -1n +…+n C n -1n -1C n -1n, 即证C n 2n -1=C 0n -1C 0n +C 1n -1C 1n +…+C r -1n -1C r -1n +…+C n -1n -1C n -1n .而C r -1n =C n -r +1n ,故即证C n 2n -1=C 0n -1C n n +C 1n -1·C n -1n +…+C r -1n -1C n -r +1n +…+C n -1n -1C 1n .②由等式(1+x)2n -1=(1+x)n -1(1+x)n 可得左边x n 的系数为C n 2n -1.而右边(1+x)n -1(1+x)n =(C 0n -1+C 1n -1x +C 2n -1·x 2+…+C n -1n -1x n -1)(C 0n +C 1n x +C 2n x 2+…+C n n x n ),所以x n 的系数为C 0n -1C n n +C 1n -1C n -1n +…+C r -1n -1·C n -r +1n +…+C n -1n -1C 1n .由(1+x)2n -1=(1+x)n -1(1+x)n 恒成立可得②成立. 综上,f(n)=C n 2n -1成立.(10分)。
南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是 ▲ .8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ .9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是 ▲ .10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .时间(单位:分钟) 组距 50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 第4题图11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =- 有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy中,若直线(y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c已知2c =. (1)若2C B =,求cos B 的值; (2)若AB AC CA CB ⋅=⋅,求cos()4B π+的值.第13题图ABCA 1B 1C 1MN第15题图有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点2处时,点Q的坐标为(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.第17题-图甲 FH 第17题-图乙设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n …,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-卪对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.A B E D F O · 第21(A)图[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.M A C D O P 第22题图南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞ 8.34π 9.1(0,]4 10.4034 11.9[1,)412. 13.24 14.100 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN . ……………4分 又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分 (2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分 又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A MMC M =,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC ,所以11AB A C ⊥. ……………14分 16.解:(1)因为c =,则由正弦定理,得sin C B =. ……………2分 又2C B =,所以sin 22B B =,即4sin cos B B B =. ……………4分 又B 是ABC ∆的内角,所以sin 0B >,故cos 4B =. ……………6分(2)因为AB AC CA CB ⋅=⋅, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而2223cos 25a cb B ac +-===, ……………12分又0B π<<,所以4sin 5B ==.从而34cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2R MT OM OT =-=. 从而2RBE MT ==,即22R BE ==. ……………2分 故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=-. ……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-. …………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分列表如下:所以当x =答:当BE 的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由NQ ,得直线NQ的方程为32y x =…………………2分令0x =,得点B 的坐标为(0,. 所以椭圆的方程为22213x y a +=. …………………4分 将点N 的坐标2代入,得222213a +=,解得24a =. 所以椭圆C 的标准方程为22143x y +=. (8)分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为y kx =-在y kx =0y =,得P x k =,而点Q 是线段OP 的中点,所以2Q x k=.所以直线BN的斜率22BN BQ k k k k===. ………………10分联立22143y kx x y ⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x +-=,解得234M x k =+. 用2k 代k,得N x =………………12分又2DN NM =,所以2()N M N x x x =-,得23M N x x =. ………………14分故23=0k >,解得k = 所以直线BM的方程为y x =. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为11y y x x +=0y =,得P x =同理,得Q x =.而点Q 是线段OP 的中点,所以2P Q x x ==…………………10分 又2DN NM =,所以2122()x x x =-,得21203x x =>4=,解得21433y y =+. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=⎪⎩代入到椭圆C的方程中,得2119x +=. 又22114(1)3y x =-,所以21214(1)(431927y y -++=21120y +=,解得1y =13y =.又10x >,所以点M的坐标为(33M .……………14分 故直线BM的方程为y x =-. …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分 (2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-…,即12n r n m --⋅…对任意*n N ∈都成立, 则172n n m --⋅…,所以172n n m --…对任意*n N ∈都成立. ………………8分 令172n n n b --=,则11678222n n n n n n n n b b +-----=-=,所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分(3)因为数列{}n a 不是常数列,所以2T ….①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩,所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-; 由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意.所以T 的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分 因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分 即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以23=(当且仅当32a =时取等号), 又0t -<,所以t 的取值范围是(,3)-∞,所以3c …. 故c 的最小值为3. ………………10分 (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分 要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述, 实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,ABE DF O · 第21(A)图设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y⎧=⎪⎨⎪=⎩, ………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程. ………………10分 (C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1(](133x x ++≥⨯⨯, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得2x y ⎧=⎪⎪⎨⎪=⎪⎩26x y ==时,max ()x y += 所以当x y +取最大值时x的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =-,(1,1,2)BM =--,10AP BM ⋅=,||25AP =,||6BM =.则cos ,6||||2AP BM AP BM AP BM ⋅<>===. 故直线AP 与BM 所成角的余弦值为6. ………5分 (2)(2,1,0)AB =-,(1,1,2)BM =--.设平面ABM 的一个法向量为(,,)n x y z =,C第22题图则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB =,所以n 4OB ⋅=,||29n =,||1OB =.则cos ,||||29n OBn OB n OB ⋅<>===故平面ABM 与平面PAC ………………10分 23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分 在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分 在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n …时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n n C C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+.而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n nnn n n n n n n C C x C x C x C C x C x C x ------=++++++++,所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立. ………………10分 方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n nn n C C C C C C -----+++.另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21nn C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n n n n n n x C C x C x C x +=++++ ③. 两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++ ④.③×④, 得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++ ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立. ………………10分。
2018年江苏省盐城市、南京市高考数学一模试卷一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.(5分)已知集合A={x|x(x﹣4)<0},B={0,1,5},则A∩B=.2.(5分)设复数z=a+i(a∈R,i为虚数单位),若(1+i)•z为纯虚数,则a的值为.3.(5分)为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为.4.(5分)执行如图所示的伪代码,若x=0,则输出的y的值为.5.(5分)口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为.6.(5分)若抛物线y2=2px的焦点与双曲线的右焦点重合,则实数p的值为.7.(5分)设函数y=e x﹣a的值域为A,若A⊆[0,+∞),则实数a的取值范围是.8.(5分)已知锐角α,β满足(tanα﹣1)(tanβ﹣1)=2,则α+β的值为.9.(5分)若函数y=sinωx在区间[0,2π]上单调递增,则实数ω的取值范围是.10.(5分)设S n为等差数列{a n}的前n项和,若{a n}的前2017项中的奇数项和为2018,则S2017的值为.11.(5分)设函数f(x)是偶函数,当x≥0时,f(x)=,若函数y=f(x)﹣m 有四个不同的零点,则实数m的取值范围是.12.(5分)在平面直角坐标系xOy中,若直线y=k(x﹣3)上存在一点P,圆x2+(y﹣1)2=1上存在一点Q,满足=3,则实数k的最小值为.13.(5分)如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A,B,C,D四点均位于图中的“晶格点”处,且A,B的位置所图所示,则的最大值为.14.(5分)若不等式ksin2B+sinAsinC>19sinBsinC对任意△ABC都成立,则实数k的最小值为.二、解答题(共6小题,满分90分)15.(14分)如图所示,在直三棱柱ABC﹣A1B1C1中,CA=CB,点M,N分别是AB,A1B1的中点.(1)求证:BN∥平面A1MC;(2)若A1M⊥AB1,求证:AB1⊥A1C.16.(14分)在△ABC中,角A,B,C的对边分别为a,b,c 已知c=.(1)若C=2B,求cosB的值;(2)若=,求cos(B)的值.17.(14分)有一矩形硬纸板材料(厚度忽略不计),一边AB长为6分米,另一边足够长.现从中截取矩形ABCD(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O为圆心、∠EOF=120°的扇形,且弧,分别与边BC,AD相切于点M,N.(1)当BE长为1分米时,求折卷成的包装盒的容积;(2)当BE的长是多少分米时,折卷成的包装盒的容积最大?18.(16分)如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点.当点N运动到点()处时,点Q的坐标为().(1)求椭圆C的标准方程;(2)设直线MN交y轴于点D,当点M,N均在y轴右侧,且=2时,求直线BM的方程.19.(16分)设数列{a n}满足a=a n+1a n﹣1+λ(a2﹣a1)2,其中n≥2,且n∈N,λ为常数.(1)若{a n}是等差数列,且公差d≠0,求λ的值;(2)若a1=1,a2=2,a3=4,且存在r∈[3,7],使得m•a n≥n﹣r对任意的n∈N*都成立,求m的最小值;(3)若λ≠0,且数列{a n}不是常数列,如果存在正整数T,使得a n+T=a n对任意的n∈N*均成立.求所有满足条件的数列{a n}中T的最小值.20.(16分)设函数f(x)=lnx,g(x)=ax+(a,b,c∈R).(1)当c=0时,若函数f(x)与g(x)的图象在x=1处有相同的切线,求a,b的值;(2)当b=3﹣a时,若对任意x0∈(1,+∞)和任意a∈(0,3),总存在不相等的正实数x1,x2,使得g(x1)=g(x2)=f(x0),求c的最小值;(3)当a=1时,设函数y=f(x)与y=g(x)的图象交于A(x1,y1),B(x2,y2)(x1<x2)两点.求证:x1x2﹣x2<b<x1x2﹣x1.[选做题](在21.22.23.24四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)[选修4-1:几何证明选讲]图21.(10分)如图,已知AB为⊙O的直径,直线DE与⊙O相切于点E,AD垂直DE于点D.若DE=4,求切点E到直径AB的距离EF.[选修4-2:矩阵与变换]22.(10分)已知矩阵M=,求圆x2+y2=1在矩阵M的变换下所得的曲线方程.[选修4-4:坐标系与参数方程]23.在极坐标系中,直线ρcos(θ+)=1与曲线ρ=r(r>0)相切,求r的值.[选修4-5:不等式选讲]24.已知实数x,y满足x2+3y2=1,求当x+y取最大值时x的值.25.(10分)如图,四棱锥P﹣ABCD的底面ABCD是菱形,AC与BD交于点O,OP⊥底面ABCD,点M为PC中点,AC=4,BD=2,OP=4.(1)求直线AP与BM所成角的余弦值;(2)求平面ABM与平面PAC所成锐二面角的余弦值.26.(10分)已知n∈N*,nf(n)=C n0C n1+2C n1C n2+…+nC n n﹣1C n n.(1)求f(1),f(2),f(3)的值;(2)试猜想f(n)的表达式(用一个组合数表示),并证明你的猜想.2018年江苏省盐城市、南京市高考数学一模试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.(5分)已知集合A={x|x(x﹣4)<0},B={0,1,5},则A∩B={1} .【试题解答】解:∵集合A={x|x(x﹣4)<0}={x|0<x<4},B={0,1,5},∴A∩B={1}.故答案为:{1}.2.(5分)设复数z=a+i(a∈R,i为虚数单位),若(1+i)•z为纯虚数,则a的值为1.【试题解答】解:∵z=a+i,∴(1+i)•z=(1+i)(a+i)=a﹣1+(a+1)i,又(1+i)•z为为纯虚数,∴a﹣1=0即a=1.故答案为:1.3.(5分)为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为1200.【试题解答】解:由频率分布直方图得:该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的频率为:1﹣(0.005+0.035+0.020+0.010)×10=0.3,∴估计该县小学六年级4000名学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为:4000×0.3=1200.故答案为:1200.4.(5分)执行如图所示的伪代码,若x=0,则输出的y的值为1.【试题解答】解:根据题意知,执行程序后,输出函数y=,当x=0时,y=e0=1.故答案为:1.5.(5分)口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为.【试题解答】解:口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,从袋中一次随机摸出2个球,基本事件总数n==6,摸出的2个球的编号之和大于4包含的基本事件有:(1,4),(2,3),(2,4),(3,4),共4个,∴摸出的2个球的编号之和大于4的概率为p=.故答案为:.6.(5分)若抛物线y2=2px的焦点与双曲线的右焦点重合,则实数p的值为6.【试题解答】解:∵双曲线的方程,∴a2=4,b2=5,可得c==3,因此双曲线的右焦点为F(3,0),∵抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,∴=3,解之得p=6.故答案为:6.7.(5分)设函数y=e x﹣a的值域为A,若A⊆[0,+∞),则实数a的取值范围是(﹣∞,2] .【试题解答】解:函数y=e x﹣a的值域为A∵e x=2,∴值域为A=[2﹣a,+∞).又∵A⊆[0,+∞),∴2﹣a≥0,即a≤2.故答案为:(﹣∞,2].8.(5分)已知锐角α,β满足(tanα﹣1)(tanβ﹣1)=2,则α+β的值为.【试题解答】解:∵(tanα﹣1)(tanβ﹣1)=2,可得:tanα+tanβ+1=tanαtanβ,∴tan(α+β)=═﹣1,∵锐角α,β,可得:α+β∈(0,π),∴α+β=.故答案为:.9.(5分)若函数y=sinωx在区间[0,2π]上单调递增,则实数ω的取值范围是(0,] .【试题解答】解:由函数y=sinωx,图象过原点,可得ω>0在区间[0,2π]上单调递增,∴,即.故答案为:(0,]10.(5分)设S n为等差数列{a n}的前n项和,若{a n}的前2017项中的奇数项和为2018,则S2017的值为4034.【试题解答】解:因为S n为等差数列{a n}的前n项和,且{a n}的前2017项中的奇数项和为2018,所以S=a1+a3+a5+…+a2017=1009×(a1+a2017)×=1009×a1009=2018,得奇a1009=2.=a2+a4+a6+…+a2016=1008×(a2+a2016)×=1008×a1009=1008×2=则S偶2016则S2017=S奇+S偶=2018+2016=4034.故答案为:4034.11.(5分)设函数f(x)是偶函数,当x≥0时,f(x)=,若函数y=f(x)﹣m 有四个不同的零点,则实数m的取值范围是[1,).【试题解答】解:由0≤x≤3可得f(x)∈[0,],x>3时,f(x)∈(0,1).画出函数y=f(x)与y=m的图象,如图所示,∵函数y=f(x)﹣m有四个不同的零点,∴函数y=f(x)与y=m的图象有4个交点,由图象可得m的取值范围为[1,),故答案为:[1,).12.(5分)在平面直角坐标系xOy中,若直线y=k(x﹣3)上存在一点P,圆x2+(y﹣1)2=1上存在一点Q,满足=3,则实数k的最小值为﹣.【试题解答】解:设P(x1,y1),Q(x2,y2);则y1=k(x1﹣3)①,+(y2﹣1)2=1②;由=3,得,即,代入②得+=9;此方程表示的圆心(0,3)到直线kx﹣y﹣3k=0的距离为d≤r;即≤3,解得﹣≤k≤0.∴实数k的最小值为﹣.故答案为:﹣.13.(5分)如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A,B,C,D四点均位于图中的“晶格点”处,且A,B的位置所图所示,则的最大值为24.【试题解答】解:建立如图的直角坐标系,则A(,),B(0,0),那么容易得到C(0,5)时,D的位置可以有三个位置,其中D1(﹣,),D2(﹣,0),D3(﹣,),此时=(﹣,﹣),=(﹣,﹣),=(﹣,﹣5),=(﹣,﹣),则•=21,•=24,•=22.5,则的最大值为24,故答案为:24.14.(5分)若不等式ksin2B+sinAsinC>19sinBsinC对任意△ABC都成立,则实数k的最小值为100.【试题解答】解:∵ksin2B+sinAsinC>19sinBsinC,由正弦定理可得:kb2+ac>19bc,∴k>,只需k大于右侧表达式的最大值即可,显然c>b时,表达式才能取得最大值,又∵c﹣b<a<b+c,∴﹣b﹣c<﹣a<b﹣c,∴<19+()=20﹣()2=100﹣(﹣10)2,当=10时,20﹣()2取得最大值20×10﹣102=100.∴k≥100,即实数k的最小值为100.故答案为:100二、解答题(共6小题,满分90分)15.(14分)如图所示,在直三棱柱ABC﹣A1B1C1中,CA=CB,点M,N分别是AB,A1B1的中点.(1)求证:BN∥平面A1MC;(2)若A1M⊥AB1,求证:AB1⊥A1C.【试题解答】证明:(1)因为ABC﹣A1B1C1是直三棱柱,所以AB∥A1B1,且AB=A1B1,又点M,N分别是AB、A1B1的中点,所以MB=A1N,且MB∥A1N.所以四边形A1NBM是平行四边形,从而A1M∥BN.又BN⊄平面A1MC,A1M⊂平面A1MC,所以BN∥平面A1MC;(2)因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥底面ABC,而AA1⊂侧面ABB1A1,所以侧面ABB1A1⊥底面ABC.又CA=CB,且M是AB的中点,所以CM⊥AB.则由侧面ABB1A1⊥底面ABC,侧面ABB1A1∩底面ABC=AB,CM⊥AB,且CM⊂底面ABC,得CM⊥侧面ABB1A1.又AB1⊂侧面ABB1A1,所以AB1⊥CM.又AB1⊥A1M,A1M、MC平面A1MC,且A1M∩MC=M,所以AB1⊥平面A1MC.又A1C⊂平面A1MC,所以AB⊥A1C.16.(14分)在△ABC中,角A,B,C的对边分别为a,b,c 已知c=.(1)若C=2B,求cosB的值;(2)若=,求cos(B)的值.【试题解答】解:(1)因为c=,则由正弦定理,得sinC=sinB. …(2分)又C=2B,所以sin2B=sinB,即2sinBcosB=sinB. …(4分)又B是△ABC的内角,所以sinB>0,故cosB=. …(6分) (2)因为=,所以cbcosA=bacosC,则由余弦定理,得b2+c2﹣a2=b2+a2﹣c2,得a=c. …(10分)从而cosB==,…(12分)又0<B<π,所以sinB==.从而cos(B+)=cosBcos﹣sinBsin=. …(14分)17.(14分)有一矩形硬纸板材料(厚度忽略不计),一边AB长为6分米,另一边足够长.现从中截取矩形ABCD(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O为圆心、∠EOF=120°的扇形,且弧,分别与边BC,AD相切于点M,N.(1)当BE长为1分米时,求折卷成的包装盒的容积;(2)当BE的长是多少分米时,折卷成的包装盒的容积最大?【试题解答】解:(1)在图甲中,连接MO交EF于点T.设OE=OF=OM=R,在Rt△OET中,因为∠EOT=∠EOF=60°,所以OT=,则MT=0M﹣OT=.从而BE=MT=,即R=2BE=2.故所得柱体的底面积S=S扇形OEF ﹣S△OEF=πR2﹣R2sin120°=﹣,又所得柱体的高EG=4,所以V=S×EG=﹣4.答:当BE长为1(分米)时,折卷成的包装盒的容积为﹣4立方分米.(2)设BE=x,则R=2x,所以所得柱体的底面积S=S扇形OEF﹣S△OEF=πR2﹣R2sin120°=(﹣)x2,又所得柱体的高EG=6﹣2x,所以V=S×EG=(﹣2)(﹣x3+3x2),其中0<x<3.令f(x)=﹣x3+3x2,0<x<3,则由f′(x)=﹣3x2+6x=﹣3x(x﹣2)=0,解得x=2.列表如下:x(0,2)2(2,3)f′(x)+0﹣f(x)增极大值减所以当x=2时,f(x)取得最大值.答:当BE的长为2分米时,折卷成的包装盒的容积最大.18.(16分)如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点.当点N运动到点()处时,点Q的坐标为().(1)求椭圆C的标准方程;(2)设直线MN交y轴于点D,当点M,N均在y轴右侧,且=2时,求直线BM的方程.【试题解答】解:(1)由N(),点Q的坐标为(),得直线NQ的方程为y=x﹣,令x=0,得点B的坐标为(0,﹣).所以椭圆的方程为+=1.将点N的坐标(,)代入,得+=1,解得a2=4.所以椭圆C的标准方程为+=1.(2):设直线BM的斜率为k(k>0),则直线BM的方程为y=x﹣.在y=kx﹣中,令y=0,得x P=,而点Q是线段OP的中点,所以x Q=.所以直线BN的斜率k BN=k BQ==2k.联立,消去y,得(3+4k2)x2﹣8kx=0,解得x M=.用2k代k,得x N=.又=2,所以x N=2(x M﹣x N),得2x M=3x N,故2×==3×,又k>0,解得k=.所以直线BM的方程为y=x﹣19.(16分)设数列{a n}满足a=a n+1a n﹣1+λ(a2﹣a1)2,其中n≥2,且n∈N,λ为常数.(1)若{a n}是等差数列,且公差d≠0,求λ的值;(2)若a1=1,a2=2,a3=4,且存在r∈[3,7],使得m•a n≥n﹣r对任意的n∈N*都成立,求m的最小值;(3)若λ≠0,且数列{a n}不是常数列,如果存在正整数T,使得a n+T=a n对任意的n∈N*均成立.求所有满足条件的数列{a n}中T的最小值.【试题解答】解:(1)由题意,可得a=(a n+d)(a n﹣d)+λd2,化简得(λ﹣1)d2=0,又d≠0,所以λ=1.