2016届高三物理一轮复习第4章第4课时万有引力与航天导学案(无答案)
- 格式:doc
- 大小:1.96 MB
- 文档页数:4
第4讲万有引力与航天一、开普勒行星运动定律1.开普勒第一定律——轨道定律所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.2.开普勒第二定律——面积定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的________.3.开普勒第三定律——周期定律所有行星的轨道的半长轴的三次方跟它的________的二次方的比值都相等.二、万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成________、与它们之间距离r的二次方成________.2.表达式F=G m1m2,G为引力常量,其值通常取G=6.67×10-11N·m2/kg2.r23.适用条件(1)公式适用于________间的相互作用,当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是________的距离.三、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随________而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.2.相对论时空观(1)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是________的.(2)光速不变原理:不管在哪个惯性系中,测得的真空中的光速都是________的.,生活情境1.我国的“天链一号”是地球同步卫星,在发射变轨过程中有一椭圆轨道如图所示,A 、B 是“天链一号”运动的远地点和近地点.(1)根据开普勒第一定律,“天链一号”围绕地球运动的轨迹是椭圆,地球处于椭圆的一个焦点上.( )(2)根据开普勒第二定律,“天链一号”在B 点的运动速度比在A 点小.( ) (3)“天链一号”在A 点的加速度小于在B 点的加速度.( )(4)开普勒第三定律a 3T 2=k 中,k 是只与中心天体有关的物理量.( )(5)开普勒根据自己长期观察的实验数据总结出了行星运动的规律,并发现了万有引力定律.( )教材拓展2.[人教版必修2P 48T 3改编]火星的质量和半径分别约为地球的110和12,地球的第一宇宙速度为v ,则火星的第一宇宙速度约为( )A .√55v B .√5v C .√2v D .√22v关键能力·分层突破考点一 万有引力定律与开普勒定律1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道处:G MmR 2=mg 1+m ω2R .(2)在两极处:G MmR 2=mg 2.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)在地球上空距离地球表面h处的重力加速度为g′:mg′=G Mm(R+h)2,得g′=GM(R+h)2,所以gg′=(R+h)2R2.例1. [2021·全国甲卷,18]2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m.已知火星半径约为3.4×106 m,火星表面处自由落体的加速度大小约为3.7 m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A.6×105 m B.6×106 mC.6×107 m D.6×108 m跟进训练1.[2021·山东卷,5]从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越.已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍.在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程.悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )A.9∶1 B.9∶2C.36∶1 D.72∶12.如图所示,一颗卫星绕地球沿椭圆轨道运动,运动周期为T,图中虚线为卫星的运行轨道,A、B、C、D是轨道上的四个位置,其中A距离地球最近,C距离地球最远.B和D是弧线ABC和ADC的中点.下列说法正确的是( )A.卫星在C点的速度最大B.卫星在C点的加速度最大C.卫星从A经D到C点的运动时间为T2D .卫星从B 经A 到D 点的运动时间为T2考点二 天体质量和密度的估算1.计算中心天体的质量、密度时的两点区别(1)天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.(2)自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.2.天体质量和密度的估算方法(1)利用天体表面的重力加速度g 和天体半径R .①由G MmR 2=mg 得天体质量M =gR 2G.②天体密度ρ=M V =M 43πR 3=3g4πGR.③GM =gR 2称为黄金代换公式.(2)测出卫星绕天体做匀速圆周运动的周期T 和半径r . ①由GMm r 2=m4π2T 2r 得天体的质量M =4π2r 3GT 2.②若已知天体的半径R ,则天体的密度ρ=M V =M43πR3=3πr 3GT 2R 3. 例2. [2021·广东卷,2]2021年4月,我国自主研发的空间站天和核心舱成功发射并入轨运行.