(2)将a1=1,a2=2,a3=4,代入条件,可得4=1×4+λ,解得λ=0,所以a=a na n﹣1,所以数列{a n}是首项为1,公比q=2的等比数列,+1所以a n=2n﹣1.欲存在r∈[3,7],使得m•2n﹣1≥n﹣r,即r≥n﹣m•2n﹣1对任意n∈N*都成立,则7≥n﹣m•2n﹣1,所以m≥对任意n∈N*都成立.令b n=,则b n+1﹣b n=﹣=,所以当n>8时,b n+1<b n;当n=8时,b9=b8;当n<8时,b n+1>b n.所以b n的最大值为b9=b8=,所以m的最小值为;(3)因为数列{a n}不是常数列,所以T≥2,①若T=2,则a n+2=a n恒成立,从而a3=a1,a4=a2,所以,所以λ(a2﹣a1)2=0,又λ≠0,所以a2=a1,可得{a n}是常数列,矛盾.所以T=2不合题意.②若T=3,取a n=(*),满足a n+3=a n恒成立.由a22=a1a3+λ(a2﹣a1)2,得λ=7.则条件式变为a n2=a n+1a n﹣1+7.由22=1×(﹣3)+7,知a3k﹣12=a3k﹣2a3k+λ(a2﹣a1)2;由(﹣3)2=2×1+7,知a3k2=a3k﹣1a3k+1+λ(a2﹣a1)2;由12=2×(﹣3)+7,知a3k+12=a3k a3k+2+λ(a2﹣a1)2;所以,数列(*)适合题意.所以T的最小值为3.20.(16分)设函数f(x)=lnx,g(x)=ax+(a,b,c∈R).(1)当c=0时,若函数f(x)与g(x)的图象在x=1处有相同的切线,求a,b的值;(2)当b=3﹣a时,若对任意x0∈(1,+∞)和任意a∈(0,3),总存在不相等的正实数x1,x2,使得g(x1)=g(x2)=f(x0),求c的最小值;(3)当a=1时,设函数y=f(x)与y=g(x)的图象交于A(x1,y1),B(x2,y2)(x1<x2)两点.求证:x1x2﹣x2<b<x1x2﹣x1.【试题解答】解:(1)由f(x)=lnx,得f(1)=0,又f′(x)=,所以f′(1)=1,当c=0时,g(x)=ax+,所以g′(x)=a﹣,所以g′(1)=a﹣b,因为函数f(x)与g(x)的图象在x=1处有相同的切线,所以,即,解得a=,b=﹣;(2)当x0>1时,则f(x0)>0,又b=3﹣a,设t=f(x0),则题意可转化为方程ax+﹣c=t(t>0)在(0,+∞)上有相异两实根x1,x2. 即关于x的方程ax2﹣(c+t)x+(3﹣a)=0(t>0)在(0,+∞)上有相异两实根x1,x2.所以,得,所以c>2﹣t对t∈(0,+∞),a∈(0,3)恒成立.因为0<a<3,所以2≥2•=3(当且仅当a=时取等号),又﹣t<0,所以2﹣t的取值范围是(﹣∞,3),所以c≥3.故c的最小值为3.(3)当a=1时,因为函数f(x)与g(x)的图象交于A,B两点,所以,两式相减,得b=x1x2(1﹣),要证明x1x2﹣x2<b<x1x2﹣x1,即证x1x2﹣x2<x1x2(1﹣)<x1x2﹣x1,即证<<,即证1﹣<ln<﹣1令=t,则t>1,此时即证1﹣<lnt<t﹣1.令φ(t)=lnt+﹣1,所以φ′(t)=﹣=>0,所以当t>1时,函数φ(t)单调递增.又φ(1)=0,所以φ(t)=lnt+﹣1>0,即1﹣<lnt成立;再令m(t)=lnt﹣t+1,所以m′(t)=﹣1=<0,所以当t>1时,函数m(t)单调递减,又m(1)=0,所以m(t)=lnt﹣t+1<0,即lnt<t﹣1也成立.综上所述,实数x1,x2满足x1x2﹣x2<b<x1x2﹣x1.[选做题](在21.22.23.24四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)[选修4-1:几何证明选讲]图21.(10分)如图,已知AB为⊙O的直径,直线DE与⊙O相切于点E,AD垂直DE于点D.若DE=4,求切点E到直径AB的距离EF.【试题解答】解:如图,连接AE,OE,因为直线DE与⊙O相切于点E,所以DE⊥OE,又因为AD⊥DE于D,所以AD∥OE,所以∠DAE=∠OEA,①在⊙O中,OE=OA,所以∠OEA=∠OAE,②…(5分)由①②得∠DAE=∠OAE,即∠DAE=∠FAE,又∠ADE=∠AFE,AE=AE,所以△ADE≌△AFE,所以DE=FE,又DE=4,所以FE=4,即E到直径AB的距离为4.…(10分)[选修4-2:矩阵与变换]22.(10分)已知矩阵M=,求圆x2+y2=1在矩阵M的变换下所得的曲线方程.【试题解答】解:设P(x0,y0)是圆x2+y2=1上任意一点,则=1,设点P(x0,y0)在矩阵M对应的变换下所得的点为Q(x,y),则=,即,解得,…(5分)代入=1,得=1,∴圆x2+y2=1在矩阵M的变换下所得的曲线方程为=1.…(10分)[选修4-4:坐标系与参数方程]23.在极坐标系中,直线ρcos(θ+)=1与曲线ρ=r(r>0)相切,求r的值.【试题解答】解:直线ρcos(θ+)=1,转化为:,曲线ρ=r(r>0)转化为:x2+y2=r2,由于直线和圆相切,则:圆心到直线的距离d=.所以r=1.[选修4-5:不等式选讲]24.已知实数x,y满足x2+3y2=1,求当x+y取最大值时x的值.【试题解答】解:由柯西不等式,得[x2+()2][12+()2]≥(x•1+)2,即≥(x+y)2.而x2+3y2=1,所以(x+y)2,所以﹣,…(5分)由,得,所以当且仅当x=,y=时,(x+y)max=.所以当x+y取最大值时x值为.…(10分)25.(10分)如图,四棱锥P﹣ABCD的底面ABCD是菱形,AC与BD交于点O,OP⊥底面ABCD,点M为PC中点,AC=4,BD=2,OP=4.(1)求直线AP与BM所成角的余弦值;(2)求平面ABM与平面PAC所成锐二面角的余弦值.【试题解答】解:(1)因为ABCD是菱形,所以AC⊥BD.又OP⊥底面ABCD,以O为原点,直线OA,OB,OP分别为x轴,y轴,z轴,建立如图所示空间直角坐标系.则A(2,0,0),B(0,1,0),P(0,0,4),C(﹣2,0,0),M(﹣1,0,2).=(﹣2,0,4),=(01,﹣1,2),cos<,>===.故直线AP与BM所成角的余弦值为.…(5分)(2)=(﹣2,1,0),=(﹣1,﹣1,2).设平面ABM的一个法向量为=(x,y,z),则,令x=2,得=(2,4,3).又平面PAC的一个法向量为=(0,1,0),∴cos<>===.故平面ABM与平面PAC所成锐二面角的余弦值为.…(10分)26.(10分)已知n∈N*,nf(n)=C n0C n1+2C n1C n2+…+nC n n﹣1C n n.(1)求f(1),f(2),f(3)的值;(2)试猜想f(n)的表达式(用一个组合数表示),并证明你的猜想.【试题解答】解:(1)由条件,nf(n)=C C C C①,在①中令n=1,得f(1)=1.在①中令n=2,得2f(2)=6,得f(2)=3.在①中令n=3,得3f(3)=30,故f(3)=10.(2)猜想f(n)=.要证猜想成立,只要证等式n=•+2•+…+n•成立.由(1+x)n=+x+x2+…+x n①,两边同时对x求导数,可得n(1+x)n﹣1=+2x+3x2+n x n﹣1②,把等式①和②相乘,可得n(1+x)2n﹣1=(+x+x2+…+x n)•(+2x+3x2+n x n﹣1 ) ③.等式左边x n的系数为n,等式右边x n的系数为•+•2+•3+…+n•n=•+2•+3•+…+n•=C C C C,根据等式③恒成立,可得n=C C C C.故f(n)=成立.。
2018年江苏省盐城市、南京市高考数学一模试卷一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.(5分)已知集合A={x|x(x﹣4)<0},B={0,1,5},则A∩B=.2.(5分)设复数z=a+i(a∈R,i为虚数单位),若(1+i)•z为纯虚数,则a的值为.3.(5分)为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为.4.(5分)执行如图所示的伪代码,若x=0,则输出的y的值为.5.(5分)口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为.6.(5分)若抛物线y2=2px的焦点与双曲线的右焦点重合,则实数p的值为.7.(5分)设函数y=e x﹣a的值域为A,若A⊆[0,+∞),则实数a的取值范围是.8.(5分)已知锐角α,β满足(tanα﹣1)(tanβ﹣1)=2,则α+β的值为.9.(5分)若函数y=sinωx在区间[0,2π]上单调递增,则实数ω的取值范围是.10.(5分)设S n为等差数列{a n}的前n项和,若{a n}的前2017项中的奇数项和为2018,则S2017的值为.11.(5分)设函数f(x)是偶函数,当x≥0时,f(x)=,,>,若函数y=f(x)﹣m 有四个不同的零点,则实数m的取值范围是.12.(5分)在平面直角坐标系xOy中,若直线y=k(x﹣3)上存在一点P,圆x2+(y﹣1)2=1上存在一点Q,满足=3,则实数k的最小值为.13.(5分)如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A,B,C,D四点均位于图中的“晶格点”处,且A,B的位置所图所示,则的最大值为.14.(5分)若不等式ksin2B+sinAsinC>19sinBsinC对任意△ABC都成立,则实数k的最小值为.二、解答题(共6小题,满分90分)15.(14分)如图所示,在直三棱柱ABC﹣A1B1C1中,CA=CB,点M,N分别是AB,A1B1的中点.(1)求证:BN∥平面A1MC;(2)若A1M⊥AB1,求证:AB1⊥A1C.16.(14分)在△ABC中,角A,B,C的对边分别为a,b,c 已知c=.(1)若C=2B,求cosB的值;(2)若=,求cos(B)的值.17.(14分)有一矩形硬纸板材料(厚度忽略不计),一边AB长为6分米,另一边足够长.现从中截取矩形ABCD(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF是以O为圆心、∠EOF=120°的扇形,且弧,分别与边BC,AD相切于点M,N.(1)当BE长为1分米时,求折卷成的包装盒的容积;(2)当BE的长是多少分米时,折卷成的包装盒的容积最大?18.(16分)如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点.当点N运动到点(,)处时,点Q的坐标为(,).(1)求椭圆C的标准方程;(2)设直线MN交y轴于点D,当点M,N均在y轴右侧,且=2时,求直线BM的方程.19.(16分)设数列{a n}满足a=a n+1a n﹣1+λ(a2﹣a1)2,其中n≥2,且n∈N,λ为常数.(1)若{a n}是等差数列,且公差d≠0,求λ的值;(2)若a1=1,a2=2,a3=4,且存在r∈[3,7],使得m•a n≥n﹣r对任意的n∈N*都成立,求m的最小值;(3)若λ≠0,且数列{a n}不是常数列,如果存在正整数T,使得a n=a n对任意的n∈N*均成+T立.求所有满足条件的数列{a n}中T的最小值.20.(16分)设函数f(x)=lnx,g(x)=ax+(a,b,c∈R).(1)当c=0时,若函数f(x)与g(x)的图象在x=1处有相同的切线,求a,b的值;(2)当b=3﹣a时,若对任意x0∈(1,+∞)和任意a∈(0,3),总存在不相等的正实数x1,x2,使得g(x1)=g(x2)=f(x0),求c的最小值;(3)当a=1时,设函数y=f(x)与y=g(x)的图象交于A(x1,y1),B(x2,y2)(x1<x2)两点.求证:x1x2﹣x2<b<x1x2﹣x1.[选做题](在21.22.23.24四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)[选修4-1:几何证明选讲]图21.(10分)如图,已知AB为⊙O的直径,直线DE与⊙O相切于点E,AD垂直DE于点D.若DE=4,求切点E到直径AB的距离EF.[选修4-2:矩阵与变换]22.(10分)已知矩阵M=,求圆x2+y2=1在矩阵M的变换下所得的曲线方程.[选修4-4:坐标系与参数方程]23.在极坐标系中,直线ρcos(θ+)=1与曲线ρ=r(r>0)相切,求r的值.[选修4-5:不等式选讲]24.已知实数x,y满足x2+3y2=1,求当x+y取最大值时x的值.25.(10分)如图,四棱锥P﹣ABCD的底面ABCD是菱形,AC与BD交于点O,OP⊥底面ABCD,点M为PC中点,AC=4,BD=2,OP=4.(1)求直线AP与BM所成角的余弦值;(2)求平面ABM与平面PAC所成锐二面角的余弦值.26.(10分)已知n∈N*,nf(n)=C n0C n1+2C n1C n2+…+nC n n﹣1C n n.(1)求f(1),f(2),f(3)的值;(2)试猜想f(n)的表达式(用一个组合数表示),并证明你的猜想.2018年江苏省盐城市、南京市高考数学一模试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.(5分)已知集合A={x|x(x﹣4)<0},B={0,1,5},则A∩B={1} .【分析】先分别求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|x(x﹣4)<0}={x|0<x<4},B={0,1,5},∴A∩B={1}.故答案为:{1}.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(5分)设复数z=a+i(a∈R,i为虚数单位),若(1+i)•z为纯虚数,则a的值为1.【分析】把z代入(1+i)•z,利用复数代数形式的乘法运算化简,再由(1+i)•z的实部为0且虚部不为0求得a值即可.【解答】解:∵z=a+i,∴(1+i)•z=(1+i)(a+i)=a﹣1+(a+1)i,又(1+i)•z为为纯虚数,∴a﹣1=0即a=1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.(5分)为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为1200.【分析】由频率分布直方图求出该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的频率,由此能估计该县小学六年级4000名学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数.【解答】解:由频率分布直方图得:该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的频率为:1﹣(0.005+0.035+0.020+0.010)×10=0.3,∴估计该县小学六年级4000名学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为:4000×0.3=1200.故答案为:1200.【点评】本题考查该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数的求法,考查频率分布直方图等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(5分)执行如图所示的伪代码,若x=0,则输出的y的值为1.【分析】根据题意得出执行程序后输出函数y,由此求出结果.【解答】解:根据题意知,执行程序后,输出函数y=,>,,当x=0时,y=e0=1.故答案为:1.【点评】本题考查了程序语言的应用问题,是基础题.5.(5分)口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为.【分析】从袋中一次随机摸出2个球,基本事件总数n==6,利用列举法求出摸出的2个球的编号之和大于4包含的基本事件个数,由此能求出摸出的2个球的编号之和大于4的概率.【解答】解:口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,从袋中一次随机摸出2个球,基本事件总数n==6,摸出的2个球的编号之和大于4包含的基本事件有:(1,4),(2,3),(2,4),(3,4),共4个,∴摸出的2个球的编号之和大于4的概率为p=.故答案为:.【点评】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.(5分)若抛物线y2=2px的焦点与双曲线的右焦点重合,则实数p的值为6.【分析】根据双曲线的方程,可得c=3,从而得到双曲线的右焦点为F(3,0),再根据抛物线的简单几何性质,可得=3,解之即可得到实数p的值.【解答】解:∵双曲线的方程,∴a2=4,b2=5,可得c==3,因此双曲线的右焦点为F(3,0),∵抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,∴=3,解之得p=6.故答案为:6.【点评】本题给出抛物线以原点为顶点,双曲线的右焦点为焦点,求抛物线方程,着重考查了双曲线、抛物线的标准方程与简单几何性质等知识,属于基础题.7.(5分)设函数y=e x﹣a的值域为A,若A⊆[0,+∞),则实数a的取值范围是(﹣∞,2] .【分析】利用基本不等式的性质即可求解.【解答】解:函数y=e x﹣a的值域为A∵e x=2,∴值域为A=[2﹣a,+∞).又∵A⊆[0,+∞),∴2﹣a≥0,即a≤2.故答案为:(﹣∞,2].【点评】本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.8.(5分)已知锐角α,β满足(tanα﹣1)(tanβ﹣1)=2,则α+β的值为.【分析】由已知化简可得tanα+tanβ+1=tanαtanβ,代入两角和的正切公式,可以求出α+β的正切值,根据α、β为锐角,我们易得α+β的值.【解答】解:∵(tanα﹣1)(tanβ﹣1)=2,可得:tanα+tanβ+1=tanαtanβ,∴tan(α+β)=═﹣1,∵锐角α,β,可得:α+β∈(0,π),∴α+β=.故答案为:.【点评】本题考查的知识点是两角和的正切函数,其中根据α、β为锐角,确定α+β的范围是解答本题的关键,属于基础题.9.(5分)若函数y=sinωx在区间[0,2π]上单调递增,则实数ω的取值范围是(0,] .【分析】由函数y=sinωx,图象过原点,可得ω>0,,可得实数ω的取值范围【解答】解:由函数y=sinωx,图象过原点,若ω<0,图象在x轴下方单调递减,∴ω>0,因为y=Sinωx在[0,2π]单调递增,说明其至少在[0,2π]单调递增,则其周期至少8π,∴,即.故答案为:(0,]【点评】本题主要考查三角函数的图象和性质,单调性的问题.属于基础题.10.(5分)设S n为等差数列{a n}的前n项和,若{a n}的前2017项中的奇数项和为2018,则S2017的值为4034.【分析】考查等差数列的求和公式S n═(a1+a n),先利用S奇=a1+a3+a5+…+a2017=1009×(a1+a2017)×=2018,得出得出a1+a2017═4.再求S2017=(a1+a2017)=2017×2=4034即可.【解答】解:因为S n为等差数列{a n}的前n项和,且{a n}的前2017项中的奇数项和为2018,所以S奇=a1+a3+a5+…+a2017=1009×(a1+a2017)×=2018,得a1+a2017═4.则S2017=(a1+a2017)=2017×2=4034故答案为:4034.【点评】本题考查等差列求和公式及运算,属于中档题.11.(5分)设函数f(x)是偶函数,当x≥0时,f(x)=,,>,若函数y=f(x)﹣m 有四个不同的零点,则实数m的取值范围是[1,).【分析】画出函数y=f(x)与y=m的图象,由图象可得m的取值范围.【解答】解:由0≤x≤3可得f(x)∈[0,],x>3时,f(x)∈(0,1).画出函数y=f(x)与y=m的图象,如图所示,∵函数y=f(x)﹣m有四个不同的零点,∴函数y=f (x )与y=m 的图象有4个交点,由图象可得m 的取值范围为[1,),故答案为:[1,).【点评】本题考查了函数的奇偶性的应用,以及零点的判断及分段函数的应用,考查数形结合思想方法,属于中档题.12.(5分)在平面直角坐标系xOy 中,若直线y=k (x ﹣3 )上存在一点P ,圆x 2+(y ﹣1)2=1上存在一点Q ,满足 =3,则实数k 的最小值为 ﹣ .【分析】设P 、Q 的坐标,代入直线与圆的方程,由=3得出坐标关系, 再由直线与圆的关系求出k 的取值范围,从而求出实数k 的最小值. 【解答】解:【解法一】设P (x 1,y 1),Q (x 2,y 2); 则y 1=k (x 1﹣3 )①, +(y 2﹣1)2=1②; 由=3,得,即, 代入②得 +=9;此方程表示的圆心(0,3)到直线kx ﹣y ﹣3 k=0的距离为d ≤r ;即≤3,解得﹣ ≤k ≤0.∴实数k 的最小值为﹣ .【解法二】设P(x,y),Q(x0,y0);则+(y0﹣1)2=1①;由=3,得,即,代入①化简得x2+(y﹣3)2=9;∴点P的轨迹是圆心为(0,3),半径为3的圆的方程,又点P在直线kx﹣y﹣3k=0上,如图所示;则直线与该圆有公共点,即圆心到直线的距离为d≤r;∴≤3,解得﹣≤k≤0;∴实数k的最小值为﹣.故答案为:﹣.【点评】本题考查了平面向量的共线定理,也考查了直线与圆的应用问题,是中档题.13.(5分)如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A,B,C,D四点均位于图中的“晶格点”处,且A,B的位置所图所示,则的最大值为24.【分析】根据条件建立平面直角坐标系,求出对应点的坐标,利用向量数量积的坐标公式分别进行计算,然后进行比较即可.【解答】解:建立如图的直角坐标系,则A(,),B(0,0),那么容易得到C(0,5)时,D的位置可以有三个位置,其中D1(﹣,),D2(﹣,0),D3(﹣,),此时=(﹣,﹣),=(﹣,﹣),=(﹣,﹣5),=(﹣,﹣),则•=21,•=24,•=22.5,则的最大值为24,故答案为:24.【点评】本题主要考查向量数量积的计算问题,利用直角坐标系,求出对应向量数量积的值,进而求出最值是解决本题的关键.综合性较强,有一定的难度.14.(5分)若不等式ksin2B+sinAsinC>19sinBsinC对任意△ABC都成立,则实数k的最小值为100.【分析】由已知及正弦定理可得k>,利用三角形的性质可求:﹣a<b﹣c,从而可得<19+()=100﹣(﹣10)2,结合题意利用二次函数的性质可求实数k的最小值.【解答】解:∵ksin2B+sinAsinC>19sinBsinC,由正弦定理可得:kb2+ac>19bc,∴k>,又∵c﹣b<a<b+c,∴﹣b﹣c<﹣a<b﹣c,∴<19+()=20﹣()2=100﹣(﹣10)2,当=10时,20﹣()2取得最大值20×10﹣102=100.∴k≥100,即实数k的最小值为100.故答案为:100【点评】本题主要考查了正弦定理,二次函数的性质在解三角形中的应用,考查了函数思想和转化思想的应用,属于中档题.二、解答题(共6小题,满分90分)15.(14分)如图所示,在直三棱柱ABC﹣A1B1C1中,CA=CB,点M,N分别是AB,A1B1的中点.(1)求证:BN∥平面A1MC;(2)若A1M⊥AB1,求证:AB1⊥A1C.【分析】(1)欲证明BN∥平面A1MC,只需推知A1M∥BN;(2)根据直三棱柱的特征和线面垂直的判定与性质来证明线线垂直.【解答】证明:(1)因为ABC﹣A1B1C1是直三棱柱,所以AB∥A1B1,且AB=A1B1,又点M,N分别是AB、A1B1的中点,所以MB=A1N,且MB∥A1N.所以四边形A1NBM是平行四边形,从而A1M∥BN.又BN⊄平面A1MC,A1M⊂平面A1MC,所以BN∥平面A1MC;(2)因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥底面ABC,而AA1⊂侧面ABB1A1,所以侧面ABB1A1⊥底面ABC.又CA=CB,且M是AB的中点,所以CM⊥AB.则由侧面ABB1A1⊥底面ABC,侧面ABB1A1∩底面ABC=AB,CM⊥AB,且CM⊂底面ABC,得CM⊥侧面ABB1A1.又AB1⊂侧面ABB1A1,所以AB1⊥CM.又AB1⊥A1M,A1M、MC平面A1MC,且A1M∩MC=M,所以AB1⊥平面A1MC.又A1C⊂平面A1MC,所以AB⊥A1C.【点评】本题考查的知识点是直线与平面垂直的性质,直线与平面平行的判定,其中熟练掌握空间直线与平面间垂直、平行的判定、性质、定义是解答本题的关键.16.(14分)在△ABC中,角A,B,C的对边分别为a,b,c 已知c=.(1)若C=2B,求cosB的值;(2)若=,求cos(B)的值.【分析】(1)由正弦定理,得sinC=sinB.又C=2B,即2sinBcosB=sinB.cosB=.(2)由=,可得cbcosA=bacosC,b2+c2﹣a2=b2+a2﹣c2,得a=c,求得从而cosB,sinB即可.【解答】解:(1)因为c=,则由正弦定理,得sinC=sinB.…(2分)又C=2B,所以sin2B=sinB,即2sinBcosB=sinB.…(4分)又B是△ABC的内角,所以sinB>0,故cosB=.…(6分)(2)因为=,所以cbcosA=bacosC,则由余弦定理,得b2+c2﹣a2=b2+a2﹣c2,得a=c.…(10分)从而cosB==,…(12分)又0<B<π,所以sinB==.从而cos(B+)=cosBcos﹣sinBsin=.…(14分)【点评】本题主要考查了正弦定理,余弦定理,向量数量积及三角函数恒等变换的应用,属于中档题,17.(14分)有一矩形硬纸板材料(厚度忽略不计),一边AB长为6分米,另一边足够长.现从中截取矩形ABCD(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF是以O为圆心、∠EOF=120°的扇形,且弧,分别与边BC,AD相切于点M,N.(1)当BE长为1分米时,求折卷成的包装盒的容积;(2)当BE的长是多少分米时,折卷成的包装盒的容积最大?【分析】(1)结合图形可得S=S扇形OEF ﹣S△OEF,再根据体积公式计算即可,(2)借助(1)可得V=(﹣2)(﹣x3+3x2),其中0<x<3.令f(x)=﹣x3+3x2,0<x <3,利用导数求出函数的最值.【解答】解:(1)在图甲中,连接MO交EF于点T.设OE=OF=OM=R,在Rt△OET中,因为∠EOT=∠EOF=60°,所以OT=,则MT=0M﹣OT=.从而BE=MT=,即R=2BE=2.故所得柱体的底面积S=S扇形OEF ﹣S△OEF=πR2﹣R2sin120°=﹣,又所得柱体的高EG=4,所以V=S×EG=﹣4.答:当BE长为1(分米)时,折卷成的包装盒的容积为﹣4立方分米.(2)设BE=x,则R=2x,所以所得柱体的底面积S=S扇形OEF﹣S△OEF=πR2﹣R2sin120°=(﹣)x2,又所得柱体的高EG=6﹣2x,所以V=S×EG=(﹣2)(﹣x3+3x2),其中0<x<3.令f(x)=﹣x3+3x2,0<x<3,则由f′(x)=﹣3x2+6x=﹣3x(x﹣2)=0,解得x=2.列表如下:所以当x=2时,f(x)取得最大值.答:当BE的长为2分米时,折卷成的包装盒的容积最大.【点评】本题考查了体积公式,面积公式,以及利用导数解决实际问题,考查了分析问题,解决问题的能力,属于中档题18.(16分)如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点.当点N运动到点(,)处时,点Q的坐标为(,).(1)求椭圆C的标准方程;(2)设直线MN交y轴于点D,当点M,N均在y轴右侧,且=2时,求直线BM的方程.【分析】(1)先求出直线NQ的方程,可得B的坐标,以及N点的坐标,即可求出a的值,由此能求出椭圆的方程.(2)设直线BM的斜率为k(k>0),则直线BM的方程为y=x﹣,分别求出点P,Q的横坐标,根据斜率公式可得k BN=k BQ=2k,再联立方程组,求出点M,N的横坐标,根据=2,即可求出k的值【解答】解:(1)由N(,),点Q的坐标为(,),得直线NQ的方程为y=x﹣,令x=0,得点B的坐标为(0,﹣).所以椭圆的方程为+=1.将点N的坐标(,)代入,得+=1,解得a2=4.所以椭圆C的标准方程为+=1.(2):设直线BM的斜率为k(k>0),则直线BM的方程为y=x﹣.在y=kx﹣中,令y=0,得x P=,而点Q是线段OP的中点,所以x Q=.所以直线BN的斜率k BN=k BQ==2k.联立,消去y,得(3+4k2)x2﹣8kx=0,解得x M=.用2k代k,得x N=.又=2,所以x N=2(x M﹣x N),得2x M=3x N,故2×==3×,又k>0,解得k=.所以直线BM的方程为y=x﹣【点评】本题考查椭圆方程、直线方程,考查椭圆、直线方程等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查数形结合思想、函数与方程思想,是中档题.19.(16分)设数列{a n}满足a=a n+1a n﹣1+λ(a2﹣a1)2,其中n≥2,且n∈N,λ为常数.(1)若{a n}是等差数列,且公差d≠0,求λ的值;(2)若a1=1,a2=2,a3=4,且存在r∈[3,7],使得m•a n≥n﹣r对任意的n∈N*都成立,求m的最小值;=a n对任意的n∈N*均成(3)若λ≠0,且数列{a n}不是常数列,如果存在正整数T,使得a n+T立.求所有满足条件的数列{a n}中T的最小值.【分析】(1)由等差数列的通项公式,化简可得(λ﹣1)d2=0,又d≠0,可得所求值;(2)求得λ=0,数列{a n}是首项为1,公比q=2的等比数列,运用等比数列的通项公式,可得存在r∈[3,7],使得m•2n﹣1≥n﹣r,即r≥n﹣m•2n﹣1对任意n∈N*都成立,由参数分离可得m的最小值;(3)由题意可得T≥2,讨论T=2,T=3,根据条件,推理得到结论.