若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径跟进训练 3.如图所示,“嫦娥五号”探测器包括轨道器、返回器、上升器、着陆器四部分.探测器自动完成月面样品采集,并在2020年12月17日凌晨安全着陆回家.若已知月球半径为R ,“嫦娥五号”在距月球表面为R 的圆轨道上飞行,周期为T ,万有引力常量为G ,下列说法正确的是( )A .月球的质量为4π2R 3GT 2B .月球表面的重力加速度为32π2R T 2C .月球的密度为3πGT 2D .月球第一宇宙速度为4πR T4.[2021·全国乙卷,18]科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104M B .4×106MC .4×108MD .4×1010M考点三 卫星运行规律及特点角度1宇宙速度的理解与计算例3. 我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度角度2卫星运行参量的比较做匀速圆周运动的卫星所受万有引力完全提供其所需向心力,由GMm r 2=m v 2r =mr ω2=m4π2T 2r =ma 可推导出:v = √GMrω= √GMr 3T = √4π2r 3GM a =G M r 2}⇒当r 增大时{ v 减小ω减小T 增大a 减小例4. [2021·湖南卷,7](多选)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道.根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造.核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的116,下列说法正确的是( )A .核心舱进入轨道后所受地球的万有引力大小约为它在地面时的(1617)2B .核心舱在轨道上飞行的速度大于7.9 km/sC .核心舱在轨道上飞行的周期小于24 hD角度3同步卫星问题地球同步卫星的五个“一定”例5. [2022·北京石景山模拟]研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大角度4卫星变轨问题例6.[2021·天津模拟]2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火星上首次留下中国人的印迹.天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星.经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅱ运行,如图所示,两轨道相切于近火点P ,则天问一号探测器( )A .在轨道Ⅱ上处于受力平衡状态B .在轨道Ⅰ运行周期比在Ⅱ时短C .从轨道Ⅰ进入Ⅱ在P 处要加速D .沿轨道Ⅰ向P 飞近时速度增大[思维方法]人造卫星问题的解题技巧(1)一个模型卫星的运动可简化为质点的匀速圆周运动模型. (2)两组公式①GMm r 2=m v 2r =m ω2r =m4π2T 2r =ma n .②mg =G MmR 2(g 为星体表面处的重力加速度).(3)a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较最终归结到半径的比较.跟进训练5.(多选)2021年6月17日,神舟十二号载人飞船采用自主快速交会对接模式成功对接于天和核心舱前向端口,与此前已对接的天舟二号货运飞船一起构成三舱组合体.组合体绕地球飞行的轨道可视为圆轨道,该轨道离地面的高度约为389 km.下列说法正确的是( )A .组合体在轨道上飞行的周期小于24 hB .组合体在轨道上飞行的速度大于7.9 km/sC .若已知地球半径和表面重力加速度,则可算出组合体的角速度D .神舟十二号先到达天和核心舱所在圆轨道,然后加速完成对接6.[2021·浙江6月,10]空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化.空间站安装有发动机,可对轨道进行修正.图中给出了国际空间站在2020.02~2020.08期间离地高度随时间变化的曲线,则空间站( )A.绕地运行速度约为2.0 km/sB.绕地运行速度约为8.0 km/sC.在4月份绕行的任意两小时内机械能可视为守恒D.在5月份绕行的任意两小时内机械能可视为守恒考点四双星或多星模型素养提升1.双星模型(1)结构图(2)特点:①各自所需向心力由彼此间的万有引力提供,即G m1m2L2=m1ω12r1,G m1m2L2=m2ω22r2.②两颗星运行的周期及角速度相同,即T1=T2,ω1=ω2.③两颗星的运行轨道半径与它们之间的距离关系为r1+r2=L.2.多星系统(1)多星的特征:所研究星体间的万有引力的合力提供其做圆周运动的向心力.除中央星体外,各星体的周期相同.(2)多星的形式(如三星模型)例7. [2022·潍坊模拟](多选)在宇宙中,当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”.天鹅座X 1就是这样一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是( )A .它们间的万有引力大小变大B .它们间的万有引力大小不变C .恒星做圆周运动的线速度变大D .恒星做圆周运动的角速度变大跟进训练7.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用,分别围绕其连线上的某一点做周期相同的匀速圆周运动,称之为双星系统.由恒星A 与恒星B 组成的双星系统绕其连线上的O 点做匀速圆周运动,如图所示.已知它们的运行周期为T ,恒星A 的质量为M ,恒星B 的质量为3M ,引力常量为G ,则下列判断正确的是( )A .两颗恒星相距 √GMT 2π23B .恒星A 与恒星B 的向心力之比为3∶1C .恒星A 与恒星B 的线速度之比为1∶3D .恒星A 与恒星B 的轨道半径之比为√3∶18.宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为M 的星位于等边三角形的三个顶点上,任意两颗星的距离均为R ,并绕其中心O 做匀速圆周运动.如果忽略其他星体对它们的引力作用,引力常量为G ,以下对该三星系统的说法中正确的( )A .每颗星做圆周运动的角速度为3√GMR 3B .每颗星做圆周运动的向心加速度与三星的质量无关C .若距离R 和每颗星的质量M 都变为原来的2倍,则角速度变为原来的2倍D .若距离R 和每颗星的质量M 都变为原来的2倍,则线速度大小不变第4讲 万有引力与航天必备知识·自主排查一、1.椭圆 焦点 2.面积 3.公转周期 二、1.正比 反比3.(1)质点 (2)两球心间 三、7.9 匀速圆周 11.2 地球 16.7 太阳 四、1.(1)运动状态 (2)相同 2.(1)不同 (2)不变 生活情境1.(1)√ (2)× (3)√ (4)√ (5)× 教材拓展 2.答案:A关键能力·分层突破例1 解析:设火星的半径为R 1、表面的重力加速度为g 1,质量为m 1的物体绕火星表面飞行的周期为T 1,则有m 14π2T 12 R 1=m 1g 1,设椭圆停泊轨道与火星表面的最近、最远距离分别为h 1、h 2,停泊轨道周期为T 2,根据开普勒第三定律有R 13 T 12 =(ℎ1+2R 1+ℎ22)3T 22 ,代入数据解得h 2=√2g 1R 12T 22 π23-2R 1-h 1≈6×107m ,故选项A 、B 、D 错误,选项C 正确.答案:C1.解析:悬停时二力平衡,即F =G Mm R 2∝MmR 2,得F 祝F 兔=M 火M 月×m 祝m 兔×(R 月R 火)2=91×21×(12)2=92,B 项正确. 答案:B2.解析:卫星绕地球沿椭圆轨道运动,类似于行星绕太阳运转,根据开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等,则知卫星与地球的连线在相等时间内扫过的面积相等,所以卫星在距离地球最近的A 点速度最大,在距离地球最远的C 点速度最小,故A 错误;在椭圆的各个点上都是引力产生加速度,有a =GMr 2,因卫星在A 点与地球的距离最小,则卫星在A 点的加速度最大,故B 错误;根据对称性可知t ADC =t CBA =T2,故C 正确;卫星在近地点A 附近速度较大,在远地点C 附近速度较小,则t BAD <T2,t DCB >T 2,故D 错误.答案:C例2 解析:根据万有引力提供核心舱绕地球做匀速圆周运动的向心力得GMm r 2=m v 2r ,解得M =v 2r G,D 正确;由于核心舱质量在运算中被约掉,故无法通过核心舱质量求解地球质量,A 、B 错误;已知核心舱的绕地角速度,由GMm r 2=m ω2r 得M =ω2·r 3G,且ω=2πT,r 约不掉,故还需要知道核心舱的绕地半径,才能求得地球质量,C 错误. 答案:D 3.解析:“嫦娥五号”探测器在距月球表面为R 的轨道上运行,万有引力提供向心力,有G Mm (2R )2=m 4π2T 22R ,得月球质量为M =32π2R 3GT 2,A 错误;月球密度ρ=M V=M43πR3=24πGT 2,C 错误;对月球表面的物体m ′,有G Mm ′R 2=m ′g ,得月球表面的重力加速度g =GM R 2=32π2R T 2,B 正确;设月球第一宇宙速度为v ,则G MmR 2=m v 2R ,得v = √GM R=4√2πR T,D 错误.答案:B4.解析:由1994年到2002年间恒星S2的观测位置图可知,恒星S2绕黑洞运动的周期大约为T 2=16年,半长轴为a =1 000 AU ,设黑洞的质量为M 黑,恒星S2质量为m 2,由万有引力提供向心力可得GM 黑m 2a 2=m 2a (2πT 2)2;设地球质量为m 1,地球绕太阳运动的轨道半径为r=1 AU ,周期T 1=1年,由万有引力提供向心力可得GMm 1r 2=m 1r (2πT 1)2,联立解得黑洞质量M 黑≈4×106M ,选项B 正确.答案:B例 3 解析:当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,故A 正确;第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,故B 错误;万有引力提供向心力,则有GMm R 2=mv 12 R,解得第一宇宙速度为v 1= √GM R,所以火星的第一宇宙速度为v 火= √10%50%v 地= √55v 地,所以火星的第一宇宙速度小于地球的第一宇宙速度,故C 错误;万有引力近似等于重力,则有GMm R 2=mg ,解得火星表面的重力加速度g 火=GM 火R 火2=10%(50%)2g 地=25g 地,所以火星表面的重力加速度小于地球表面的重力加速度,故D 错误.故选A.