【解答】解:(1)由题意,可得a=(a n+d)(a n﹣d)+λd2,化简得(λ﹣1)d2=0,又d≠0,所以λ=1.(2)将a1=1,a2=2,a3=4,代入条件,可得4=1×4+λ,解得λ=0,所以a=a n+1a n﹣1,所以数列{a n}是首项为1,公比q=2的等比数列,所以a n=2n﹣1.欲存在r∈[3,7],使得m•2n﹣1≥n﹣r,即r≥n﹣m•2n﹣1对任意n∈N*都成立,则7≥n﹣m•2n﹣1,所以m≥对任意n∈N*都成立.令b n=,则b n+1﹣b n=﹣=,所以当n>8时,b n+1<b n;当n=8时,b9=b8;当n<8时,b n+1>b n.所以b n的最大值为b9=b8=,所以m的最小值为;(3)因为数列{a n}不是常数列,所以T≥2,①若T=2,则a n+2=a n恒成立,从而a3=a1,a4=a2,所以,所以λ(a2﹣a1)2=0,又λ≠0,所以a2=a1,可得{a n}是常数列,矛盾.所以T=2不合题意.②若T=3,取a n=,,,(*),满足a n+3=a n恒成立.由a22=a1a3+λ(a2﹣a1)2,得λ=7.则条件式变为a n2=a n+1a n﹣1+7.由22=1×(﹣3)+7,知a3k﹣12=a3k﹣2a3k+λ(a2﹣a1)2;由(﹣3)2=2×1+7,知a3k2=a3k﹣1a3k+1+λ(a2﹣a1)2;由12=2×(﹣3)+7,知a3k+12=a3k a3k+2+λ(a2﹣a1)2;所以,数列(*)适合题意.所以T的最小值为3.【点评】本题考查等差数列和等比数列的定义和通项公式的运用,以及数列不等式恒成立问题和周期数列的判断和证明,考查化简整理的运算能力,属于中档题.20.(16分)设函数f(x)=lnx,g(x)=ax+(a,b,c∈R).(1)当c=0时,若函数f(x)与g(x)的图象在x=1处有相同的切线,求a,b的值;(2)当b=3﹣a时,若对任意x0∈(1,+∞)和任意a∈(0,3),总存在不相等的正实数x1,x2,使得g(x1)=g(x2)=f(x0),求c的最小值;(3)当a=1时,设函数y=f(x)与y=g(x)的图象交于A(x1,y1),B(x2,y2)(x1<x2)两点.求证:x1x2﹣x2<b<x1x2﹣x1.【分析】(1)求得f(x),g(x)的导数,可得切线的斜率和切点,由题意可得a,b的方程,解方程即可得到所求;(2)当x0>1时,则f(x0)>0,又b=3﹣a,设t=f(x0),则题意可转化为方程ax+﹣c=t (t>0)在(0,+∞)上有相异两实根x1,x2.即关于x的方程ax2﹣(c+t)x+(3﹣a)=0(t>0)在(0,+∞)上有相异两实根x1,x2.运用二次方程实根分布,结合韦达定理可得c的不等式,运用基本不等式,可得c的范围和最小值;(3)得b=x1x2(1﹣),要证明x1x2﹣x2<b<x1x2﹣x1,即证x1x2﹣x2<x1x2(1﹣)<x1x2﹣x1,即证<<,即证1﹣<ln<﹣1令=t,则t >1,此时即证1﹣<lnt<t﹣1.令φ(t)=lnt+﹣1,求得导数和单调区间,结合m(t)=lnt ﹣t+1的单调性,即可得证.【解答】解:(1)由f(x)=lnx,得f(1)=0,又f′(x)=,所以f′(1)=1,当c=0时,g(x)=ax+,所以g′(x)=a﹣,所以g′(1)=a﹣b,因为函数f(x)与g(x)的图象在x=1处有相同的切线,所以,即,解得a=,b=﹣;(2)当x0>1时,则f(x0)>0,又b=3﹣a,设t=f(x0),则题意可转化为方程ax+﹣c=t(t>0)在(0,+∞)上有相异两实根x1,x2.即关于x的方程ax2﹣(c+t)x+(3﹣a)=0(t>0)在(0,+∞)上有相异两实根x1,x2.所以<<>>>,得<<>>,所以c>2﹣t对t∈(0,+∞),a∈(0,3)恒成立.因为0<a<3,所以2≤2•=3(当且仅当a=时取等号),又﹣t<0,所以2﹣t的取值范围是(﹣∞,3),所以c≥3.故c的最小值为3.(3)当a=1时,因为函数f(x)与g(x)的图象交于A,B两点,所以,两式相减,得b=x1x2(1﹣),要证明x1x2﹣x2<b<x1x2﹣x1,即证x1x2﹣x2<x1x2(1﹣)<x1x2﹣x1,即证<<,即证<ln<,即证1﹣<ln<﹣1,令=t,则t>1,此时即证1﹣<lnt<t﹣1.令φ(t)=lnt+﹣1,所以φ′(t)=﹣=>0,所以当t>1时,函数φ(t)单调递增.又φ(1)=0,所以φ(t)=lnt+﹣1>0,即1﹣<lnt成立;再令m(t)=lnt﹣t+1,所以m′(t)=﹣1=<0,所以当t>1时,函数m(t)单调递减,又m(1)=0,所以m(t)=lnt﹣t+1<0,即lnt<t﹣1也成立.综上所述,实数x1,x2满足x1x2﹣x2<b<x1x2﹣x1.【点评】本题考查导数的运用:求切线的方程和单调区间,考查基本不等式的运用:求最值,以及构造函数法的运用,考查运算能力,属于难题.[选做题](在21.22.23.24四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)[选修4-1:几何证明选讲]图21.(10分)如图,已知AB为⊙O的直径,直线DE与⊙O相切于点E,AD垂直DE于点D.若DE=4,求切点E到直径AB的距离EF.【分析】连接AE,OE,则DE⊥OE,推导出AD∥OE,从而∠DAE=∠OEA,求出∠OEA=∠OAE,从而∠DAE=∠FAE,进而△ADE≌△AFE,由此能求出E到直径AB的距离.【解答】解:如图,连接AE,OE,因为直线DE与⊙O相切于点E,所以DE⊥OE,又因为AD⊥DE于D,所以AD∥OE,所以∠DAE=∠OEA,①在⊙O中,OE=OA,所以∠OEA=∠OAE,②…(5分)由①②得∠DAE=∠OAE,即∠DAE=∠FAE,又∠ADE=∠AFE,AE=AE,所以△ADE≌△AFE,所以DE=FE,又DE=4,所以FE=4,即E到直径AB的距离为4.…(10分)【点评】本题考查切点到直径的距离的求法,考查圆、弦切角定理等基础知识,考查推理论证能力、运算求解能力,是中档题.[选修4-2:矩阵与变换]22.(10分)已知矩阵M=,求圆x2+y2=1在矩阵M的变换下所得的曲线方程.【分析】设P(x0,y0)是圆x2+y2=1上任意一点,则=1,设点P(x0,y0)在矩阵M 对应的变换下所得的点为Q(x,y),推导出,由此能求出圆x2+y2=1在矩阵M的变换下所得的曲线方程.【解答】解:设P(x0,y0)是圆x2+y2=1上任意一点,则=1,设点P(x0,y0)在矩阵M对应的变换下所得的点为Q(x,y),则=,即,解得,…(5分)代入=1,得=1,∴圆x2+y2=1在矩阵M的变换下所得的曲线方程为=1.…(10分)【点评】本题考查曲线方程的求法,考查矩阵变换等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.[选修4-4:坐标系与参数方程]23.在极坐标系中,直线ρcos(θ+)=1与曲线ρ=r(r>0)相切,求r的值.【分析】首先对方程进行转化,进一步利用直线和圆的相切求出r的值.【解答】解:直线ρcos(θ+)=1,转化为:,曲线ρ=r(r>0)转化为:x2+y2=r2,由于直线和圆相切,则:圆心到直线的距离d=.所以r=1.【点评】本题考查的知识要点:极坐标和直角坐标的转化,圆与直线的位置关系的应用.[选修4-5:不等式选讲]24.已知实数x,y满足x2+3y2=1,求当x+y取最大值时x的值.【分析】由柯西不等式,得[x2+()2][12+()2]≥(x•1+)2,即≥(x+y)2.即可求解.【解答】解:由柯西不等式,得[x2+()2][12+()2]≥(x•1+)2,即≥(x+y)2.而x2+3y2=1,所以(x+y)2,所以﹣,…(5分)由,得,所以当且仅当x=,y=时,(x+y)max=.所以当x+y取最大值时x值为.…(10分)【点评】本题考查了柯西不等式得应用,属于中档题.25.(10分)如图,四棱锥P﹣ABCD的底面ABCD是菱形,AC与BD交于点O,OP⊥底面ABCD,点M为PC中点,AC=4,BD=2,OP=4.(1)求直线AP与BM所成角的余弦值;(2)求平面ABM与平面PAC所成锐二面角的余弦值.【分析】(1)以O为原点,直线OA,OB,OP分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出直线AP与BM所成角的余弦值.(2)求出平面ABM的一个法向量和平面PAC的一个法向量,利用向量法能求出平面ABM与平面PAC所成锐二面角的余弦值.【解答】解:(1)因为ABCD是菱形,所以AC⊥BD.又OP⊥底面ABCD,以O为原点,直线OA,OB,OP分别为x轴,y轴,z轴,建立如图所示空间直角坐标系.则A(2,0,0),B(0,1,0),P(0,0,4),C(﹣2,0,0),M(﹣1,0,2).=(﹣2,0,4),=(01,﹣1,2),cos<,>===.故直线AP与BM所成角的余弦值为.…(5分)(2)=(﹣2,1,0),=(﹣1,﹣1,2).设平面ABM的一个法向量为=(x,y,z),则,令x=2,得=(2,4,3).又平面PAC的一个法向量为=(0,1,0),∴cos<,>===.故平面ABM与平面PAC所成锐二面角的余弦值为.…(10分)【点评】本题考查异面直线所成角的余弦值的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.26.(10分)已知n∈N*,nf(n)=C n0C n1+2C n1C n2+…+nC n n﹣1C n n.(1)求f(1),f(2),f(3)的值;(2)试猜想f(n)的表达式(用一个组合数表示),并证明你的猜想.【分析】(1)在条件中,分别令n取1,2,3,求得f(1),f(2),f(3)的值.(2)猜想f(n)=.要证猜想成立,只要证等式n=•+2•+…+n•成立.由(1+x)n=+x+x2+…+x n①,两边同时对x求导数,可得n(1+x)n﹣1=+2x+3x2+n x n﹣1②,把①、②相乘,根据等式左右两边x n的系数相等,可得结论.【解答】解:(1)由条件,nf(n)=C C C C①,在①中令n=1,得f(1)=1.在①中令n=2,得2f(2)=6,得f(2)=3.在①中令n=3,得3f(3)=30,故f(3)=10.(2)猜想f(n)=.要证猜想成立,只要证等式n=•+2•+…+n•成立.由(1+x)n=+x+x2+…+x n①,两边同时对x求导数,可得n(1+x)n﹣1=+2x+3x2+n x n﹣1②,把等式①和②相乘,可得n(1+x)2n﹣1=(+x+x2+…+x n)•(+2x+3x2+n x n﹣1)③.等式左边x n的系数为n,等式右边x n的系数为•+•2+•3+…+n•n =•+2•+3•+…+n•=C C C C,根据等式③恒成立,可得n=C C C C.故f(n)=成立.【点评】本题主要考查二项式定理的应用,用猜证法证明恒等式,求函数的导数,属于难题.。
南京市、盐城市2018届高三年级第一次模拟考试 数 学 2018.01注意事项: 1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、考试号写在答题卡内.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:柱体体积公式:V =Sh ,其中S 柱体的底面积,h 为柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡上的相应位置上.1.已知集合A ={x ∣x (x -4)<0},B ={0,1,5},则A ∩B = ▲ . 2.设复数z =a +i(a ∈R ,i 为虚数单位),若(1+i)⋅z 为纯虚数,则a 的值为 ▲ . 3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80) (单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若x =0,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4.若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.在平面直角坐标系xOy 中,若抛物线y 2=2px 的焦点与双曲线x 24-y 25=1的右焦点重合,则实数p 的值为 ▲ .7.设函数y =e x +1ex -a 的值域为A ,若A ⊆[0,+∞),则实数a 的取值范围是 ▲ .8.已知α,β均为锐角,且满足(tan α-1)(tan β-1)=2,则α+β的值为 ▲ . 9.若函数y =sin ωx 在区间[0,2π]上单调递增,则实数ω的取值范围是 ▲ . 10.设S n 为等差数列{a n }的前n 项和,若{a n }的前2017项中的奇数项和为2018,则S 2017的值为 ▲ .(第4题)/分钟(第3题)0.0050.0100.020a 0.03511.设函数f (x )是偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧x (3-x ),0≤x ≤3,-3x+1,x >3.若函数y =f (x )-m 有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy 中,若直线y =k (x -33)上存在一点P ,圆x 2+(y -1)2=1上存在一点Q ,满足→OP =3→OQ ,则实数k 的最小值为 ▲ . 13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A ,B ,C ,D 四点均位于图中的“晶格点”处,且A ,B 的位置如图所示,则→AB ⋅→CD 的最大值为 ▲ .14.若不等式k sin 2B +sin A sin C >19sin B sin C 对任意△ABC 都成立,则实数k 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分. 请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 15.(本小题满分14分)如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB ,点M ,N 分别是AB ,A 1B 1的中点. (1)求证:BN ∥平面A 1MC ;(2)若A 1M ⊥AB 1,求证:AB 1⊥A 1C .16.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且c =52b .(1)若C =2B ,求cos B 的值;(2)若→AB ⋅→AC =→CA ⋅→CB ,求cos(B +π4)的值.A (第13题) A BC A 1 B 1C 1 M N (第15题)有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、∠EOF =120︒的扇形,且弧⌒EF ,⌒GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的下顶点为B ,点M .N是椭圆上异于点B 的动点,直线BM ,BN 分别与x 轴交于点P ,Q ,且点Q 是线段OP的中点.当点N 运动到点(3,32)处时,点Q 的坐标为(2 33,0).(1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点M ,N 均在y 轴右侧,且→DN =2→NM 时,求直线BM的方程.(第18题)(第17题-甲) F(第17题-乙)设数列{a n}满足a n2=a n+1a n-1+λ(a2-a1)2,其中n≥2,且n∈N,λ为常数.(1)若{a n}是等差数列,且公差d≠0,求λ的值;(2)若a1=1,a2=2,a3=4,且存在r∈[3,7],使得m⋅a n≥n-r对任意的n∈N*都成立,求m的最小值;(3)若λ≠0,且数列{a n}不是常数列,如果存在正整数T,使得a n+T=a n对任意的n∈N*均成立,求满足条件的所有数列{a n}中T的最小值.20.(本小题满分16分)设函数f(x)=ln x,g(x)=ax+bx-c(a,b,c∈R).(1)当c=0时,若函数f(x)与g(x)的图象在x=1处有相同的切线,求a,b的值;(2)当b=3-a时,若对任意x0∈(1,+∞)和任意a∈(0,3),总存在不相等的正实数x1,x2,使得g(x1)=g(x2)=f(x0),求c的最小值;(3)当a=1时,设函数y=f(x)与y=g(x)的图象交于A(x1,y1),B(x2,y2)(x1<x2)两点.求证:x1x2-x2<b<x1x2-x1.南京市、盐城市2018届高三年级第一次模拟考试数学附加题2018.01 注意事项:1.附加题供选修物理考生使用.2.本试卷共40分,考试时间30分钟.2.答题前,考生务必将自己的姓名、学校、考试号写在答题卡内.试题的答案写在答题..卡.上对应题目的答案空格内.考试结束后,交回答题卡. 21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在答题相应的区域内作答.若多做,则按作答的前两小题评分.解答应写出文字说明、证明过程或演算步骤. A .(选修4-1:)A .选修4-1:几何证明选讲(本小题满分10分)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若DE =4,求切点E 到直线AB 的距离.B .选修4-2:矩阵与变换(本小题满分10分)已知矩阵M =⎣⎡⎦⎤2001,求圆x 2+y 2=1在矩阵M 对应的变换作用下所得的曲线方程.C .选修4-4:坐标系与参数方程(本小题满分10分)在极坐标系中,直线ρcos(θ+π3)=1与曲线ρ=r (r >0)相切,求r 的值.D .选修4-5:不等式选讲(本小题满分10分)已知实数x ,y 满足x 2+3y 2=1,求当x +y 取最大值时x 的值.【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域内.......作答,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)如图,四棱锥P -ABCD 的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,AC =4,BD =2,OP =4. (1)求异面直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面P AC 所成锐二面角的余弦值.AB ED O · (第21(A))23.(本小题满分10分)已知n ∈N *,nf (n )=C 0n C 1n +2 C 1n C 2n +…+r C r -1n C rn +…+n C n -1n C nn .(1)求f (1),f (2),f (3)的值;(2)试猜想f (n )的表达式(用一个组合数表示),并证明你的猜想.南京市、盐城市2018届高三年级第一次模拟考试 数学参考答案及评分标准 2018.01说明:MABCDOP(第22题)1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.)1.{1} 2.1 3.1200 4.1 5.236.6 7.(-∞,2] 8.3π4 9.(0,14] 10.4034 11.[1,94) 12.- 3 13.24 14.100 二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.)15.证明:(1)因为ABC -A 1B 1C 1是直三棱柱,所以AB ∥A 1B 1,且AB =A 1B 1.又因为点M ,N 分别是AB ,A 1B 1的中点, 所以MB =A 1N ,且MB ∥A 1N , 所以四边形A 1NBM 是平行四边形,从而A 1M ∥BN .……………………………… 4分 又BN ⊄平面A 1MC ,A 1M ⊂平面A 1MC , 所以BN ∥平面A 1MC . ……………………………………………………………………………6分(2)因为ABC -A 1B 1C 1是直三棱柱, 所以AA 1⊥平面ABC ,而CM ⊂平面ABC , 所以AA 1⊥CM .又CA =CB ,且M 是AB 的中点,所以CM ⊥AB . 又AB ∩AA 1=A ,AB ,AA 1⊂平面ABB 1A 1, 所以CM ⊥平面ABB 1A 1.………………………………………………………………………………8分又AB 1⊂平面ABB 1A 1,所以CM ⊥AB 1.………………………………………………………………10分又AB 1⊥A 1M ,A 1M ,CM ⊂平面A 1MC ,A 1M ∩CM =M , 所以AB 1⊥平面A 1MC ,…………………………………………………………………………………12分又A 1C ⊂平面A 1MC ,所以AB 1⊥A 1C .…………………………………………………………………14分A B C A 1 B 1 C 1 MN(第15题)16.解:(1)因为c =52b ,则由正弦定理,得sin C =52sin B .…………………………………………2分又因为C =2B ,所以sin2B =52sin B ,即2sin B cos B =52sin B . ………………………………………4分又B 是△ABC 的内角,所以sin B >0,故cos B =54. ………………………………………………6分 (2)因为→AB ⋅→AC =→CA ⋅→CB ,所以cb cos A =ba cos C ,则由余弦定理, 得b 2+c 2-a 2=b 2+a 2-c 2,得a =c . …………………………………………………………………10分从而cos B =a 2+c 2-b 22ac = c 2+c 2-(2 5c )22c 2=35.………………………………………………………12分 又0<B <π,所以sin B =1-cos 2B =45.从而cos(B +π4)=cos B cos π4-sin B sin π4=35⨯22-45⨯22=-210. ……………………………………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE =OF =OM =R ,在Rt △OET 中,因为∠EOT =12∠EOF =60︒, 所以OT =12R ,则MT =OM -OT =R 2. 从而BE =MT =12R ,即R =2BE =2.…………………… 2分故所得柱体的底面积S =S 扇形OEF -S △OEF=13πR 2-12R 2sin120︒=4π3-3.………………………… 4分又所得柱体的高EG =4,所以V =S ⨯EG =16π3-43.答:当BE 长为1分米时,折卷成的包装盒的容积为(16π3-43)立方分米. …………………………………………………………………………6分 (2)设BE =x ,则R =2x ,所以所得柱体的底面积S =S 扇形OEF -S △OEF =13πR 2-12R 2sin120︒=(4π3-3)x 2.又所得柱体的高EG =6-2x ,所以V =S ⨯EG =(8π3-23)(-x 3+3x 2) ,其中0<x <3. ……………………………………10分令f (x )=-x 3+3x 2,x ∈(0,3),则由f '(x )=-3x 2+6x =-3x (x -2)=0, 解得x =2. ………………………………………………………………………………………12分答:当BE 的长为2分米时,折卷成的包装盒的容积最大. ……………………………………14分18.解:(1)由N (3,32),Q (2 33,0),得直线NQ 的方程为y =32x -3.……………………2分令x =0,得点B 的坐标为(0,-3).所以椭圆的方程为x 2a 2+y 23=1 .…………………………………………………………………… 4分将点N 的坐标(3,32)代入,得(3)2a 2+(32)23=1,解得a 2=4.所以椭圆C 的标准方程为x 24+y 23=1.…………………………………………………………… 8分(2)方法一:设直线BM 的斜率为k (k >0),则直线BM 的方程为y =kx -3.在y =kx -3中,令y =0,得x P =3k ,而点Q 是线段OP 的中点,所以x Q =32k .所以直线BN 的斜率k BN =k BQ =0-(-3)32k-0=2k .………………………………………………10分联立⎩⎪⎨⎪⎧y =kx -3, x 24+y 23=1,消去y ,得(3+4k 2)x 2-83kx =0,解得x M =8 3k3+4k 2 . 用2k 代k ,得x N =16 3k3+16k 2.……………………………………………………………………12分又→DN =2→NM ,所以x N =2(x M -x N ),得2x M =3x N .…………………………………………… 14分故2⨯8 3k 3+4k 2=3⨯16 3k 3+16k 2,又k >0,解得k =62.所以直线BM 的方程为y =62x -3. …………………………………………………………16分方法二:设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2).由B (0,-3),得直线BM 的方程为y = y 1+3x 1x -3,令y =0,得x P =3x 1y 1+3.同理,得x Q =3x 2y 2+3.而点Q 是线段OP 的中点,所以x P =2x Q ,故3x 1y 1+3=2⨯3x 2y 2+3. …………………………10分又→DN =2→NM ,所以x 2=2(x 1-x 2),得x 2=23x 1>0,从而1y 1+3=43y 2+3,解得y 2=43y 1+33.…………………………………………………………………………………12分 将⎩⎨⎧x 2=23x 1,y 2=43y 1+33,代入到椭圆C 的方程中,得x 129+(4y 1+3)227=1.又x 12=4(1-y 123),所以4(1-y 123)9+(4y 1+3)227=1,………………………………………………14分即3y 12+2y 1-3=0,解得y 1=-3(舍)或y 1=33.又x 1>0,所以点M 的坐标为M (4 23,33).故直线BM 的方程为y =62x -3.……………………………………………………………… 16分 19.解:(1)由题意,可得a n 2=(a n +d )(a n -d )+λd 2,化简得(λ-1)d 2=0,又d ≠0,所以λ=1. …………………………………………………………4分(2)将a 1=1,a 2=2,a 3=4代入条件,可得4=1⨯4+λ,解得λ=0,所以a n 2=a n +1a n -1,所以数列{a n }是首项为1,公比q =2的等比数列,所以a n =2n-1. ………6分欲存在r ∈[3,7],使得m ⋅2n -1≥n -r ,即r ≥n -m ⋅2n -1对任意n ∈N *都成立,则7≥n -m ⋅2n -1,所以m ≥n -72n -1 对任意n ∈N *都成立. …………………………………………8分令b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n2n ,所以当n >8时,b n +1<b n ;当n =8时,b 9=b 8;当n <8时,b n +1>b n .所以b n 的最大值为b 9=b 8=1128 ,所以m 的最小值为1128.………………………………………10分 (3)因为数列{a n }不是常数列,所以T ≥2.①若T =2,则a n +1=a n 恒成立,从而a 3=a 1,a 4=a 2,所以⎩⎨⎧a 22=a 12+λ(a 2-a 1)2,a 12=a 22+λ(a 2-a 1)2,所以λ(a 2-a 1)2=0,又λ≠0,所以a 2=a 1,可得{a n }是常数列,这与已知条件矛盾, 所以T =2不合题意. …………………………………………………………………………………12分②若T =3,取a n =⎩⎪⎨⎪⎧1,n =3k -2,2,n =3k -1,-3,n =3k ,(k ∈N *)(*),满足a n +3=a n 恒成立.……………………14分由a 22=a 1a 3+λ(a 2-a 1)2,可得此时λ=7. 则条件式变为a n 2=a n +1a n -1+7.由22=1⨯3+7,知a 3k -12=a 3k -2a 3k +λ(a 2-a 1)2; 由(-3)2=2⨯1+7,知a 3k 2=a 3k -1a 3k +1+λ(a 2-a 1)2; 由12=(-3)⨯2+7,知a 3k +12=a 3k a 3k +2+λ(a 2-a 1)2; 所以,数列(*)适合题意. 所以T 的最小值为3. …………………………………………………………………………………16分(注:写一个数列{a n }时,需满足a 1+a 2+a 3=0,且a 1≠a 2.)20.解:(1)由f (x )=ln x ,得f (1)=0,又f '(x )=1x,所以f '(1)=1.当c =0时,g (x )=ax +b x ,所以g '(x )=a -bx2 ,所以g '(1)=a -b .……………………………2分因为函数f (x )与g (x )的图象在x =1处有相同的切线,所以⎩⎨⎧f '(1)=g '(1),f (1)=g (1),即⎩⎨⎧a -b =1,a +b =0,解得⎩⎨⎧a =12,b =-12.…………………………………………………4分 (2)方法一:当x 0>1时,则f (x 0)>0,又b =3-a ,设t =f (x 0),则题意可转化为方程ax +3-ax-c =t (t >0) 在(0,+∞)上有相异两实根x 1,x 2, ……………6分即关于x 的方程ax 2-(c +t )x +(3-a )=0(t >0)在(0,+∞)上有相异两实根x 1,x 2.