答案:A例4 解析:根据万有引力公式F =GMm r 2可知,核心舱进入轨道后所受地球的万有引力大小与轨道半径的平方成反比,则核心舱进入轨道后所受地球的万有引力与它在地面时所受地球的万有引力之比F ′F 地=R 2(R+R 16)2,解得F ′=(1617)2F 地,A 正确;根据GMm R 2=mv 2R可得,v = √GM R=7.9 km/s ,而核心舱轨道半径r 大于地球半径R ,所以核心舱在轨道上飞行的速度一定小于7.9 km/s ,B 错误;由GMm r 2=m4π2T 2r 得绕地球做圆周运动的周期T 与√r 3成正比,核心舱的轨道半径比同步卫星的小,故核心舱在轨道上飞行的周期小于24 h ,C 正确;根据G Mmr 2=m v 2r 可知空间站的轨道半径与空间站的质量无关,故后续加挂实验舱后,轨道半径不变,D 错误.答案:AC例5 解析:同步卫星的周期等于地球的自转周期,根据GMm r 2=m (2πT)2r 可知,卫星的周期越大,轨道半径越大,所以地球自转变慢后,同步卫星需要在更高的轨道上运行,A 正确;又由GMm r 2=m v 2r=m ω2r =ma 可知:r 增大,则v 减小、ω变小、a 变小,故B 、C 、D 均错误.答案:A例6 解析:天问一号探测器在轨道Ⅱ上做变速运动,受力不平衡,故A 错误.轨道Ⅰ的半长轴大于轨道Ⅱ的半长轴,根据开普勒第三定律可知,天问一号探测器在轨道Ⅰ的运行周期比在Ⅱ时长,故B 错误.天问一号探测器从较高轨道Ⅰ向较低轨道Ⅱ变轨时,需要在P 点点火减速,故C 错误.天问一号探测器沿轨道Ⅰ向P 飞近时,万有引力做正功,动能增大,速度增大,故D 正确.答案:D5.解析:组合体的轨道半径小于同步卫星的轨道半径,由开普勒第三定律可知其周期小于24 h ,A 项正确;环绕地球表面做圆周运动的近地卫星的速度为7.9 km/s ,组合体的轨道半径大于近地卫星的轨道半径,由v = √GM r可知组合体的速度小于7.9 km/s ,B 项错;若已知地球半径和表面重力加速度,则有GM =gR 2,对组合体则有G Mm(R+h )2=m ω2(R +h ),两式联立可得出组合体的角速度,C 项正确;若神舟十二号先到达天和核心舱所在圆轨道再加速,则做离心运动,不能完成对接,D 项错.答案:AC6.解析:设空间站离地面高度为h ,空间站在运行过程中万有引力提供其做圆周运动的向心力,有G Mm (R+h )2=m v 2(R+h ),则运行速度v =√GMR+h ,由题图可知卫星绕地球做离地高约420 km左右的近地轨道运动,故环绕速度略小于第一宇宙速度7.9 km/s ,A 、B 错误;4月份中某时刻轨道高度突然减小,是由于受到了外层大气稀薄空气的影响,机械能减小,C 错误;5月中轨道半径基本不变,故机械能可视为守恒,D 正确.答案:D例7 解析:设质量较大的恒星为M 1,质量较小的黑洞为M 2,则两者之间的万有引力为F =GM 1M 2L 2,由数学知识可知,当M 1=M 2时,M 1·M 2有最大值,根据题意可知质量较小的黑洞M 2吞噬质量较大的恒星M 1,因此万有引力变大,故A 正确,B 错误;对于两天体,万有引力提供向心力,即G M 1M 2L 2=M 1ω2R 1=M 14π2T 2R 1,GM 1M 2L 2=M 2ω2R 2=M 24π2R T 2R 2,解得两天体质量表达式为M 1=ω2L 2GR 2=4π2L 2GT 2R 2,M 2=ω2L 2GR 1=4π2L 2GT 2R 1,两天体总质量表达式为M 1+M 2=ω2L 3G=4π2L 3GT 2,两天体的总质量不变,两天体之间的距离L 不变,因此天体的周期T 和角速度ω也不变,质量较小的黑洞M 2的质量增大,因此恒星的圆周运动半径增大,根据v =2πR 2T可知,恒星的线速度增大.故C 正确,D 错误.答案:AC7.解析:两颗恒星做匀速圆周运动的向心力来源于恒星之间的万有引力,所以向心力大小相等,即M4π2T 2r A =3M4π2T 2r B ,解得恒星A 与恒星B 的轨道半径之比为r A ∶r B =3∶1,选项B 、D 错误;设两恒星相距为L ,即r A +r B =L ,则有M 4π2T 2r A =G 3M 2L 2,解得L = √GMT 2π23,选项A 正确;由v =2πTr 可得恒星A 与恒星B 的线速度之比为3∶1,选项C 错误.答案:A8.解析:任意两星之间的万有引力为F 0=G MM R 2,则任意一星所受合力为F =2F 0cos 30°=2×GMM R 2×√32=√3G MM R2,任意一星运动的轨道半径r =23R cos 30°=23×R ×√32=√33R ,万有引力提供向心力,有F =√3G MMR 2=M ω2r ,解得每颗星做圆周运动的角速度ω= √√3GM·√33R =√3GM R 3,A 错误;万有引力提供向心力,有F =√3GMM R2=Ma ,解得a =√3GMR 2,则每颗星做圆周运动的向心加速度与三星的质量有关,B 错误;根据题意可知ω′= √3G·2M(2R )3=12 √3GM R 3=12ω,C 错误;根据线速度与角速度的关系可知变化前线速度为v =ωr = √3GM R 3·√33R = √GM R,则变化后为v ′= √2GM 2R=v ,D 正确.答案:D。
第4讲 万有引力与航天抓住3个知识点知识一 万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2,叫引力常量.3.适用条件两个质点之间的相互作用.(1)质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 为两球心间的距离.(2)一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中r 为质点到球心间的距离.知识二 万有引力定律应用及三种宇宙速度1.万有引力定律基本应用(1)基本方法:把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供.(2)基本公式:其中g r 为距天体中心r 处的重力加速度. 2.