所以⎩⎪⎨⎪⎧0<a <3,△=(c +t )2-4a (3-a )>0,x 1+x 2=c +ta>0,x 1x 2=3-a a>0.得⎩⎪⎨⎪⎧0<a <3,(c +t )2>4a (3-a ),c +t >0.所以c >2a (3-a )-t 对任意t ∈(0,+∞)恒成立.…………………………………………… 8分因为0<a <3,所以2a (3-a )≤2⨯a +3-a 2=3(当且仅当a =32时取等号).又-t <0,所以2a (3-a )-t 的取值范围是(-∞,3),所以c ≥3. 故c 的最小值为3. …………………………………………………………………………………10分方法二:由b =3-a ,且0 <a <3,得g '(x )=a -3-a x 2=ax 2-(3-a )x 2=0,得 x =3-aa或x =-3-aa(舍),则函数g (x )在(0,3-a a )上递减;在(3-aa,+∞)上递增.又对任意x 0>1,f (x 0)为(0,+∞)上的任意一个值,若存在不相等的正实数x 1,x 2, 使得g (x 1)=g (x 2)=f (x 0),则g (x )的最小值小于或等于0.即g (3-aa)=2a (3-a )-c ≤0, ……………………………………………………………6分即c ≥2a (3-a )对任意 a ∈(0,3)恒成立.又2a (3-a )≤a +(3-a )=3,所以c ≥3.…………………………………………………… 8分当c =3,对任意a ∈(0,3),x 0∈(1,+∞),方程g (x )-f (x 0)=0化为ax +3-a x-3-f (x 0)=0,即ax 2-[3+f (x 0)]x +(3-a )=0(*)关于x 的方程(*)的△=[3+f (x 0)]2-4a (3-a )≥[3+f (x 0)]2-4⎝⎛⎭⎫ a +3-a 22=[3+f (x 0)]2-9,因为x 0>1,所以f (x 0)=ln x 0>0,所以△>0,所以方程(*)有两个不相等的实数解x 1,x 2,又x 1+x 2=f (x 0)+3a >0,x 1x 2=3-aa>0,所以x 1,x 2为两个正实数解. 所以c 的最小值为3. ……………………………………………………………………………10分 (3)当a =1时,因为函数f (x )与g (x )的图象交于A ,B 两点,所以⎩⎨⎧ln x 1=x 1+bx 1-c ,ln x 2=x 2+b x 2-c ,两式相减,得b =x 1x 2(1-ln x 2-ln x 1x 2-x1).……………………………… 12分要证明x 1x 2-x 2<b <x 1x 2-x 1,即证x 1x 2-x 2<x 1x 2(1-ln x 2-ln x 1x 2-x 1)<x 1x 2-x 1,即证1x 2<ln x 2-ln x 1x 2-x 1<1x 1,即证1-x 1x 2<ln x 2x 1<x 2x 1-1.……………………………………………14分令x 2x 1=t ,则t >1,此时即证1-1t<ln t <t -1. 令ϕ(x )=ln t +1t -1,所以ϕ'(t )=1t -1t 2=t -1t2>0,所以当t >1时,函数ϕ(t )单调递增.又ϕ(1)=0,所以ϕ(t )=ln t +1t -1>0,即1-1t<ln t 成立.再令m (t )=ln t -t -1,所以m '(t )=1t -1=1-t t<0, 所以当t >1时,函数m (t )单调递减,又m (1)=0,所以m (t )=ln t -t -1<0,即ln t <t -1也成立. 综上所述, 实数x 1,x 2满足x 1x 2-x 2<b <x 1x 2-x 1. …………………………………………16分南京市、盐城市2018届高三年级第一次模拟考试 数学参考答案及评分标准 2018.0121.【选做题】在A 、B 、C 、D 四小题中只能选做2小题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. A .选修4-1:几何证明选讲解:如图,连接AE ,OE ,过E 作EF ⊥AB ,交AB 于F .因为直线DE 与⊙O 相切于点E ,所以DE ⊥OE ,又因为AD 垂直DE 于D ,所以AD ∥OE , 所以∠DAE =∠OEA ①, 在⊙O 中OE =OA ,所以∠OEA =∠OAE ②,…………………………5分 由①②得∠DAE =∠OAE ,即∠DAE =∠F AE , 又∠ADE =∠AFE ,AE =AE , 所以△ADE ≌△AFE ,所以DE =FE , 又DE =4,所以FE =4, 即E 到直径AB 的距离为4. …………………………………………………………………………10分 B .选修4-2:矩阵与变换解:设P (x 0,y 0)是圆x 2+y 2=1上任意一点,则x 02+y 02=1. 设点P (x 0,y 0)在矩阵M 对应的变换作用下所得的点为Q (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎡⎦⎤2001 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤2x 0y 0 ,即⎩⎨⎧x =2x 0,y =y 0,即⎩⎪⎨⎪⎧x 0=12x ,y 0=y ,…………………………………………………………………………………5分 代入x 02+y 02=1,得x 24+y 2=1,即为所求的曲线方程. ……………………………………………10分 C .选修4-4:坐标系与参数方程解:以极点O 为原点,极轴Ox 为x 轴正半轴建立平面直角坐标系,由ρcos(θ+π3)=1 ,得ρ(cos θcos π3-sin θsin π3)=1,得直线的直角坐标方程为x -3y -2=0 .………………………………………………………… 5分曲线ρ=r 的直角坐标方程为圆x 2+y 2=r 2,所以圆心到直线的距离为d =∣1⨯0-3⨯0-2∣12+(-3)2=1.因为直线ρcos(θ+π3)=1与曲线ρ=r (r >0)相切,所以r =d ,即r =1. ……………………………10分 D .选修4-5:不等式选讲解:由柯西不等式,得[x 2+(3y )2][12+(33)2]≥(x ⨯1+3y ⨯33)2,即43(x 2+3y 2)≥(x +y )2 . 而x 2+3y 2=1,所以(x +y )2≤43,所以-233≤x +y ≤23A B E DF O · (第21(A))3,………………………………………… 5分由⎩⎪⎨⎪⎧x 1=3y33,x +y =233,即⎩⎨⎧x =32,y =36,所以当且仅当x =32,y =36时,(x +y )max =23 3 .所以当x +y 取最大值时x 的值为x =32.…………………………………………………………… 10分 【必做题】第22题、第23题,每题10分,共计20分. 22.解:(1)因为ABCD 是菱形,所以AC ⊥BD .因为OP ⊥底面ABCD ,所以以O 为原点,直线OA ,OB ,OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系, 则A (2,0,0),B (0,1,0),P (0,0,4),C (-2,0,0),M (-1,0,2),所以→AP =(-2,0,4),→BM =(-1,-1,2),→AP ⋅ →BM =10,∣→AP ∣=25,∣→BM ∣=6.则cos <→AP ,→BM >=→AP ⋅ →BM ∣→AP ∣∣→BM ∣=102 5⨯ 6=306.故异面直线AP 与BM 所成角的余弦值为306………………5分 (2)→AB =(-2,1,0),→BM =(-1,-1,2). 设平面ABM 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⋅ →AB =0,n ⋅ →BM =0,得⎩⎨⎧-2x +y =0,-x -y +2z =0, 令x =2,得y =4,z =3. 所以平面ABM 的一个法向量为n =(2,4,3).又平面P AC 的一个法向量为→OB =(0,1,0),所以n ⋅→OB =4,∣n ∣=29,∣→OB ∣=1.则cos <n ,→OB >=n ⋅ →OB ∣n ∣∣→OB ∣=4 2929 .故平面ABM 与平面P AC 所成锐二面角的余弦值为4 2929. …………………………………………10分23.解:(1)由条件,n ∈N *,nf (n )=C 0n C 1n +2 C 1n C 2n +…+r C r -1n C rn +…+n Cn -1n C n n①,在①中令n =1,得f (1)=C 01⋅C11=1.…………………………………………………………………… 1分 在①中令n =2,得2f (2)=C 02C 12+ 2 C12C22=6,得f (2)=3.…………………………………………… 2分在①中令n =3,得3f (3)=C 03C 13+2 C 13C 23+3 C 23C 33=30,得f (3)=10. ………………………………3分C(第22题)(2)猜想f (n )=Cn 2n -1(或f (n )=C n -12n -1).………………………………………………………………… 5分欲证猜想成立,只要证等式n C n2n -1=C 0n C 1n +2 C 1n C 2n +…+r C r -1n C rn +…+n C n -1n C nn 成立. 方法一:当n =1时,等式显然成立.当n ≥2时,因为r C rn =r ⨯n !r !(n -r )!=n !(r -1)!(n -r )!=n ⨯(n -1)!(r -1)!(n -r )!=n C r -1n -1,………………………7分故r Cr -1n C r n =(r C r n ) C r -1n =n C r -1n -1C r -1n .故只需证明n C n 2n -1=n C 0 n -1C 0n +n C 1 n -1C 1n +…+n C r -1n -1C r -1n +…+n C n -1n -1C n -1n .即证 C n 2n -1=C 0 n -1C 0n + C 1 n -1C 1n +…+ C r -1n -1C r -1n +…+ C n -1n -1C n -1n .而C r -1n =C n -r +1n ,故即证C n 2n -1=C 0 n -1C n n + C 1 n -1C n -1n +…+ C r -1n -1C n -r +1n +…+ C n -1n -1C 1n ②.由等式(1+x )2n -1=(1+x )n -1(1+x )n 可得,左边x n 的系数为n2n -1.而右边(1+x )n -1(1+x )n =(C 0 n -1+C 1 n -1x +C 2 n -1x 2+…+C n -1n -1x n -1)( C 0n +C 1n x +C 2n x 2+…+C nn x n )所以x n 的系数为C 0n -1C nn + C 1n -1C n -1n +…+ C r -1n -1Cn -r +1n +…+C n -1n -1C 1n .由(1+x )2n -1=(1+x )n -1(1+x )n 恒成立可得②成立.综上,f (n )=C n2n -1成立.……………………………………………………………………………… 10分方法二:构造一个组合模型,一个袋中装有2n -1个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球.现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n -r 个白球)的n 个小球的组合的个数为C rn -1C n -rn ,0≤r ≤n -1,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为 C 0n -1C nn + C 1n -1Cn -1n +…+C r -1n -1Cn -r +1n +…+C n -1n -1C 1n .另一方面,从袋中2n -1个小球中任意摸出n 个小球的组合的个数为C n2n -1.故C n2n -1=C 0n -1C n n + C 1 n -1C n -1n +…+ C r -1n -1C n -r +1n +…+ C n -1n -1C 1n , 余下同方法一. …………………………………………………………………………………………10分方法三:由二项式定理,得(1+x )n =C 0n +C 1n x +C 2n x 2+…+C nn x n ③. 两边求导,得n (1+x )n -1=C 1n +2C 2n x +…r C rn x r -1 +…+n C nn x n -1 ④. ③×④,得n (1+x )2n -1=(C 0n +C 1n x +C 2n x 2+…+C n n x n )( C 1n +2C 2n x +…r C rn x r -1 +…+n C nn x n -1) ⑤. 左边x n 的系数为n C n2n -1. 右边x n 的系数为C 1n C n n +2 C 2n Cn -1n +…+r C r n C n -r +1n+…+n C n n C 1n =C 1n C 0n +2C 2n C 1n +…+r C r n C r -1n +…+n C n n C n -1n=C 0n C 1n +2 C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C nn .由⑤恒成立,可得n C n=C0n C1n+2 C1n C2n+…+r C r-1n C r n+…+n C n-1n C n n.2n-1成故f(n)=C n2n-1立.……………………………………………………………………………………10分。
市、市 2018 届高三年级第一次模拟考试数 学 试 题( 总分 160 分,考试时间 120 分钟 )注意事项:1.本试卷考试时间为 120 分钟,试卷满分 160 分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分. 3.答题前,务必将自己的、号用 0.5 毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:柱体体积公式: VSh ,其中 S 为底面积 , h 为高 .一、填空题 (本大题共 14 小题,每小题 5 分,计 70 分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合 Ax | x( x 4) 0 , B 0,1,5 ,则 A I B▲ .2.设复数 z a i (a R,i 为虚数单位),若 (1 i ) z 为纯虚数,则 a 的值为▲.3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级 4000 名学生中随机抽取 100 名学生进行问卷调查, 所得数据均在区间 [50,100] 上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在 [70,80) ( 单位:分钟 ) 的学生人数为 ▲ .频率组距Read x0.035If x0 Then ayln x0.020 Elsee x0.010yEnd If 0.005Print y5060 70 80 90 100 时间 (单位 :分钟 )第 3 题图第 4 题图4.执行如图所示的伪代码,若x 0 ,则输出的 y 的值为▲.5.口袋中有形状和大小完全相同的 4 个球,球的编号分别为 1, 2, 3, 4,若从袋中一次随机摸出 2 个球,则摸出的 2 个球的编号之和大于 4 的概率为 ▲ . 6.若抛物线y 2x 2 y 2 1的右焦点重合,则实数 p 的值为 ▲ .2 px 的焦点与双曲线547.设函数 y e x1a 的值域为 A ,若 A[0,) ,则实数 a 的取值围是▲.e x8.已知锐角, 满足 tan 1 tan 1 2 ,则的值为▲.9.若函数y sin x 在区间 [0, 2 ] 上单调递增,则实数的取值围是▲.10.设S n为等差数列a n的前 n 项和,若a n 的前 2017 项中的奇数项和为2018,则S2017 的值为▲.x(3 x), 0 x 3,11.设函数f ( x)是偶函数,当x≥0 时,f (x) = 31, x>3 ,若函数 y f ( x) mxm的取值围是有四个不同的零点,则实数▲.12.在平面直角坐标系xOy 中,若直线y k (x 3 3) 上存在一点 P ,圆 x2 ( y 1)2 1上uuur uuur存在一点 Q ,满足 OP 3OQ ,则实数 k 的最小值为▲. A 13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若 A, B,C , D 四点均位于图中的“晶格点”处,且 A, B 的位置所图所示,则AB CD的最大值为▲.14.若不等式k sin2B sin Asin C 19sin B sin C 对任意ABC 都成立,B 则实数 k 的最小值为▲.第 13 题图二、解答题(本大题共 6 小题,计 90 分 . 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域)15. ( 本小题满分14 分 )如图所示,在直三棱柱ABC A1 B1C1中, CA CB ,点M , N分别是AB, A1B1的中点.( 1)求证:BN∥平面A1MC;C1( 2)若A1M AB1,求证: AB1 AC1 . A N 1B1A CMB第 15 题图16. ( 本小题满分14 分 )在ABC 中,角 A, B, C 的对边分别为 a, b, c, 已知 c 5 b .( 1)若C 2B ,求 cosB 的值;2uuur uuur uuur uuur cos() 的值.(2)若AB AC CA CB ,求 B417. ( 本小题满分14 分 )有一矩形硬纸板材料(厚度忽略不计),一边 AB 长为6分米,另一边足够长.现从中截取矩形ABCD(如图甲所示) ,再剪去图中阴影部分,用剩下的部分恰好 ..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF是以O 为圆心、EOF 120 的扇形,且弧??EF , GH 分别与边 BC , AD 相切于点 M , N .( 1)当 BE 长为 1 分米时,求折卷成的包装盒的容积;( 2)当 BE 的长是多少分米时,折卷成的包装盒的容积最大?BMNCMEEFFOG HGNHAND第 17 题 -图甲第 17 题 -图乙18. ( 本小题满分 16 分 )xOy 中,椭圆 x 2 y 2B ,点如图,在平面直角坐标系C :2b 2 1(a b 0) 的下顶点为aM , N 是椭圆上异于点 B 的动点,直线 BM , BN 分别与 x 轴交于点 P, Q ,且点 Q 是线段 OP 的中点.当点 N 运动到点 ( 3,3) 处时,点 Q 的坐标为 ( 2 3,0) .23( 1)求椭圆 C 的标准方程;uuur uuuur( 2)设直线 MN 交 y 轴于点 D ,当点 M , N 均在 y 轴右侧, 且 DN 2NM 时,求直线BM 的方程.y DN Q MO P xB第 18 题图19. ( 本小题满分16 分 ) 设数列 a n 满足 a n 2 an 1an 1 ( a2 a1 )2,其中 n⋯2 ,且 n N ,为常数.( 1)若a n 是等差数列,且公差 d 0 ,求的值;( 2)若a1 1,a2 2, a3 4 ,且存在r [3,7] ,使得 m a n卪n r 对任意的n N*都成立,求 m 的最小值;( 3)若0 ,且数列a n不是常数列,如果存在正整数T ,使得a n T a n对任意的n N *均成立. 求所有满足条件的数列a n中T的最小值.20. ( 本小题满分16 分 )设函数 f (x) ln x , g( x) ax bR ).c ( a,b, cx( 1)当c 0 时,若函数 f ( x) 与 g( x) 的图象在x 1 处有相同的切线,求a,b的值;( 2)当b 3 a 时,若对任意x0 (1, ) 和任意a (0,3),总存在不相等的正实数x1 , x2,使得 g (x1) g (x2 ) f ( x0 ) ,求 c 的最小值;( 3)当a 1 时,设函数y f (x) 与 y g( x) 的图象交于 A(x1, y1 ), B( x2, y2)( x1x2) 两点.求证: x1 x2 x2 b x1x2 x1.市、市 2018 届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14 小题,每小题 5 分,计 70 分 .1 .1 2.1 3 . 1200 4.15 .26 . 67.( ,2]38 .3 110 . 4034 11912 .313 . 249 . (0, ] . [1, )4 4 414. 100二、解答 :本大 共 6 小 , 90 分 . 解答 写出必要的文字 明, 明 程或演算步 , 把答案写在答 的指定区域 .15. 明:( 1)因 ABCA 1B 1C 1 是直三棱柱,所以AB / / A 1B 1 ,且 AB A 1B 1, 又点 M , N 分 是 AB, A 1 B 1 的中点,所以 MB A 1 N ,且 MB / / A 1 N .所以四形A 1 NBM是 平 行 四形,从而A 1M / / BN .⋯⋯⋯⋯⋯ 4 分又 BN平 面 A 1MC, A 1 M平 面A 1MC, 所 以BN∥ 面A 1MC .⋯⋯⋯⋯⋯ 6 分( 2)因 ABCA 1B 1C 1 是直三棱柱,所以 AA 1底面 ABC ,而 AA 1面 ABB 1 A 1 ,所以 面 ABB 1 A 1 底面 ABC .又 CACB ,且 M 是 AB 的中点,所以 CMAB .由 面 ABB 1 A 1 底面 ABC , 面 ABB 1A 1 I底面 ABC AB ,CM AB ,且CM底 面ABC,得CM面ABB 1 A 1 .⋯⋯⋯⋯⋯ 8 分又AB 1面ABB 1 A 1, 所以AB 1CM .⋯⋯⋯⋯⋯ 10 分又 AB 1 A 1M , A 1M , MC平面 A 1MC ,且 A 1M I MCM ,所以AB 1平面A 1MC .⋯⋯⋯⋯⋯ 12 分又AC 1平面A 1 MC,所 以AB 1 A 1C .⋯⋯⋯⋯⋯ 14 分16 . 解 : ( 1c5) 因b,由 正 弦 定 理 , 得2sin C5sin B .⋯⋯⋯⋯⋯ 2 分2又C2B,所以sin 2B5sin B,即24sin B cosB 5sin B .⋯⋯⋯⋯⋯ 4 分又 B 是ABC 的角,所以sin B 0,故cosB 5⋯⋯⋯⋯⋯ 6 分.4uuur uuur uuur uuurba cosC , 由余弦定理, ( 2)因 ABAC CA CB , 所以 cb cos A得b 2c 2 a 2 b 2 a 2 c 2 ,得a c .⋯⋯⋯⋯⋯ 10 分从而a 2c 22 c2c 2( 2c) 23cosBb5⋯⋯⋯⋯⋯ 122ac2c 2,5分又 0B,所以 sin B1 cos2 B4 .5从而cos(B) cosB cos sin B sin3 24 22⋯⋯⋯⋯⋯ 144 5 252.分4 41017.解:( 1)在 甲中, 接MO 交 EF 于点 T . OEOF OM R ,在Rt OET 中 , 因EOT1 EOF60, 所 以 R,2OTR .2MTOMOT2R从而BE, 即MTR 2BE 2 . 2⋯⋯⋯⋯⋯ 2 分故所得柱体的底面SS扇形OEFSOEFMN1 R 21 R 2sin120 43 .⋯⋯⋯⋯⋯ 4 分BT32EG4 3EF又所得柱体的高,O所以 VSEG16 4 3 .3答:当 BE 1 分米 ,折卷成的包装盒的容GH164 3 立方分米 .⋯⋯⋯⋯⋯⋯⋯ 6 分3x , R2x ,所以所得柱体的底面A( 2) BESS扇形OEFSOEF1 R21R 2sin120 (43) x 2 .323 又所得柱体的高 EG 62x ,所以VS EG(82 3)( x 33x 2 ),其中0 x3 .3⋯⋯⋯⋯⋯⋯⋯ 10 分令 f ( x)x 3 3x 2 , x (0,3) , 由 f ( x)3x 2 6x3x(x 2) 0 ,解得x 2 .⋯⋯⋯⋯⋯⋯⋯12 分列表如下:x(0, 2)2(2,3)f ( x) + 0 -f ( x)增极大减所以当 x 2 , f ( x) 取得最大 .答 : 当 BE的2分 米, 折 卷 成 的 包 装 盒 的 容最大 .⋯⋯⋯⋯⋯⋯⋯ 14 分18 . 解 : ( 13 2 3,0) , 得直NQ 的 方 程) 由 N ( 3,), Q (23y 3 x 3 .⋯⋯⋯⋯⋯⋯⋯ 2 分2令 x 0 ,得点 B 的坐 (0,3) .所以的方 程x 2 y 2 1.⋯⋯⋯⋯⋯⋯⋯ 4 分a23将点 N 的坐 (3, 3)2所 以 x 2 y 2 .413( 3) 2( 3 ) 2代入,得21,解得 a 2 4 .a 23C的准 方 程⋯⋯⋯⋯⋯⋯⋯8 分( 2)方法一: 直BM 的斜率 k(k0) , 直 BM 的方程 y kx 3 .在 ykx3 中,令 y0,得 x P3Q是 段 OP 的中点,所以 x Q3 ,而点 .kBN2k所以 直的斜率kBN0 (3)⋯⋯⋯⋯⋯⋯ 10 分kBQ32k .2ky kx 34k 2 ) x 28 3k2.立x 2 y 2 ,消去 y ,得 (38 3kx 0 ,解得 x M4 3 13 4k2kk用代,得x N16 3k 2 .⋯⋯⋯⋯⋯⋯ 12 分3 16 kuuur uuuur又DN 2NM ,所 以x N 2( x M x N ),得2x M3x N .⋯⋯⋯⋯⋯⋯ 14 分故 28 3k 316 3k ,又 k 0 ,解得 k 6 .3 4k 23 16k 22所以直BM的方程y 6 x 3 .⋯⋯⋯⋯⋯⋯ 16 分2方法二:点 M , N 的坐分 ( x1 , y1 ),( x2 , y2 ) .由 B(0, 3) ,得直BN的方程y y1 3x 3 ,令y 0,得x Py1 3x1 .x1 3同理,得 x Q3x2.y2 3而点 Q 是段OP 的中点,所以x P 2x Q ,故3x1 2 3x2 .⋯⋯⋯⋯⋯⋯⋯ 10 分y1 3 y2 3uuur uuuur 2x1 1 4 3又 DN 2NM ,所以 x2 2( x1 x2 ) ,得 x2 0 ,从而y2 ,3 y1 3 3解得y2 4y1 3 .⋯⋯⋯⋯⋯⋯⋯ 12 3 3分x2 2x1 代入到 C的方程中,得x12 3) 2将 3 (4 y1 1 .y2 4y13 9 27 3 32y12 4(1 y12 4(13 ) (4 y1 3) 22 2 y13 0 ,又 x1 ) ,所以9 27 1,即 3y13解得 y1 3 (舍)或y13.又 x1 0 ,所以点M 的坐34 2 3M ( , ) .⋯⋯⋯⋯⋯14分3 3BM故直的方程y 6 x 3 .⋯⋯⋯⋯⋯⋯⋯ 16 分22 d 2,19.解:( 1)由意,可得a n (a n d)(a n d)化得( 1)d 2 0 ,又 d 0 ,所以1 . ⋯⋯⋯⋯⋯⋯ 4 分( 2)将a1 1,a2 2, a3 4 代入条件,可得 4 1 4 ,解得0 ,所以 a n2 a n 1a n 1,所以数列a n 是首1 ,公比q 2 的等比数列,所以a n 2n 1 .⋯⋯ 6 分欲存在 r[3,7] ,使得 m 2n 1⋯nr ,即 r ⋯nm 2n 1 任意 nN * 都成立,7⋯n m 2n 1, 所以⋯n7 任 意n N*成m 2n 1都立 .⋯⋯⋯⋯⋯⋯ 8 分令 b n n 7b nn 6 n 7 8 nn 1 , b n 1 2 n2 n 12 n ,2所以当 n 8 , b n 1b n ;当 n8 , b 9 b 8 ;当 n 8 , b n1b n.所 以b n 的 最 大b 9b 8 1 , 所 以 m的 最 小1281 .⋯⋯⋯⋯⋯⋯ 10 分128( 3)因 数列a n 不是常数列,所以 T ⋯2 .①若 T2 , a na n 恒成立, 从而 a 3a 1 , a 4a 22 a 1 2( a 2 a 1 )22a 2 ,所以a 2 2 ( a 2,a 12 a 1 ) 2所以 (a 2 a 1 )2 0 ,又0 ,所以 a 2a 1 ,可得 a n 是常数列.矛盾.所 以T 2不合意 .⋯⋯⋯⋯⋯⋯ 12 分1, n 3k 2② 若 T3 , 取 a n2, n3k 1 ( k N * ) ( * ),足 a n 3a n恒 成3, n 3k立.⋯⋯⋯⋯⋯⋯14 分由 a 2 2a 1a 3(a 2 a 1) 2,得7 . 条件式 a n 2a n 1an 17 .由 221 ( 3)7 2a 3k 2 a 3 k ,知 a 3k 1由 ( 3)22 1 7 ,知 a 3k 2 a 3k 1 a3 k 1 由 12( 3) 27 2 a 3k a3 k 2,知 a 3k 1所以,数列( * )适合 意.所以T的3 .(a 2 a 1) 2 ; (a 2 a 1 )2 ; (a 2 a 1) 2 .最 小⋯⋯⋯⋯⋯⋯16 分20.解:( 1)由 f ( x) ln x ,得 f (1)0 ,又 f (x) 11 ,. ,所以 f (1)b xb 当c 0, g( x) axg (x) a, 所 以 x 2g (1) a b .x⋯⋯⋯⋯⋯⋯ 2 分因 函数 f (x) 与 g (x) 的 象在 x1 有相同的切 ,, 所 以所f (1)g (1) 以g(1)f (1)a 12 .,a b 1解得即b,a 0⋯⋯⋯⋯⋯⋯ 4 分1b2( 2)当x0 1, f (x0 ) 0 ,又b 3 a ,t f ( x0 ) ,意可化方程ax 3 ac t(t 0) 在 (0, ) 上有相异两根xx1, x2.⋯⋯⋯⋯⋯⋯ 6 分即关于 x 的方程 ax2 (c t ) x (3 a) 0(t 0) 在 (0, ) 上有相异两根 x1, x2.0 a 3(c t) 2 4a(3 a) 0 0 a 3c t所以x1 x2 0 ,得( c t ) 2 4a(3 a) ,ac t 03 ax1x2 0a所以 c 2 a(3 a) t立.⋯⋯⋯⋯⋯⋯ 8 分t (0,), a (0,3)恒成因 0 a 3,所以2 a(3 a)? 2 ( a(3 a))2 3 (当且当 a 3 取等号),2 2又 t 0 ,所以 2 a(3 a) - t 的取是( ,3) ,所以c⋯3.故 c 的最小3 . ⋯⋯⋯⋯⋯⋯ 10 分( 3)当a 1 ,因函数 f (x) 与 g (x) 的象交于 A, B 两点,ln x1 x1 bc所以x1 ,两式相减,得bln x2 x2 cx2b x1x2 (1 ln x2 ln x1 ). ⋯⋯⋯⋯⋯⋯ 12 分x2 x1要明 x1 x2 x2 b x1x2 x1,即 x1x2 x2 x1x2 (1 ln x2 ln x1 ) x1 x2 x1,x2 x1即1 ln x2 ln x1 1,即x2x2x1x11 x 1ln x 2 x 2 1 . ⋯⋯⋯⋯⋯⋯ 14 分x 2 x 1x 1令x2t , t1,此 即 1 1ln t t 1 .x 1t令111 t1t(t)ln t1 ,所以(t )0 ,所以当,函数(t )tt 2t 2 1增.t又 (1)0 ,所以 (t)ln t1 1 0 ,即 1 1 ln t 成立;t t再令 m(t ) ln tt 1 ,所以 m (t )1 1 1 t t 0 ,所以当 t 1 ,函数 m(t )t减,又 m(1) 0 ,所以 m(t )ln t t 10 ,即 ln tt 1也成立.上 所 述,数x 1 , x 2足x 1x 2 x 2 b x 1 x 2 x 1 .⋯⋯⋯⋯⋯⋯ 16 分附加题答案21.(A )解:如 , 接 AE , OE ,因 直 DE 与⊙ O 相切于点 E ,所以 DE OE ,又因 AD 垂直 DE 于 D ,所以 AD / / OE ,所以 DAEOEA ,①在⊙ O 中 OE OA ,所以OEA OAE ,② ⋯⋯⋯⋯⋯⋯ 5 分由①②得 DAE OAE ,即 DAE FAE ,又 ADE AFE , AE AE ,所以 ADEAFE ,所以 DE FE ,又 DE 4 ,所以 FE 4 , 即 E 到直径 AB 的距离 4.⋯⋯⋯⋯⋯⋯ 10 分 ( B )解: Px 0 , y 0 是 x 2 y 21上任意一点,x 02 y 02 1,ED·A F OB第 21(A)点 Px 0 , y 0 在矩 M 的 下所得的点x 2 0 x 0 ,Q x, y ,0 1 y 0y即x 2x 0,解得yy 0x1 x2,⋯⋯⋯⋯⋯⋯ 5 分y 0y代 入x 02y 021 , 得x 2y 21, 即所 求 的 曲方4程 .⋯⋯⋯⋯⋯⋯ 10 分( C )解:以极点O 原点,极 Ox x 建立平面直角坐 系,由cos() 1,得 (cos cos sin sin )1 ,3 33得 直的直角坐方程x3 y2 0 .⋯⋯⋯⋯⋯⋯ 5 分曲r ,即 x 2 y 2 r 2 ,所以 心到直 的距离d 0 3 0 2 1.13因直cos() 1 与 曲r ( r0 ) 相 切 , 所 以 rd , 即3r 1 .⋯⋯⋯⋯⋯ 10 分( D )解:由柯西不等式,得[ x2( 3 y)2 ][12( 3)2 ]( x 13 y3 )2 ,33即 4(x 23y 2 ) ( x y) 2 .34而x 2 3y 21 ,所以( x y)2,所以223x y3 ,⋯⋯⋯⋯⋯⋯ 5 分333x 3y313x2 ,所以当且 当 x 3, y3 , ( x y)max23 .由3,得3 26 3xy2 3y63x yx所以当取最大的3⋯⋯⋯⋯⋯⋯ 10 分x.2BD .又 OP 底面 ABCD ,以 O 原点,直 22.解:( 1)因 ABCD 是菱形,所以 ACOA,OB , OP 分 x , y , z ,建立如 所示空 直角坐 系.A(2,0,0) , B(0,1,0) , P(0,0,4) , C ( 2,0,0) , M ( 1,0,2) .uuur uuuur( 1,uuur uuuur所以 AP( 2,0, 4) , BM 1,2) , AP BM 10 , zuuur uuuur 6 .| AP | 2 5 , | BM | Puuur uuuuruuur uuuur 1030cosAP BMMAP, BM uuur uuuur2 56 .| AP || BM | 6故直 AP 与 BM 所成角的余弦30 . ⋯⋯⋯ 5 分 DCuuur uuuur6( 2) AB (2,1,0) , BM (1, 1,2) .xOABy第 22r平面ABM 的一个法向量 n ( x, y, z) ,r uuur 0 2x y 0 n AB ,令 x 2 ,得 y 4 , z 3r uuuur 0 ,得 x y 2z .n BM 0得平面 ABM 的一个法向量 r (2, 4,3) .n r uuur r uuur又平面 PAC 的一个法向量 uuur (0,1,0) 29OB ,所以 n OB 4 , | n |, | OB | 1 .r uuurr uuur44cosn OB29 .n, OBruuur2929| n ||OB |4故 平 面ABM 与 平 面 PAC 所 成 二 面 角 的余 弦29.⋯⋯⋯⋯⋯⋯ 10 分29C n 0C n 1 2C n 1C n 2rC n r 1C n rnC n n 1C n n23.解:( 1)由条件, nfn①,在① 中令n 1,得f 1C 10C 11 1.⋯⋯⋯⋯⋯⋯ 1 分在① 中令n 2, 得2 f 2C 20C 21 2C 21C 226 ,得f 23 .⋯⋯⋯⋯⋯⋯ 2 分在 ① 中 令n 3, 得3f 3 C 30C 31 2C 31C 32 3C 32 C 33 30, 得f 3 10 .⋯⋯⋯⋯⋯⋯ 3 分(2 )猜想f n=C 2n n 1(或f n = C 2n n 1 1 ).⋯⋯⋯⋯⋯⋯ 5 分欲 猜想成立,只要 等式nC 2n n 1 C n 0 C n 1 2C n 1C n 2rC n r 1C n rnC n n 1C n n 成立.方法一:当 n1 ,等式 然成立,当 n ⋯2 ,因 rC n r =r ( n!)= n! r )! n (r (n 1)! r )! nC n r 11 ,r !(n r )! (r 1)!( n 1)!( n故 rC n r 1C n r (rC n r )C n r 1 nC n r 11C n r 1 .故只需 明 nC 2n n 1nC n 0 1C n 0 nC n 1 1C n 1nC n r 11C n r 1nC n n 11C n n 1.即 C 2n n 1C n 0 1C n 0 C n 1 1C n 1 C n r 11C n r 1C n n 11C n n 1 .而 C n r 1 C n n r 1 ,故即 C 2n n 1 C n 0 1C n n C n 1 1C n n 1C n r 11 C n n r 1 C n n 11C n 1 ②.由等式 (1 x) 2 n 1(1 x) n 1 (1 x) n 可得,左 x n的系数 C 2n n 1 .而右(1 x)n 1 (1 x) nC n 0 1 C n 1 1 x C n 2 1 x 2 L C n n 11 x n 1 C n 0 C n 1 x C n 2 x 2L C n n x n ,所以 x n 的系数 C n 0 1C nn C n 1 1C n n1C n r11C n n r 1C n n 11C n 1 .由 (1 x) 2n 1(1 x) n 1 (1 x)n 恒成立可得②成立 .上,f n C 2n n 1成立 .2n 1⋯⋯⋯⋯⋯⋯ 10 分方法二:构造一个 合模型,一个袋中装有n 个是 号1, 2,⋯, n个小球,其中的白球,其余n-1个是号1, 2,⋯,n- 1 的黑球,从袋中任意摸出n 个小球,一方面,由分步数原理其中含有r 个黑球(n r 个白球)的 n 个小球的合的个数C n r 1C n n r ,0 r n 1 ,由分数原理有从袋中任意摸出n 个小球的合的数C n01C n n C n11C n n 1 L C n n11C n1.另一方面,从袋中 2n 1 个小球中任意摸出n个小球的合的个数C2n n 1.故C2n n 1 C n0 1 C n n C n1 1C n n 1 L C n n 11C n1,即②成立. 余下同方法一 . ⋯⋯⋯⋯⋯⋯10 分方法三:由二式定理,得(1 x)n C n0 C n1 x C n2 x2 L C n n x n ③.两求,得n(1 x)n 1 C n1 2C n2x1 L rC n r x r 1 L nC n n x n 1 ④.③×④,得 n(1 x)2n 1 (C n0 C n1 x C n2 x2 L C n n x n )(C n1 2C n2 x1 L rC n r x r 1 L nC n n x n 1 ) ⑤.左 x n的系数nC2n n 1.右 x n的系数C n1C n n 2C n2 C n n 1 rC n r C n n r 1 nC n n C n1C n1C n0 2C n2C n1 rC n r C n r 1 nC n n C n n 1C n0C n1 2C n1 C n2 rC n r 1 C n r nC n n 1 C n n.由⑤恒成立,可得 nC2n n 1 C n0C n1 2C n1 C n2 rC n r 1 C n r nC n n 1C n n.故f n C2n n 1成立 . ⋯⋯⋯⋯⋯⋯ 10 分。
南京市、盐城市2021届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)考前须知:1.本试卷考试时间为120分钟,试卷总分值160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否那么不给分.3.答题前,务必将自己的、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题〔本大题共14小题,每题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上〕 1.集合{}|(4)0A x x x =-<,{}0,1,5B =,那么AB = ▲ .2.设复数(,z a i a R i =+∈为虚数单位〕,假设(1)i z +⋅为纯虚数,那么a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如下图,那么估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如下图的伪代码,假设0x =,那么输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,假设从袋中一次随机摸出2个球,那么摸出的2个球的编号之和大于4的概率为 ▲ .6.假设抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,那么实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,假设[0,)A ⊆+∞,那么实数a 的取值范围是 ▲ .8.锐角,αβ满足()()tan 1tan 12αβ--=,那么αβ+的值为 ▲ .9.假设函数sin y x ω=在区间[0,2]π上单调递增,那么实数ω的取值范围是 ▲ . 10.设n S 为等差数列{}n a 的前n 项和,假设{}n a 的前2021项中的奇数项和为2021,那么2017S 的值为 ▲ .时间(单位:分钟) 组距 50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 Read x If 0x > Then ln y x ← Else x y e ← End If Print y 第4题图11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,假设函数()y f x m =- 有四个不同的零点,那么实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy 中,假设直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,那么实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一局部,正六边形的边长均为1,正六边形的顶点称为“晶格点〞.假设,,,A B C D 四点均位于图中的“晶格点〞处,且,A B 的位置所图所示,那么⋅的最大值为 ▲ .14.假设不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,那么实数k的最小值为 ▲ .二、解答题〔本大题共6小题,计90分. 解容许写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内〕 15.(本小题总分值14分)如下图,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.〔1〕求证:BN ∥平面1A MC ;〔2〕假设11A M AB ⊥,求证:11AB A C ⊥.16.(本小题总分值14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 52c b =. 〔1〕假设2C B =,求cos B 的值; 〔2〕假设AB AC CA CB ⋅=⋅,求cos()4B π+的值.A第13题图ABC A 1B 1C 1MN第15题图有一矩形硬纸板材料〔厚度忽略不计〕,一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD 〔如图甲所示〕,再剪去图中阴影局部,用剩下的局部恰好..能折卷成一个底面是弓形的柱体包装盒〔如图乙所示,重叠局部忽略不计〕,其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧EF ,GH 分别与边BC ,AD 相切于点M ,N . 〔1〕当BE 长为1分米时,求折卷成的包装盒的容积;〔2〕当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题总分值16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点2处时,点Q的坐标为(,0)3. 〔1〕求椭圆C 的标准方程;〔2〕设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.第17题-图甲 FH 第17题-图乙设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n ,且n N ∈,λ为常数.〔1〕假设{}n a 是等差数列,且公差0d ≠,求λ的值;〔2〕假设1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-对任意的*n N ∈都成立,求m 的最小值;〔3〕假设0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立. 求所有满足条件的数列{}n a 中T 的最小值.20.(本小题总分值16分)设函数()ln f x x =,()bg x ax c x=+-〔,,a b c R ∈〕. 〔1〕当0c =时,假设函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;〔2〕当3b a =-时,假设对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;〔3〕当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2021届高三年级第一次模拟考试数学附加题局部〔本局部总分值40分,考试时间30分钟〕21.[选做题]〔在A 、B 、C 、D 四小题中只能选做2题,每题10分,计20分.请把答案写在答题纸的指定区域内〕A .〔选修4-1:几何证明选讲〕如图,AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 假设4DE =,求切点E 到直径AB 的距离EF .B .〔选修4-2:矩阵与变换〕矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .〔选修4-4:坐标系与参数方程〕在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲〕实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.A B E D F O · 第21(A)图[必做题]〔第22、23题,每题10分,计20分.请把答案写在答题纸的指定区域内〕 22.〔本小题总分值10分〕如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.〔1〕求直线AP 与BM 所成角的余弦值;〔2〕求平面ABM 与平面PAC 所成锐二面角的余弦值.23.〔本小题总分值10分〕n N *∈,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.〔1〕求()1,f ()2,f ()3f 的值;〔2〕试猜测()f n 的表达式〔用一个组合数表示〕,并证明你的猜测.M BC D O P 第22题图南京市、盐城市2021届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每题5分,计70分. 1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞ 8.34π 9.1(0,]4 10.4034 11.9[1,)412.3- 13.24 14.100 二、解答题:本大题共6小题,计90分.解容许写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.证明:〔1〕因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN . ……………4分 又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分 〔2〕因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.那么由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分 又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A MMC M =,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC ,所以11AB A C ⊥. ……………14分 16.解:〔1〕因为5c =,那么由正弦定理,得5sin C B =. ……………2分 又2C B =,所以5sin 22B B =,即4sin cos 5B B B =. ……………4分 又B 是ABC ∆的内角,所以sin 0B >,故5cos 4B =. ……………6分〔2〕因为AB AC CA CB ⋅=⋅, 所以cos cos cb A ba C =,那么由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而222()35cos 25c c c a c b B ac +-+-===, ……………12分又0B π<<,所以24sin 1cos 5B B =-=.从而32422cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. ……………14分17.解:〔1〕在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,那么2R MT OM OT =-=.从而2RBE MT ==,即22R BE ==. ……………2分 故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=- ……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-. …………………6分〔2〕设BE x =,那么2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,那么由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分列表如下:所以当x =答:当BE 的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:〔1〕由2NQ ,得直线NQ的方程为32y x = (2)分 令0x =,得点B 的坐标为(0,. 所以椭圆的方程为22213x y a +=. …………………4分 将点N 的坐标2213=,解得24a =. 所以椭圆C 的标准方程为22143x y +=.…………………8分 〔2〕方法一:设直线BM 的斜率为(0)k k >,那么直线BM 的方程为y kx =-.在y kx =0y =,得P x =,而点Q 是线段OP的中点,所以Q x = 所以直线BN 的斜率2BN BQk k k ===. ………………10分联立22143y kx x y ⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x +-=,解得M x =. 用2k 代k,得2316N x k =+. ………………12分又2DN NM =,所以2()N M N x x x =-,得23M N x x =. ………………14分故222334316k k ⨯=⨯++,又0k >,解得2k =. 所以直线BM的方程为2y x =. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为1y x =0y =,得P x =同理,得Q x =.而点Q 是线段OP 的中点,所以2P Q x x ==…………………10分 又2DN NM =,所以2122()x x x =-,得21203x x =>4=,解得2143y y =. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=⎪⎩代入到椭圆C的方程中,得2211(41927x y +=. 又22114(1)3y x =-,所以214(1)319y -+=21120y +=,解得1y =1y =.又10x >,所以点M的坐标为(3M .……………14分 故直线BM的方程为y x =-. …………………16分 19.解:〔1〕由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分 〔2〕将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-,即12n r n m --⋅对任意*n N ∈都成立,那么172n n m --⋅,所以172n n m--对任意*n N ∈都成立. ………………8分 令172n n n b --=,那么11678222n n n n n n n n b b +-----=-=,所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分〔3〕因为数列{}n a 不是常数列,所以2T .①假设2T =,那么2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②假设3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩〔*〕,满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 那么条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-;由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列〔*〕适合题意.所以T 的最小值为3. ………………16分20.解:〔1〕由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分 因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分〔2〕当01x >时,那么0()0f x >,又3b a =-,设0()t f x =,那么题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分 即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以2(3a +⨯=〔当且仅当32a =时取等号〕, 又0t -<,所以t 的取值范围是(,3)-∞,所以3c .故c 的最小值为3. ………………10分 〔3〕当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分 要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. ………………14分 令21x t x =,那么1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述, 实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.〔A 〕解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分〔B 〕解:设()00,P x y 是圆221x y +=上任意一点,那么22001x y +=,ABE DF O · 第21(A)图设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,那么002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y⎧=⎪⎨⎪=⎩, ………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程. ………………10分 〔C 〕解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=〔0r >〕相切,所以r d =,即1r =. ……………10分〔D〕解:由柯西不等式,得22222[)][1(](133x x ++≥⨯+⨯, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得2x y ⎧=⎪⎪⎨⎪=⎪⎩26x y ==时,max ()x y += 所以当x y +取最大值时x的值为2x =. ………………10分 22.解:〔1〕因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如下图空间直角坐标系.那么(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =-,(1,1,2)BM =--,10AP BM ⋅=,||25AP =,||6BM =.那么cos ,6||||2AP BM AP BM AP BM ⋅<>===. 故直线AP 与BM 所成角的余弦值为6. ………5分 〔2〕(2,1,0)AB =-,(1,1,2)BM =--.设平面ABM 的一个法向量为(,,)n x y z =,C第22题图那么00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB =,所以n 4OB ⋅=,||29n =,||1OB =.那么cos ,||||29n OBn OB n OB ⋅<>===故平面ABM 与平面PAC ………………10分 23.解:〔1〕由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分 在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分 在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分〔2〕猜测()f n =21nn C -〔或()f n =121n n C --〕. ………………5分 欲证猜测成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n 时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n nC C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+. 而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n nnn n n n n n n C C x C x C x C C x C x C x ------=++++++++,所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立. ………………10分 方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球〔n r -个白球〕的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n nn n C C C C C C -----+++.另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21nn C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n n n n n n x C C x C x C x +=++++ ③. 两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++ ④.③×④, 得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++ ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立. ………………10分。