三种宇宙速度『特别提醒』(1)两种周期——自转周期和公转周期的不同.(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度. (3)两个半径——天体半径R 和卫星轨道半径r 的不同.知识三 经典时空观和相对论时空观1.经典时空观(1)在经典力学中,物体的质量是不随运动状态而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观(1)在狭义相对论中,物体的质量是随物体运动速度的增大而增大的,用公式表示为m =m 01-v 2c2.(2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的.3.经典力学有它的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.『基础自测』1.关于万有引力公式F =G m 1m 2r 2,以下说法中正确的是( )A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于0时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中引力常量G 的值是牛顿规定的2.(多选)由于万有引力定律和库仑定律都满足平方反比定律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比,例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E =Fq ,在引力场中可以用一个类似的物理量来反映各点引力场的强弱.设地球质量为M ,半径为R ,地球表面处重力加速度为g ,引力常量为G ,如果一个质量为m 的物体位于距离地心2R 处的某点,则下列表达式中能反映该点引力场强弱的是( )A .GM2R2B .Gm 2R2C .GMm 2R 2 D.g43.(多选)在讨论地球潮汐成因时,地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道.已知太阳质量约为月球质量的2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍.关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是( )A .太阳引力远大于月球引力B .太阳引力与月球引力相差不大C .月球对不同区域海水的吸引力大小相等D .月球对不同区域海水的吸引力大小有差异 感悟高考4.(2013·江苏高考)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 5.(2013·福建高考)设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视作半径为r 的圆.已知万有引力常量为G ,则描述该行星运动的上述物理量满足( )A .GM =4π2r 3T 2B .GM =4π2r 2T 2C .GM =4π2r 2T3D .GM =4πr 3T2掌握4个核心考点考点一 [32] 天体质量和密度的估算一、重力加速度法:利用天体表面的重力加速度g 和天体半径R . 1.由G Mm R 2=mg 得天体质量M =gR 2G .2.天体密度ρ=M V =M 43πR 3=3g4πGR.二、卫星环绕法测出卫星绕天体做匀速圆周运动的半径r 和周期T . 1.由G Mm r 2=m 4π2r T 2得天体的质量M =4π2r 3GT2.2.若已知天体的半径R ,则天体的密度ρ=M V =M 43πR 3=3πr 3GT 2R 3.若卫星绕中心天体表面运行时,轨道半径r =R ,则有ρ=3πGT2.——————[1个示范例]——————例 1 (2013·全国大纲卷)“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127分钟.已知引力常量G =6.67×10-11N·m 2/kg 2,月球半径约为1.74×103 km.利用以上数据估算月球的质量约为( )A .8.1×1010 kgB .7.4×1013 kgC .5.4×1019 kgD .7.4×1022 kg——————[1个预测例]——————『例2』 一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常量为G ,则这颗行星的质量为( )A.mv 2GNB.mv 4GNC.Nv 2GmD.Nv 4Gm『审题指导』(1)明确行星表面附近的绕行卫星的轨道半径与行星半径的大小关系. (2)弹簧测力计的示数、物体的重力与其所受万有引力的大小关系.考点二 [33] 卫星运行参量的比较与运算一、卫星的动力学规律由万有引力提供向心力,G Mm r 2=ma 向=m v 2r =mω2r =m 4π2r T 2.二、卫星的各物理量随轨道半径变化的规律 1.G Mm r 2=m v 2r →v =GM r →v ∝1r . 2.G Mmr2=mω2r →ω=GM r 3→ω∝1r 3.3.G Mm r 2=m 4π2T2r →T =4π2r 3GM→T ∝r 3. 4.G Mm r 2=ma →a =GM r 2→a ∝1r 2.5.mg =GMmR 2地(近地时)→GM =gR 2地.三、极地卫星和近地卫星1.极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. 2.近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7. 9 km/s.