市、市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的、号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则AB = ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值围是 ▲ .时间(单位:分钟)50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 第4题图8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ . 9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值围是 ▲ . 10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =-有四个不同的零点,则实数m 的取值围是 ▲ .12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB AC ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c =. (1)若2C B =,求cos B 的值; (2)若AB AC CA CB ⋅=⋅,求cos()4B π+的值.17.(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截A第13题图 ABC A 1B 1C 1 MN第15题图取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧EF ,GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N运动到点处时,点Q的坐标为. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.第17题-图甲 F 第17题-图乙19.(本小题满分16分)设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n ,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立. 求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值; (2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.市、市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞8.34π 9.1(0,]4 10.4034 11.9[1,)412. 13.24 14.100二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N . 所以四边形1A NBM是平行四边形,从而1//A M BN . ……………4分又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分(2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC,得CM ⊥侧面11ABB A . ……………8分又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M =,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC,所以11AB A C ⊥. ……………14分16.解:(1)因为52c b =,则由正弦定理,得5sin C B =. ……………2分 又2C B=,所以5sin 2B B =,即4sin cos 5B B B =. ……………4分又B是ABC ∆的角,所以sin 0B >,故5cos B =. ……………6分(2)因为AB AC CA CB ⋅=⋅, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而2223cos 25a cb B ac+-===, (12)分又0B π<<,所以4sin 5B ==. 从而34cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. (14)分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2RMT OM OT =-=. 从而2R BE MT ==,即22R BE ==. ……………2分故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-. …………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=-.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=, 解得2x =. …………………12分答:当BE的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由N Q,得直线NQ的方程为32y x=…………………2分令0x=,得点B的坐标为(0,.所以椭圆的方程为22213x ya+=.…………………4分将点N的坐标)22(213+=,解得24a=.所以椭圆C的标准方程为22143x y+=. (8)分(2)方法一:设直线BM的斜率为(0)k k>,则直线BM的方程为y kx=在y kx=0y=,得Pxk=,而点Q是线段OP的中点,所以2Qxk=.所以直线BN的斜率2BN BQk k k===.………………10分联立22143y kxx y⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x+-=,解得234Mxk=+.用2k代k,得Nx=.………………12分又2DN NM=,所以2()N M Nxx x=-,得23M Nx x=.………………14分故23=0k>,解得k=.所以直线BM的方程为2y x =-. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为1y x =0y =,得P x =.同理,得Q x =.而点Q 是线段OP的中点,所以2P Qx x =,故=…………………10分 又2DN NM =,所以2122()x x x =-,得21203x x =>4=解得2143y y =+ …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=+⎪⎩代入到椭圆C的方程中,得2211(41927x y ++=. 又22114(1)3y x =-,所以21214(1)(431927y y -+=21120y +=, 解得1y =(舍)或1y =.又10x >,所以点M 的坐标为M .……………14分故直线BM 的方程为y x =-. …………………16分19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又d ≠,所以1λ=. ………………4分(2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-,即12n r n m --⋅对任意*n N ∈都成立,则172n n m --⋅,所以172n n m --对任意*n N ∈都成立. ………………8分令172n n n b --=,则11678222n n nn n n n nb b +-----=-=, 所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分 (3)因为数列{}n a 不是常数列,所以2T .①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-;由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意. 所以T的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当c =时,()bg x ax x=+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分 (2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩, 所以c t>对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以)2(3a +⨯=(当且仅当32a =时取等号), 又0t -<,所以t 的取值围是(,3)-∞,所以3c .故c 的最小值为3. ………………10分(3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x c x b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x xx x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t tϕ=+->,即11ln t t-<成立; 再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述,实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x xy y⎧=⎪⎨⎪=⎩, ………………5分 代入22001x y +=,得2214x y +=,即为所求的曲线方程. ………………10分(C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,ABE DF O · 第21(A)图由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=, 得直线的直角坐标方程为20x -=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1](1x x ++≥⨯+, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得26x y ⎧=⎪⎪⎨⎪=⎪⎩,所以当且仅当26x y ==时,max ()x y += 所以当x y+取最大值时x 的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -. 所以(2,0,4)AP =-,(1,1,2)BM =--,10AP BM ⋅=,||25AP =,||6BM =.则cos ,6||||2AP BM AP BM AP BM ⋅<>===. 故直线AP 与BM . ………5分 (2)(2,1,0)AB =-,(1,1,2)BM =--.C第22题图设平面ABM 的一个法向量为(,,)n x y z =,则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB =,所以n 4OB ⋅=,||29n =,||1OB =.则4cos ,||||29n OB n OB n OB ⋅<>===.故平面ABM 与平面PAC 所成锐二面角的余弦值为………………10分 23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n 时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+.即证00111111211111n r r n n n n n n n n n n nC C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+. 而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n nnn n n n n n n C C x C x C xC C x C x C x ------=++++++++,所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立. 综上,()21nn f n C -=成立. ………………10分方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n nn n C C C C C C -----+++.另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21nn C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x +=++++ ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++ ④.③×④,得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n nC C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n nn n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n n n n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21nn f n C -=成立. ………………10分。
南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则AB = ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是 ▲ . 8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ . 9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是 ▲ .时间(单位:分钟)组距50 60 70 80 90 100 0.035 a 0.020 0.010 0.005第3题图Read xIf 0x > Then ln y x ← Elsexy e ← End If Print y第4题图10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =- 有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点. (1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c =. (1)若2C B =,求cos B 的值; (2)若AB AC CA CB ⋅=⋅,求cos()4B π+的值.17.(本小题满分14分)A第13题图ABCA 1B 1C 1MN第15题图有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧EF ,GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点处时,点Q的坐标为. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y且2DN NM =时,求直线BM 的方程.19.(本小题满分16分)第18题图第17题-图甲F第17题-图乙设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n ,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立. 求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.。
南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是 ▲ .8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ .9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是 ▲ . 10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .时间(单位:分钟) 组距 50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 Read x If 0x > Then ln y x ← Else x y e ← End If Print y 第4题图11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =- 有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =u u u r u u u r,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c =. (1)若2C B =,求cos B 的值;(2)若AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r ,求cos()4B π+的值.A第13题图ABCA 1B 1C 1MN第15题图有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点2处时,点Q的坐标为(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =u u u r u u u u r 时,求直线BM 的方程.第17题-图甲 FH 第17题-图乙设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n …,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-卪对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.A B E D F O · 第21(A)图[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.M BC D O P 第22题图南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞ 8.34π 9.1(0,]4 10.4034 11.9[1,)412.3- 13.24 14.100 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN . ……………4分 又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分 (2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A I 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分 又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M =I ,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC ,所以11AB A C ⊥. ……………14分 16.解:(1)因为5c =,则由正弦定理,得5sin C B =. ……………2分 又2C B =,所以5sin 22B B =,即4sin cos 5B B B =. ……………4分 又B 是ABC ∆的内角,所以sin 0B >,故5cos 4B =. ……………6分(2)因为AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而222()35cos 25c c c a c b B ac +-+-===, ……………12分又0B π<<,所以24sin 1cos 5B B =-=.从而32422cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2R MT OM OT =-=.从而2RBE MT ==,即22R BE ==. ……………2分 故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=- ……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-. …………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分列表如下:所以当x =答:当BE 的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由2NQ ,得直线NQ的方程为32y x = (2)分 令0x =,得点B 的坐标为(0,. 所以椭圆的方程为22213x y a +=. …………………4分 将点N 的坐标2213=,解得24a =. 所以椭圆C 的标准方程为22143x y +=.…………………8分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为y kx =-在y kx =0y =,得P x =,而点Q 是线段OP的中点,所以Q x = 所以直线BN 的斜率2BN BQk k k ===. ………………10分联立22143y kx x y ⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x +-=,解得M x =. 用2k 代k,得2316N x k =+. ………………12分又2DN NM =u u u r u u u u r ,所以2()N M N x x x =-,得23M N x x =. ………………14分故222334316k k ⨯=⨯++,又0k >,解得2k =. 所以直线BM的方程为2y x =. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为1y x =0y =,得P x =同理,得Q x =.而点Q 是线段OP 的中点,所以2P Q x x ==…………………10分 又2DN NM =u u u r u u u u r ,所以2122()x x x =-,得21203x x =>4=,解得2143y y =. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=⎪⎩代入到椭圆C的方程中,得2211(41927x y +=. 又22114(1)3y x =-,所以214(1)319y -+=21120y +=,解得1y =1y =.又10x >,所以点M的坐标为(3M .……………14分 故直线BM的方程为y x =-. …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分 (2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-…,即12n r n m --⋅…对任意*n N ∈都成立,则172n n m --⋅…,所以172n n m --…对任意*n N ∈都成立. ………………8分 令172n n n b --=,则11678222n n n n n n n n b b +-----=-=,所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分(3)因为数列{}n a 不是常数列,所以2T ….①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-;由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意.所以T 的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分 因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分 即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以23=(当且仅当32a =时取等号), 又0t -<,所以t 的取值范围是(,3)-∞,所以3c …. 故c 的最小值为3. ………………10分 (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分 要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述, 实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,ABE DF O · 第21(A)图设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y⎧=⎪⎨⎪=⎩, ………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程. ………………10分 (C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1(](133x x ++≥⨯+⨯, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得2x y ⎧=⎪⎪⎨⎪=⎪⎩26x y ==时,max ()x y += 所以当x y +取最大值时x的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =-u u u r ,(1,1,2)BM =--u u u u r,10AP BM ⋅=u u u r u u u u r ,||AP =u u u r ,||BM =u u u u r. 则cos ,6||||AP BM AP BM AP BM ⋅<>===u u u u ru u u r u u u u r u u u r u u u u r . 故直线AP 与BM 所成角的余弦值为6. ………5分 (2)(2,1,0)AB =-u u u r ,(1,1,2)BM =--u u u u r.设平面ABM 的一个法向量为(,,)n x y z =r,C第22题图则0n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r ,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =r.又平面PAC 的一个法向量为(0,1,0)OB =u u u r ,所以n r 4OB ⋅=u u u r,||n =r ||1OB =u u u r .则cos ,||||n OB n OB n OB ⋅<>===r u u u rr u u u r r u u ur 故平面ABM 与平面PAC………………10分23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分 在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分 在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n …时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n nC C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+. 而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n n n n n n n n n n C C x C x C xC C x C x C x ------=++++++++L L , 所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立. ………………10分 方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n n n n C C C C C C -----+++L . 另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21n n C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++L ,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x +=++++L ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++L L ④.③×④, 得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++L L L ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立. ………………10分。