——————[1个示范例]——————『例3』 (2013·四川高考)迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“Gl581c”却很值得我们期待.该行星的温度在0 ℃到40 ℃之间、质量是地球的6倍、直径是地球的1.5倍、公转周期为13个地球日.“Gliese581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则( )A .在该行星和地球上发射卫星的第一宇宙速度相同B .如果人到了该行星,其体重是地球上的223倍C .该行星与“Gliese581”的距离是日地距离的13365倍 D .由于该行星公转速率比地球大,地球上的米尺如果被带上该行星,其长度一定会变短——————[1个预测例]——————『例4』 (多选)(2011·天津高考)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的( )A .线速度v =GMRB .角速度ω=gRC .运行周期T =2π R gD .向心加速度a =GmR2考点三 [34] 赤道上物体、近地卫星、同步卫星的区别一、区别1.同步卫星与地球赤道上的物体的周期都等于地球自转的周期,而不等于近地卫星的周期.2.近地卫星与地球赤道上的物体的运动半径都等于地球半径,而不等于同步卫星运动半径.3.三者的线速度各不相同. 二、求解此类题的关键1.在求解“同步卫星”与“赤道上的物体”的向心加速度的比例关系时应依据二者角速度相同的特点,运用公式a =ω2r 而不能运用公式a =GMr2.2.在求解“同步卫星”与“赤道上的物体”的线速度比例关系时,仍要依据二者角速度相同的特点,运用公式v =ωr 而不能运用公式v =GM /r .3.在求解“同步卫星”运行速度与第一宇宙速度的比例关系时,因都是由万有引力提供的向心力,故要运用公式v =GM /r ,而不能运用公式v =ωr 或v =gr .——————[1个示范例]——————『例5』 (2012·四川高考)今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×107 m .它与另一颗同质量的同步轨道卫星(轨道半径为4.2×107 m)相比( )A .向心力较小B .动能较大C .发射速度都是第一宇宙速度D .角速度较小『规律总结』同步卫星的六个“一定”——————[1个预测例]——————『例6』 有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图4-4-1,则有( )图4-4-1A .a 的向心加速度等于重力加速度gB .c 在4 h 内转过的圆心角是π/6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h考点四 [35] 卫星的发射与变轨一、宇宙速度1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法: (1)GMm R 2=m v 21R,所以v 1=GMR. (2)mg =mv 21R,所以v 1=gR .(3)第二、第三宇宙速度也都是指发射速度. 二、卫星的变轨分析卫星的变轨问题可分为两类:大气层外的发动机变轨(跃迁式)和稀薄空气作用下的摩擦(连续)变轨.1.大气层外的发动机变轨又存在从较低轨道变轨到较高轨道和从较高轨道变轨到较低轨道两种情况,这两种情况互为逆过程.2.空气阻力使速度减少,G Mm r 2>m v 2r →向心运动→引力做正功→卫星动能增大→低轨道运行v ′=GMr ′. ——————[1个示范例]——————『例7』 (多选)(2013·新课标全国卷Ⅰ)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加C.如不加干预,天宫一号的轨道高度将缓慢降低D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用——————[1个预测例]——————图4-4-2『例8』(多选)“神舟十号”飞船于北京时间2013年6月11日17时38分在甘肃省酒泉卫星发射中心发射升空,并于北京时间6月13日13时18分,实施了与“天宫一号”的自动交会对接.这是“天宫一号”自2011年9月发射入轨以来,第5次与神舟飞船成功实现交会对接.交会对接前“神舟十号”飞船先在较低的圆轨道1上运动,在适当位置经变轨与在圆轨道2上运动的“天宫一号”对接.如图4-4-2所示,M、Q两点在轨道1上,P点在轨道2上,三点连线过地球球心,把飞船的加速过程简化为只做一次短时加速.下列关于“神舟十号”变轨过程的描述,正确的是()A.“神舟十号”必须在Q点加速,才能在P点与“天宫一号”相遇B.“神舟十号”在M点经一次加速,即可变轨到轨道2C.“神舟十号”变轨后在M点的速度大于变轨前的速度D.“神舟十号”变轨后的运行周期总大于变轨前的运行周期构建物理模型“双星”模型一、双星系统在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星.二、双星系统的条件1.两颗星彼此相距较近.2.两颗星靠相互之间的万有引力做匀速圆周运动.3.两颗星绕同一圆心做圆周运动.三、双星系统的特点1.两星的角速度、周期相等.2.两星的向心力大小相等.3.两星的轨道半径之和等于两星之间的距离,即r1+r2=L.轨道半径与行星的质量成反比.——————[1个示范例]——————图4-4-3『例9』2012年7月,一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O做匀速圆周运动,如图4-4-3所示.