南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是 ▲ .8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ .9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是 ▲ . 10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .时间(单位:分钟) 组距 50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 Read x If 0x > Then ln y x ← Else x y e ← End If Print y 第4题图11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =- 有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =u u u r u u u r,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c =. (1)若2C B =,求cos B 的值;(2)若AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r ,求cos()4B π+的值.A第13题图ABCA 1B 1C 1MN第15题图有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点2处时,点Q的坐标为(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =u u u r u u u u r 时,求直线BM 的方程.第17题-图甲 FH 第17题-图乙设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n …,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-卪对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.A B E D F O · 第21(A)图[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.M BC D O P 第22题图南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞ 8.34π 9.1(0,]4 10.4034 11.9[1,)412.3- 13.24 14.100 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN . ……………4分 又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分 (2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A I 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分 又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M =I ,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC ,所以11AB A C ⊥. ……………14分 16.解:(1)因为5c =,则由正弦定理,得5sin C B =. ……………2分 又2C B =,所以5sin 22B B =,即4sin cos 5B B B =. ……………4分 又B 是ABC ∆的内角,所以sin 0B >,故5cos 4B =. ……………6分(2)因为AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而222()35cos 25c c c a c b B ac +-+-===, ……………12分又0B π<<,所以24sin 1cos 5B B =-=.从而32422cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2R MT OM OT =-=. 从而2RBE MT ==,即22R BE ==. ……………2分 故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=-. ……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-. …………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分列表如下:所以当x =答:当BE 的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由N Q,得直线NQ的方程为32y x =…………………2分令0x =,得点B 的坐标为(0,. 所以椭圆的方程为22213x y a +=. …………………4分 将点N 的坐标2代入,得222213a +=,解得24a =. 所以椭圆C 的标准方程为22143x y +=. (8)分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为y kx =-在y kx =0y =,得P x k =,而点Q 是线段OP 的中点,所以2Q x k=.所以直线BN的斜率22BN BQ k k k k===. ………………10分联立22143y kx x y ⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x +-=,解得234M x k =+. 用2k 代k,得N x =………………12分又2DN NM =u u u r u u u u r,所以2()N M N x x x =-,得23M N x x =. ………………14分故23=0k >,解得k = 所以直线BM的方程为y x =. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为11y y x x +=0y =,得P x =同理,得Q x =.而点Q 是线段OP 的中点,所以2P Q x x ==…………………10分 又2DN NM =u u u r u u u u r ,所以2122()x x x =-,得21203x x =>4=,解得21433y y =+. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=⎪⎩代入到椭圆C的方程中,得2119x +=. 又22114(1)3y x =-,所以21214(1)(431927y y -++=21120y +=,解得1y =13y =.又10x >,所以点M的坐标为(33M .……………14分 故直线BM的方程为y x =-. …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分 (2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-…,即12n r n m --⋅…对任意*n N ∈都成立, 则172n n m --⋅…,所以172n n m --…对任意*n N ∈都成立. ………………8分 令172n n n b --=,则11678222n n n n n n n n b b +-----=-=,所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分(3)因为数列{}n a 不是常数列,所以2T ….①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩,所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-; 由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意.所以T 的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分 因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分 即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以23=(当且仅当32a =时取等号), 又0t -<,所以t 的取值范围是(,3)-∞,所以3c …. 故c 的最小值为3. ………………10分 (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分 要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述, 实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,ABE DF O · 第21(A)图设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y⎧=⎪⎨⎪=⎩, ………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程. ………………10分 (C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1(](133x x ++≥⨯⨯, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得2x y ⎧=⎪⎪⎨⎪=⎪⎩26x y ==时,max ()x y += 所以当x y +取最大值时x的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =-u u u r ,(1,1,2)BM =--u u u u r,10AP BM ⋅=u u u r u u u u r ,||AP =u u u r ,||BM =u u u u r. 则cos ,6||||AP BM AP BM AP BM ⋅<>===u u u u ru u u r u u u u r u u u r u u u u r . 故直线AP 与BM 所成角的余弦值为6. ………5分 (2)(2,1,0)AB =-u u u r ,(1,1,2)BM =--u u u u r.设平面ABM 的一个法向量为(,,)n x y z =r,C第22题图则0n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r ,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =r.又平面PAC 的一个法向量为(0,1,0)OB =u u u r ,所以n r 4OB ⋅=u u u r,||n =r ||1OB =u u u r .则cos ,||||n OB n OB n OB ⋅<>===r u u u rr u u u r r u u ur 故平面ABM 与平面PAC………………10分23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分 在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分 在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n …时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n n C C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+.而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n n n n n n n n n n C C x C x C xC C x C x C x ------=++++++++L L , 所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立. ………………10分 方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n n n n C C C C C C -----+++L . 另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21n n C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++L ,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x +=++++L ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++L L ④.③×④, 得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++L L L ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立. ………………10分。
市、市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的、号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值围是 ▲ .8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ . 9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值围是 ▲ .10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .时间(单位:分钟)50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 第4题图11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =- 有四个不同的零点,则实数m 的取值围是 ▲ .12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =u u u r u u u r,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知5c =. (1)若2C B =,求cos B 的值;(2)若AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r ,求cos()4B π+的值.A第13题图ABCA 1B 1C 1MN第15题图有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点2处时,点Q的坐标为(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =u u u r u u u u r时,求直线BM 的方程.第17题-图甲 F H 第17题-图乙设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n …,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-卪对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.市、市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.A B ED F O· 第21(A)图[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.M B C D O P 第22题图市、市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞ 8.34π 9.1(0,]4 10.4034 11.9[1,)412.3.24 14.100 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN . ……………4分 又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分 (2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A I 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分 又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M =I ,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC ,所以11AB A C ⊥. ……………14分 16.解:(1)因为5c =,则由正弦定理,得5sin C B =. ……………2分 又2C B =,所以5sin 22B B =,即4sin cos 5B B B =. ……………4分 又B 是ABC ∆的角,所以sin 0B >,故5cos 4B =. ……………6分(2)因为AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而222()35cos 25c c c a c b B ac +-+-===, ……………12分又0B π<<,所以24sin 1cos 5B B =-=.从而32422cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2R MT OM OT =-=.从而2RBE MT ==,即22R BE ==. ……………2分 故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=-分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分列表如下:所以当x =答:当BE 的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由2N Q ,得直线NQ 的方程为32y x = …………………2分 令0x =,得点B 的坐标为(0,.所以椭圆的方程为22213x y a +=. …………………4分 将点N的坐标2213=,解得24a =. 所以椭圆C 的标准方程为22143x y +=. …………………8分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为y kx =-在y kx =0y =,得P x =,而点Q 是线段OP 的中点,所以Q x = 所以直线BN 的斜率2BN BQk k k ===. ………………10分联立22143y kx x y ⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x +-=,解得M x =. 用2k 代k,得2316N x k =+. ………………12分又2DN NM =u u u r u u u u r ,所以2()N M N x x x =-,得23M N x x =. ………………14分故222334316k k ⨯=⨯++,又0k >,解得2k =. 所以直线BM的方程为2y x =. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为1y x =0y =,得P x =同理,得Q x =.而点Q 是线段OP 的中点,所以2P Q x x ==…………………10分 又2DN NM =u u u r u u u u r ,所以2122()x x x =-,得21203x x =>4=,解得2143y y =. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=⎪⎩代入到椭圆C的方程中,得2211(41927x y ++=. 又22114(1)3y x =-,所以214(1)319y -+=21120y +=,解得1y =1y =.又10x >,所以点M的坐标为(3M .……………14分 故直线BM的方程为y x =-. …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分 (2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-…,即12n r n m --⋅…对任意*n N ∈都成立,则172n n m --⋅…,所以172n n m --…对任意*n N ∈都成立. ………………8分 令172n n n b --=,则11678222n n n n n n n n b b +-----=-=,所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分(3)因为数列{}n a 不是常数列,所以2T ….①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-;由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意.所以T 的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分 因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分 即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以23=(当且仅当32a =时取等号), 又0t -<,所以t 的取值围是(,3)-∞,所以3c …. 故c 的最小值为3. ………………10分 (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分 要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述, 实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,ABE DF O · 第21(A)图设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y⎧=⎪⎨⎪=⎩, ………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程. ………………10分 (C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1(](1)33x x ++≥⨯+⨯, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得2x y ⎧=⎪⎪⎨⎪=⎪⎩26x y ==时,max ()x y += 所以当x y +取最大值时x的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系.则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =-u u u r ,(1,1,2)BM =--u u u u r,10AP BM ⋅=u u u r u u u u r ,||AP =u u u r ,||BM =u u u u r. 则cos ,6||||AP BM AP BM AP BM ⋅<>===u u u u ru u u r u u u u r u u u r u u u u r . 故直线AP 与BM 所成角的余弦值为6. ………5分 (2)(2,1,0)AB =-u u u r ,(1,1,2)BM =--u u u u r.设平面ABM 的一个法向量为(,,)n x y z =r,C第22题图则0n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r ,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =r.又平面PAC 的一个法向量为(0,1,0)OB =u u u r ,所以n r 4OB ⋅=u u u r,||n =r ||1OB =u u u r .则cos ,||||n OB n OB n OB ⋅<>===r u u u rr u u u r r u u ur 故平面ABM 与平面PAC………………10分23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分 在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分 在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n …时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n nC C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+. 而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n n n n n n n n n n C C x C x C xC C x C x C x ------=++++++++L L , 所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立. ………………10分 方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n n n n C C C C C C -----+++L . 另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21n n C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++L ,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x +=++++L ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++L L ④.③×④, 得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++L L L ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立. ………………10分。