此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的,假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中()A.它们做圆周运动的万有引力保持不变B.它们做圆周运动的角速度不断变大C.体积较大星体圆周运动轨迹半径变大,线速度也变大D.体积较大星体圆周运动轨迹半径变大,线速度变小『例10』(2013·山东高考)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()A.n3k2T B.n3k TC.n2k T D.nk T高效训练5个题⊙卫星运行比较1.(2013·广东高考)如图4-4-4,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M的行星做匀速圆周运动.下列说法正确的是()图4-4-4A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大 ⊙天体质量的估算2.2013年12月2日,我国成功发射了“嫦娥三号”,实施落月探测计划,进一步获取月球的相关数据.如果该卫星在月球上空绕月做匀速圆周运动,经过时间t ,卫星行程为s ,卫星与月球中心连线扫过的角度是1弧度,万有引力常量为G ,根据以上数据估算月球的质量是( )A.t 2Gs 3 B.s 3Gt 2 C.Gt 2s3 D.Gs 3t2 ⊙考查万有引力与重力加速度3.(2012·新课标全国卷)假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+dRC.⎝⎛⎭⎫R -d R 2D.⎝⎛⎭⎫R R -d 2 ⊙变轨问题4.(2013·安徽高考)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r ,其中G 为引力常量,M 为地球质量.该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm (1R 2-1R 1)B .GMm (1R 1-1R 2)C.GMm 2(1R 2-1R 1)D.GMm 2(1R 1-1R 2)⊙同步卫星问题5.(多选)(2013·浙江高考)图4-4-5如图4-4-5所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R .下列说法正确的是( )A .地球对一颗卫星的引力大小为GMm r -R2B .一颗卫星对地球的引力大小为GMmr 2C .两颗卫星之间的引力大小为Gm 23r2D .三颗卫星对地球引力的合力大小为3GMmr2『答案』『基础自测』1、『解析』 万有引力公式F =G m 1m 2r ,虽然是牛顿由天体的运动规律得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值是卡文迪许在实验室里用实验测定的,而不是人为规定的.故正确答案为C.『答案』 C2、『解析』 由万有引力定律知F =GMm 2R 2,引力场的强弱F m =GM2R 2,A 对;在地球表面附近有G Mm R 2=mg ,所以F m =g4,D 对.『答案』 AD3、『解析』 设太阳质量为M ,月球质量为m ,海水质量为m ′,太阳到地球距离为r 1,月球到地球距离为r 2,由题意M m =2.7×107,r 1r 2=400,由万有引力公式,太阳对海水的引力F 1=GMm ′r 21,月球对海水的引力F 2=Gmm ′r 22,则F 1F 2=Mr 22mr 21=2.7×1074002=2 70016,故A 选项正确,B 选项错误;月球到地球上不同区域的海水距离不同,所以引力大小有差异,C 选项错误,D 选项正确.『答案』 AD4、『解析』 根据开普勒行星运动定律,火星和木星沿各自的椭圆轨道绕太阳运行时,太阳位于椭圆的一个焦点上,选项A 错误;行星绕太阳运行的轨道不同,周期不同,运行速度大小也不同,选项B 错误;火星与木星运行的轨道半长轴的立方与周期的平方之比是一个常量,选项C 正确;火星与太阳连线在相同时间内扫过的面积相等,木星与太阳连线在相同时间内扫过的面积相等,但这两个面积不相等,选项D 错误.『答案』 C5、『解析』 本题根据行星所受的万有引力提供其做圆周运动的向心力列方程求解. 对行星有:GMm r 2=m 4π2T 2r ,故GM =4π2r 3T2,选项A 正确.掌握4个核心考点『例1』『解析』 天体做圆周运动时都是万有引力提供向心力.“嫦娥一号”绕月球做匀速圆周运动,由牛顿第二定律知:GMm r 2=4π2mr T 2,得M =4π2r 3GT 2,其中r =R +h ,代入数据解得M =7.4×1022kg ,选项D 正确.『答案』 D『例2』『解析』 设卫星的质量为m ′ 由万有引力提供向心力,得G Mm ′R 2=m ′v 2R ①m ′v 2R=m ′g ② 由已知条件:m 的重力为N 得 N =mg ③由③得g =N m ,代入②得:R =mv 2N代入①得M =mv 4GN,故B 项正确.『答案』 B 『例3』『解析』 行星、地球绕其中心天体做匀速圆周运动.根据万有引力提供向心力解决问题.由题意知,行星、地球的质量之比m 1m 2=6,半径之比R 1R 2=1.5,公转周期之比T 1T 2=13365,中心天体质量之比M 1M 2=0.31.