南京市、盐城市2018届高三年级第一次模拟考试 数 学 2018.01注意事项: 1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、考试号写在答题卡内.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡. 参考公式:柱体体积公式:V =Sh ,其中S 柱体的底面积,h 为柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡上的相应位置上.1.已知集合A ={x ∣x (x -4)<0},B ={0,1,5},则A ∩B = ▲ . 2.设复数z =a +i(a ∈R ,i 为虚数单位),若(1+i)⋅z 为纯虚数,则a 的值为 ▲ . 3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80) (单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若x =0,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4.若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.在平面直角坐标系xOy 中,若抛物线y 2=2px 的焦点与双曲线x 24-y 25=1的右焦点重合,则实数p 的值为 ▲ .7.设函数y =e x +1ex -a 的值域为A ,若A ⊆[0,+∞),则实数a 的取值范围是 ▲ .8.已知α,β均为锐角,且满足(tan α-1)(tan β-1)=2,则α+β的值为 ▲ . 9.若函数y =sin ωx 在区间[0,2π]上单调递增,则实数ω的取值范围是 ▲ . 10.设S n 为等差数列{a n }的前n 项和,若{a n }的前2017项中的奇数项和为2018,则S 2017的值为 ▲ .(第4题)/分钟(第3题)0.0050.0100.020a 0.03511.设函数f (x )是偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧x (3-x ),0≤x ≤3,-3x+1,x >3.若函数y =f (x )-m 有四个不同的零点,则实数m12.在平面直角坐标系xOy 中,上存在一点P ,圆x 2+(y -1)2=1上存在一点Q ,满足→OP =3→OQ ,则实数k 的最小值为 ▲ . 13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A ,B ,C ,D 四点均位于图中的“晶格点”处,且A ,B 的位置如图所示,则→AB ⋅→CD 的最大值为 ▲ .14.若不等式k sin 2B +sin A sin C >19sin B sin C 对任意△ABC 都成立,则实数k 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分. 请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 15.(本小题满分14分)如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB ,点M ,N 分别是AB ,A 1B 1的中点. (1)求证:BN ∥平面A 1MC ;(2)若A 1M ⊥AB 1,求证:AB 1⊥A 1C .16.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且c =52b .(1)若C =2B ,求cos B 的值;(2)若→AB ⋅→AC =→CA ⋅→CB ,求cos(B+π4)的值.(第13题) A BC A 1 B 1C 1 M N (第15题)有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、∠EOF =120︒的扇形,且弧⌒EF ,⌒GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的下顶点为B ,点M .N是椭圆上异于点B 的动点,直线BM ,BN 分别与x 轴交于点P ,Q ,且点Q 是线段OP的中点.当点N 运动到点(3,32)处时,点Q 的坐标为(2 33,0).(1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点M ,N 均在y 轴右侧,且→DN =2→NM 时,求直线BM的方程.(第18题)(第17题-甲) F(第17题-乙)设数列{a n}满足a n2=a n+1a n-1+λ(a2-a1)2,其中n≥2,且n∈N,λ为常数.(1)若{a n}是等差数列,且公差d≠0,求λ的值;(2)若a1=1,a2=2,a3=4,且存在r∈[3,7],使得m⋅a n≥n-r对任意的n∈N*都成立,求m的最小值;(3)若λ≠0,且数列{a n}不是常数列,如果存在正整数T,使得a n+T=a n对任意的n∈N*均成立,求满足条件的所有数列{a n}中T的最小值.20.(本小题满分16分)设函数f(x)=ln x,g(x)=ax+bx-c(a,b,c∈R).(1)当c=0时,若函数f(x)与g(x)的图象在x=1处有相同的切线,求a,b的值;(2)当b=3-a时,若对任意x0∈(1,+∞)和任意a∈(0,3),总存在不相等的正实数x1,x2,使得g(x1)=g(x2)=f(x0),求c的最小值;(3)当a=1时,设函数y=f(x)与y=g(x)的图象交于A(x1,y1),B(x2,y2)(x1<x2)两点.求证:x1x2-x2<b<x1x2-x1.南京市、盐城市2018届高三年级第一次模拟考试数学附加题2018.01 注意事项:1.附加题供选修物理考生使用.2.本试卷共40分,考试时间30分钟.2.答题前,考生务必将自己的姓名、学校、考试号写在答题卡内.试题的答案写在答题..卡.上对应题目的答案空格内.考试结束后,交回答题卡. 21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在答题相应的区域内作答.若多做,则按作答的前两小题评分.解答应写出文字说明、证明过程或演算步骤. A .(选修4-1:)A .选修4-1:几何证明选讲(本小题满分10分)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若DE =4,求切点E 到直线AB 的距离.B .选修4-2:矩阵与变换(本小题满分10分)已知矩阵M =⎣⎡⎦⎤2001,求圆x 2+y 2=1在矩阵M 对应的变换作用下所得的曲线方程.C .选修4-4:坐标系与参数方程(本小题满分10分)在极坐标系中,直线ρcos(θ+π3)=1与曲线ρ=r (r >0)相切,求r 的值.D .选修4-5:不等式选讲(本小题满分10分)已知实数x ,y 满足x 2+3y 2=1,求当x +y 取最大值时x 的值.【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域内.......作答,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)如图,四棱锥P -ABCD 的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,AC =4,BD =2,OP =4. (1)求异面直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面P AC 所成锐二面角的余弦值.AB ED O · (第21(A))23.(本小题满分10分)已知n ∈N *,nf (n )=C 0n C 1n +2 C 1n C 2n +…+r C r -1n C rn +…+n C n -1n C nn .(1)求f (1),f (2),f (3)的值;(2)试猜想f (n )的表达式(用一个组合数表示),并证明你的猜想.南京市、盐城市2018届高三年级第一次模拟考试 数学参考答案及评分标准 2018.01说明:MACDOP(第22题)1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.)1.{1} 2.1 3.1200 4.1 5.236.6 7.(-∞,2] 8.3π4 9.(0,14] 10.4034 11.[1,94) 12.- 3 13.24 14.100 二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.)15.证明:(1)因为ABC -A 1B 1C 1是直三棱柱,所以AB ∥A 1B 1,且AB =A 1B 1.又因为点M ,N 分别是AB ,A 1B 1的中点, 所以MB =A 1N ,且MB ∥A 1N , 所以四边形A 1NBM 是平行四边形,从而A 1M ∥BN .……………………………… 4分 又BN ⊄平面A 1MC ,A 1M ⊂平面A 1MC ,所以BN ∥平面A 1MC . ……………………………………………………………………………6分(2)因为ABC -A 1B 1C 1是直三棱柱, 所以AA 1⊥平面ABC ,而CM ⊂平面ABC , 所以AA 1⊥CM .又CA =CB ,且M 是AB 的中点,所以CM ⊥AB . 又AB ∩AA 1=A ,AB ,AA 1⊂平面ABB 1A 1, 所以CM ⊥平面ABB 1A 1.………………………………………………………………………………8分又AB 1⊂平面ABB 1A 1,所以CM ⊥AB 1.………………………………………………………………10分又AB 1⊥A 1M ,A 1M ,CM ⊂平面A 1MC ,A 1M ∩CM =M , 所以AB 1⊥平面A 1MC ,…………………………………………………………………………………12分又A 1C ⊂平面A 1MC ,所以AB 1⊥A 1C .…………………………………………………………………14分A BC A 1 B 1 C 1 MN(第15题)16.解:(1)因为c =52b ,则由正弦定理,得sin C =52sin B .…………………………………………2分又因为C =2B ,所以sin2B =52sin B ,即2sin B cos B =52sin B . ………………………………………4分又B 是△ABC 的内角,所以sin B >0,故cos B =54. ………………………………………………6分 (2)因为→AB ⋅→AC =→CA ⋅→CB ,所以cb cos A =ba cos C ,则由余弦定理, 得b 2+c 2-a 2=b 2+a 2-c 2,得a =c . …………………………………………………………………10分从而cos B =a 2+c 2-b 22ac = c 2+c 2-(2 5c )22c 2=35.………………………………………………………12分 又0<B <π,所以sin B =1-cos 2B =45.从而cos(B +π4)=cos B cos π4-sin B sin π4=35⨯22-45⨯22=-210. ……………………………………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE =OF =OM =R ,在Rt △OET 中,因为∠EOT =12∠EOF =60︒, 所以OT =12R ,则MT =OM -OT =R 2. 从而BE =MT =12R ,即R =2BE =2.…………………… 2分 故所得柱体的底面积S =S 扇形OEF -S △OEF=13πR 2-12R 2sin120︒=4π3-3.………………………… 4分又所得柱体的高EG =4,所以V =S ⨯EG =16π3-43.答:当BE 长为1分米时,折卷成的包装盒的容积为(16π3-43)立方分米. …………………………………………………………………………6分 (2)设BE =x ,则R =2x ,所以所得柱体的底面积S =S 扇形OEF -S △OEF =13πR 2-12R 2sin120︒=(4π3-3)x 2.又所得柱体的高EG =6-2x ,所以V =S ⨯EG =(8π3-23)(-x 3+3x 2) ,其中0<x <3. ……………………………………10分令f (x )=-x 3+3x 2,x ∈(0,3),则由f '(x )=-3x 2+6x =-3x (x -2)=0, 解得x =2. ………………………………………………………………………………………12分答:当BE 的长为2分米时,折卷成的包装盒的容积最大. ……………………………………14分18.解:(1)由N (3,32),Q (2 33,0),得直线NQ 的方程为y =32x -3.……………………2分令x =0,得点B 的坐标为(0,-3).所以椭圆的方程为x 2a 2+y 23=1 .…………………………………………………………………… 4分将点N 的坐标(3,32)代入,得(3)2a 2+(32)23=1,解得a 2=4.所以椭圆C 的标准方程为x 24+y 23=1.…………………………………………………………… 8分(2)方法一:设直线BM 的斜率为k (k >0),则直线BM 的方程为y =kx -3.在y =kx -3中,令y =0,得x P =3k ,而点Q 是线段OP 的中点,所以x Q =32k .所以直线BN 的斜率k BN =k BQ =0-(-3)32k-0=2k .………………………………………………10分联立⎩⎪⎨⎪⎧y =kx -3, x 24+y 23=1,消去y ,得(3+4k 2)x 2-83kx =0,解得x M =8 3k 3+4k 2 . 用2k 代k ,得x N =16 3k3+16k 2.……………………………………………………………………12分又→DN =2→NM ,所以x N =2(x M -x N ),得2x M =3x N .…………………………………………… 14分故2⨯8 3k 3+4k 2=3⨯16 3k 3+16k2,又k >0,解得k =62.所以直线BM 的方程为y =62x -3. …………………………………………………………16分方法二:设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2).由B (0,-3),得直线BM 的方程为y = y 1+3x 1x -3,令y =0,得x P =3x 1y 1+3.同理,得x Q =3x 2y 2+3.而点Q 是线段OP 的中点,所以x P =2x Q ,故3x 1y 1+3=2⨯3x 2y 2+3. …………………………10分又→DN =2→NM ,所以x 2=2(x 1-x 2),得x 2=23x 1>0,从而1y 1+3=43y 2+3,解得y 2=43y 1+33.…………………………………………………………………………………12分 将⎩⎨⎧x 2=23x 1,y 2=43y 1+33,代入到椭圆C 的方程中,得x 129+(4y 1+3)227=1.又x 12=4(1-y 123),所以4(1-y 123)9+(4y 1+3)227=1,………………………………………………14分即3y 12+2y 1-3=0,解得y 1=-3(舍)或y 1=33.又x 1>0,所以点M 的坐标为M (4 23,33).故直线BM 的方程为y =62x -3.……………………………………………………………… 16分 19.解:(1)由题意,可得a n 2=(a n +d )(a n -d )+λd 2,化简得(λ-1)d 2=0,又d ≠0,所以λ=1. …………………………………………………………4分(2)将a 1=1,a 2=2,a 3=4代入条件,可得4=1⨯4+λ,解得λ=0,所以a n 2=a n +1a n -1,所以数列{a n }是首项为1,公比q =2的等比数列,所以a n =2n-1. ………6分欲存在r ∈[3,7],使得m ⋅2n -1≥n -r ,即r ≥n -m ⋅2n -1对任意n ∈N *都成立,则7≥n -m ⋅2n -1,所以m ≥n -72n -1 对任意n ∈N *都成立. …………………………………………8分令b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n 2n , 所以当n >8时,b n +1<b n ;当n =8时,b 9=b 8;当n <8时,b n +1>b n .所以b n 的最大值为b 9=b 8=1128,所以m 的最小值为1128.………………………………………10分 (3)因为数列{a n }不是常数列,所以T ≥2.①若T =2,则a n +1=a n 恒成立,从而a 3=a 1,a 4=a 2,所以⎩⎨⎧a 22=a 12+λ(a 2-a 1)2,a 12=a 22+λ(a 2-a 1)2, 所以λ(a 2-a 1)2=0,又λ≠0,所以a 2=a 1,可得{a n }是常数列,这与已知条件矛盾, 所以T =2不合题意. …………………………………………………………………………………12分②若T =3,取a n =⎩⎪⎨⎪⎧1,n =3k -2,2,n =3k -1,-3,n =3k ,(k ∈N *)(*),满足a n +3=a n 恒成立.…………………… 14分由a 22=a 1a 3+λ(a 2-a 1)2,可得此时λ=7.则条件式变为a n 2=a n +1a n -1+7.由22=1⨯3+7,知a 3k -12=a 3k -2a 3k +λ(a 2-a 1)2;由(-3)2=2⨯1+7,知a 3k 2=a 3k -1a 3k +1+λ(a 2-a 1)2;由12=(-3)⨯2+7,知a 3k +12=a 3k a 3k +2+λ(a 2-a 1)2;所以,数列(*)适合题意.所以T 的最小值为3. …………………………………………………………………………………16分(注:写一个数列{a n }时,需满足a 1+a 2+a 3=0,且a 1≠a 2.)20.解:(1)由f (x )=ln x ,得f (1)=0,又f '(x )=1x,所以f '(1)=1. 当c =0时,g (x )=ax +b x ,所以g '(x )=a -b x 2 ,所以g '(1)=a -b .…………………………… 2分因为函数f (x )与g (x )的图象在x =1处有相同的切线,所以⎩⎨⎧f '(1)=g '(1),f (1)=g (1),即⎩⎨⎧a -b =1,a +b =0,解得⎩⎨⎧a =12,b =-12. …………………………………………………4分 (2)方法一:当x 0>1时,则f (x 0)>0,又b =3-a ,设t =f (x 0),则题意可转化为方程ax +3-a x-c =t (t >0) 在(0,+∞)上有相异两实根x 1,x 2, ……………6分即关于x 的方程ax 2-(c +t )x +(3-a )=0(t >0)在(0,+∞)上有相异两实根x 1,x 2.所以⎩⎪⎨⎪⎧0<a <3,△=(c +t )2-4a (3-a )>0,x 1+x 2=c +t a >0,x 1x 2=3-a a>0.得⎩⎪⎨⎪⎧0<a <3,(c +t )2>4a (3-a ),c +t >0. 所以c >2a (3-a )-t 对任意t ∈(0,+∞)恒成立.…………………………………………… 8分因为0<a <3,所以2a (3-a )≤2⨯a +3-a 2=3(当且仅当a =32时取等号). 又-t <0,所以2a (3-a )-t 的取值范围是(-∞,3),所以c ≥3.故c 的最小值为3. …………………………………………………………………………………10分方法二:由b =3-a ,且0 <a <3,得g '(x )=a -3-a x 2=ax 2-(3-a )x 2=0,得 x =3-a a或x =-3-a a(舍), 则函数g (x )在(0,3-a a )上递减;在(3-a a,+∞)上递增. 又对任意x 0>1,f (x 0)为(0,+∞)上的任意一个值,若存在不相等的正实数x 1,x 2, 使得g (x 1)=g (x 2)=f (x 0),则g (x )的最小值小于或等于0.即g (3-a a)=2a (3-a )-c ≤0, ……………………………………………………………6分即c ≥2a (3-a )对任意 a ∈(0,3)恒成立.又2a (3-a )≤a +(3-a )=3,所以c ≥3.…………………………………………………… 8分当c =3,对任意a ∈(0,3),x 0∈(1,+∞),方程g (x )-f (x 0)=0化为 ax +3-a x-3-f (x 0)=0,即ax 2-[3+f (x 0)]x +(3-a )=0(*) 关于x 的方程(*)的△=[3+f (x 0)]2-4a (3-a )≥[3+f (x 0)]2-4⎝⎛⎭⎫ a +3-a 22 =[3+f (x 0)]2-9,因为x 0>1,所以f (x 0)=ln x 0>0,所以△>0,所以方程(*)有两个不相等的实数解x 1,x 2,又x 1+x 2=f (x 0)+3a >0,x 1x 2=3-a a>0, 所以x 1,x 2为两个正实数解.所以c 的最小值为3. ……………………………………………………………………………10分(3)当a =1时,因为函数f (x )与g (x )的图象交于A ,B 两点,所以⎩⎨⎧ln x 1=x 1+b x 1-c ,ln x 2=x 2+b x 2-c ,两式相减,得b =x 1x 2(1-ln x 2-ln x 1x 2-x 1).……………………………… 12分要证明x 1x 2-x 2<b <x 1x 2-x 1,即证x 1x 2-x 2<x 1x 2(1-ln x 2-ln x 1x 2-x 1)<x 1x 2-x 1, 即证1x 2<ln x 2-ln x 1x 2-x 1<1x 1,即证1-x 1x 2<ln x 2x 1<x 2x 1-1.…………………………………………… 14分令x 2x 1=t ,则t >1,此时即证1-1t<ln t <t -1. 令ϕ(x )=ln t +1t -1,所以ϕ'(t )=1t -1t 2=t -1t 2>0,所以当t >1时,函数ϕ(t )单调递增. 又ϕ(1)=0,所以ϕ(t )=ln t +1t -1>0,即1-1t<ln t 成立. 再令m (t )=ln t -t -1,所以m '(t )=1t -1=1-t t<0, 所以当t >1时,函数m (t )单调递减, 又m (1)=0,所以m (t )=ln t -t -1<0,即ln t <t -1也成立.综上所述, 实数x 1,x 2满足x 1x 2-x 2<b <x 1x 2-x 1. …………………………………………16分南京市、盐城市2018届高三年级第一次模拟考试数学参考答案及评分标准 2018.0121.【选做题】在A 、B 、C 、D 四小题中只能选做2小题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4-1:几何证明选讲解:如图,连接AE ,OE ,过E 作EF ⊥AB ,交AB 于F . 因为直线DE 与⊙O 相切于点E ,所以DE ⊥OE , 又因为AD 垂直DE 于D ,所以AD ∥OE ,所以∠DAE =∠OEA ①, 在⊙O 中OE =OA ,所以∠OEA =∠OAE ②,…………………………5分 由①②得∠DAE =∠OAE ,即∠DAE =∠F AE ,又∠ADE =∠AFE ,AE =AE , 所以△ADE ≌△AFE ,所以DE =FE ,又DE =4,所以FE =4,即E 到直径AB 的距离为4. …………………………………………………………………………10分B .选修4-2:矩阵与变换解:设P (x 0,y 0)是圆x 2+y 2=1上任意一点,则x 02+y 02=1.设点P (x 0,y 0)在矩阵M 对应的变换作用下所得的点为Q (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎡⎦⎤2001 ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤2x 0y 0 , 即⎩⎨⎧x =2x 0,y =y 0,即⎩⎪⎨⎪⎧x 0=12x ,y 0=y ,…………………………………………………………………………………5分 代入x 02+y 02=1,得x 24+y 2=1,即为所求的曲线方程. ……………………………………………10分C .选修4-4:坐标系与参数方程解:以极点O 为原点,极轴Ox 为x 轴正半轴建立平面直角坐标系,由ρcos(θ+π3)=1 ,得ρ(cos θcos π3-sin θsin π3)=1, 得直线的直角坐标方程为x -3y -2=0 .………………………………………………………… 5分曲线ρ=r 的直角坐标方程为圆x 2+y 2=r 2,所以圆心到直线的距离为d =∣1⨯0-3⨯0-2∣ 12+(-3)2=1. 因为直线ρcos(θ+π3)=1与曲线ρ=r (r >0)相切,所以r =d ,即r =1. ……………………………10分D .选修4-5:不等式选讲解:由柯西不等式,得[x 2+(3y )2][12+(33)2]≥(x ⨯1+3y ⨯33)2, 即43(x 2+3y 2)≥(x +y )2 . 而x 2+3y 2=1,所以(x +y )2≤43,所以-233≤x +y ≤23A B E D F O · (第21(A))3,………………………………………… 5分由⎩⎪⎨⎪⎧x 1=3y 33,x +y =233,即⎩⎨⎧x =32,y =36,所以当且仅当x =32,y =36时,(x +y )max =23 3 . 所以当x +y 取最大值时x 的值为x =32.…………………………………………………………… 10分 【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)因为ABCD 是菱形,所以AC ⊥BD .因为OP ⊥底面ABCD ,所以以O 为原点,直线OA ,OB ,OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系,则A (2,0,0),B (0,1,0),P (0,0,4),C (-2,0,0),M (-1,0,2),所以→AP =(-2,0,4),→BM =(-1,-1,2),→AP ⋅ →BM =10,∣→AP ∣=25,∣→BM ∣=6. 则cos <→AP ,→BM >=→AP ⋅ →BM ∣→AP ∣∣→BM ∣=102 5⨯ 6=306.故异面直线AP 与BM 所成角的余弦值为306………………5分 (2)→AB =(-2,1,0),→BM =(-1,-1,2). 设平面ABM 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⋅ →AB =0,n ⋅ →BM =0,得⎩⎨⎧-2x +y =0,-x -y +2z =0, 令x =2,得y =4,z =3. 所以平面ABM 的一个法向量为n =(2,4,3).又平面P AC 的一个法向量为→OB =(0,1,0),所以n ⋅→OB =4,∣n ∣=29,∣→OB ∣=1.则cos <n ,→OB >=n ⋅ →OB ∣n ∣∣→OB ∣=4 2929 . 故平面ABM 与平面P AC 所成锐二面角的余弦值为4 2929. …………………………………………10分23.解:(1)由条件,n ∈N *,nf (n )=C 0n C 1n +2 C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C n n ①,在①中令n =1,得f (1)=C01⋅C 11=1.…………………………………………………………………… 1分在①中令n =2,得2f (2)=C 02C12+ 2 C 12C 22=6,得f (2)=3.…………………………………………… 2分在①中令n =3,得3f (3)=C 03C 13+2 C 13C 23+3 C 23C 33=30,得f (3)=10. ………………………………3分C(第22题)(2)猜想f (n )=C n 2n -1(或f (n )=C n -1 2n -1).………………………………………………………………… 5分 欲证猜想成立,只要证等式n C n 2n -1=C 0n C 1n +2 C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C n n 成立.方法一:当n =1时,等式显然成立.当n ≥2时,因为r C r n =r ⨯n !r !(n -r )!=n !(r -1)!(n -r )!=n ⨯(n -1)!(r -1)!(n -r )!=n C r -1n -1,………………………7分故r C r -1n C r n =(r C r n ) C r -1n =n C r -1n -1C r -1n .故只需证明n C n 2n -1=n C 0 n -1C 0n +n C 1 n -1C 1n +…+n C r -1n -1C r -1n +…+n C n -1n -1C n -1n . 即证 C n 2n -1=C 0 n -1C 0n + C 1 n -1C 1n +…+ C r -1n -1C r -1n +…+ C n -1n -1C n -1n .而C r -1n =C n -r +1n ,故即证C n 2n -1=C 0 n -1C n n + C 1 n -1C n -1n +…+ C r -1n -1C n -r +1n +…+ C n -1n -1C 1n ②.由等式(1+x )2n -1=(1+x )n -1(1+x )n 可得,左边x n 的系数为n2n -1. 而右边(1+x )n -1(1+x )n =(C 0 n -1+C 1 n -1x +C 2 n -1x 2+…+C n -1n -1x n -1)( C 0n +C 1n x +C 2n x 2+…+C n n x n )所以x n 的系数为C 0 n -1C n n + C 1 n -1C n -1n +…+ C r -1n -1C n -r +1n +…+ C n -1n -1C 1n .由(1+x )2n -1=(1+x )n -1(1+x )n 恒成立可得②成立.综上,f (n )=C n 2n -1成立.……………………………………………………………………………… 10分方法二:构造一个组合模型,一个袋中装有2n -1个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球.现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n -r 个白球)的n 个小球的组合的个数为C r n -1C n -r n ,0≤r ≤n -1,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为 C 0 n -1C n n + C 1 n -1C n -1n +…+ C r -1n -1C n -r +1n +…+ C n -1n -1C 1n .另一方面,从袋中2n -1个小球中任意摸出n 个小球的组合的个数为C n 2n -1. 故C n 2n -1=C 0 n -1C n n + C 1 n -1C n -1n +…+ C r -1n -1C n -r +1n +…+ C n -1n -1C 1n ,余下同方法一. …………………………………………………………………………………………10分方法三:由二项式定理,得(1+x )n =C 0n +C 1n x +C 2n x 2+…+C n n x n ③.两边求导,得n (1+x )n -1=C 1n +2C 2n x +…r C r n x r -1 +…+n C nn x n -1 ④.③×④, 得n (1+x )2n -1=(C 0n +C 1n x +C 2n x 2+…+C n n x n )( C 1n +2C 2n x +…r C r n x r -1 +…+n C nn x n -1) ⑤. 左边x n 的系数为n C n2n -1.右边x n 的系数为C 1n C n n +2 C 2n C n -1n +…+r C r n C n -r +1n +…+n C n n C 1n=C 1n C 0n +2C 2n C 1n +…+r C r n C r -1n +…+n C n n C n -1n=C 0n C 1n +2 C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C n n .由⑤恒成立,可得n C n 2n -1=C 0n C 1n +2 C 1n C 2n +…+r C r -1n C r n +…+n C n -1n C n n . 故f (n )=C n 2n -1成立. ……………………………………………………………………………………10分。