根据G mm ′R 2=m ′v 2R ,得第一宇宙速度之比v 1v 2=Gm 1R 1·R 2Gm 2=m 1m 2·R 2R 1=2,选项A 错误;根据m ′g =G mm ′R 2,得到人的体重之比m ′g 1m ′g 2=m 1R 21·R 22m 2=m 1m 2·⎝⎛⎭⎫R 2R 12=83,选项B 正确;根据G Mm r 2=m ⎝⎛⎭⎫2πT 2r ,得与中心天体的距离之比r 1r 2=3M 1M 2·⎝⎛⎭⎫T 1T 22=30.31×⎝⎛⎭⎫133652,选项C 错误;米尺在该行星上长度不一定会变短,选项D 错误. 『答案』 B『例4』『解析』 对航天器:G Mm R 2=m v 2R,v =GMR,故A 正确.由mg =mω2R 得ω=gR ,故B 错误.由mg =m ⎝⎛⎭⎫2πT 2R 得T =2πR g ,故C 正确.由G Mm R 2=ma 得a =GMR2,故D 错误.『例5』『解析』 由题意知,中圆轨道卫星的轨道半径r 1小于同步卫星轨道半径r 2,卫星运行时的向心力由万有引力提供,根据F 向=G Mmr 2知,两卫星的向心力F 1>F 2,选项A错误;根据G Mm r 2=mv 2r =mω2r ,得环绕速度v 1>v 2,角速度ω1>ω2,两卫星质量相等,则动能E k1>E k2,故选项B 正确,选项D 错误;根据能量守恒,卫星发射得越高,发射速度越大,第一宇宙速度是发射卫星的最小速度,因此两卫星的发射速度都大于第一宇宙速度,且v 01<v 02,选项C 错误.『答案』 B『例6』『解析』 对于卫星a ,根据万有引力定律、牛顿第二定律可得,GMmr 2-N =ma 向,而GMmr 2=mg ,故a 的向心加速度小于重力加速度g ,A 项错;由c 是同步卫星可知卫星c 在4 h 内转过的圆心角是π3,B 项错;由GMm r 2=m v 2r得,v =GMr,故轨道半径越大,线速度越小,故卫星b 的线速度大于卫星c 的线速度,卫星c 的线速度大于卫星d 的线速度,而卫星a 与同步卫星c 的周期相同,故卫星c 的线速度大于卫星a 的线速度,C 项对;由G Mm r 2=m (2πT )2r ,得,T =2πr 3GM,轨道半径r 越大,周期越长,故卫星d 的周期大于同步卫星c 的周期,D 项错.『答案』 C『例7』『解析』 本题虽为天体运动问题,但题中特别指出存在稀薄大气,所以应从变轨角度入手.第一宇宙速度和第二宇宙速度为发射速度,天体运动的速度为环绕速度,均小于第一宇宙速度,选项A 错误;天体运动过程中由于大气阻力,速度减小,导致需要的向心力F n =mv 2r 减小,做向心运动,向心运动过程中,轨道高度降低,且万有引力做正功,势能减小,动能增加,选项B 、C 正确;航天员在太空中受地球引力,地球引力全部提供航天员做圆周运动的向心力,选项D 错误.『答案』 BC『例8』『解析』 飞船经一次加速后由圆轨道1变轨到与加速点相切的椭圆轨道,加速点为近地点,椭圆轨道的远地点与轨道2相切,近地点与远地点分别在地球两侧,因此飞船必须在M 点加速,才能在P 点与“天宫一号”相遇,A 错;飞船在M 点经一次加速后由圆轨道1变轨到椭圆轨道,在椭圆轨道的远地点再经一次加速变轨到轨道2,B 错;飞船在M 点加速后由圆轨道1变轨到椭圆轨道,则变轨后在M 点的速度大于变轨前的速度,C 对;由T =2πr 3GM可知轨道半径增大,周期增大,D 项正确. 『答案』 CD『例9』『解析』 对双星M 1、M 2,设距离为L ,圆周运动半径分别为r 1、r 2,它们做圆周运动的万有引力为F =G M 1M 2L 2,距离L 不变,M 1与M 2之和不变,其乘积大小变化,则它们的万有引力发生变化,A 错;依题意双星系统绕两者连线上某点O 做匀速圆周运动,周期和角速度相同,由万有引力定律及牛顿第二定律:G M 1M 2L 2=M 1ω2r 1,G M 1M 2L 2=M 2ω2r 2,r 1+r 2=L ,可解得:M 1+M 2=ω2L 3G ,M 1r 1=M 2r 2,由此可知ω不变,质量比等于圆周运动半径的反比,故体积较大的星体因质量减小,其轨道半径将增大,线速度也增大,B 、D 错,C 对.『答案』 C ,『例10』『解析』 双星间的万有引力提供向心力.设原来双星间的距离为L ,质量分别为M 、m ,圆周运动的圆心距质量为m 的恒星距离为r .对质量为m 的恒星:G Mm L 2=m (2πT )2·r对质量为M 的恒星:G Mm L 2=M (2πT )2(L -r )得G M +m L 2=4π2T 2·L ,即T 2=4π2L 3G M +m则当总质量为k (M +m ),间距为L ′=nL 时,T ′=n 3kT ,选项B 正确. 『答案』 B 高效训练5个题1、『解析』 卫星绕行星做匀速圆周运动的向心力由行星对卫星的引力提供,根据万有引力定律和牛顿第二定律解决问题.根据G Mm r 2=ma 得a =GMr 2,故甲卫星的向心加速度小,选项A 正确;根据G Mm r 2=m (2πT )2r ,得T =2πr 3GM,故甲的运行周期大,选项B 错误;根据G Mmr 2=mω2r ,得ω=GM r 3,故甲运行的角速度小,选项C 错误;根据G Mm r 2=mv 2r,得v =GMr,故甲运行的线速度小,选项D 错误. 『答案』 A2、『解析』 由几何知识得圆心角θ=sr ,其中s 为卫星转动的弧长,即卫星的行程,r为轨迹半径,代入数据得轨迹半径r =s ,卫星转动的角速度ω=θt =1t ,由万有引力提供向心力GMm r 2=mω2r ,得月球的质量M =ω2r 3G =s 3Gt2,选项B 正确.『答案』 B3、『解析』 设地球的密度为ρ,地球的质量为M ,根据万有引力定律可知,地球表面的重力加速度g =GM R 2.地球质量可表示为M =43πR 3ρ,因质量分布均匀的球壳对球壳内物体的引力为零,所以矿井下以(R -d )为半径的地球的质量为M ′=43π(R -d )3ρ,解得M ′=⎝⎛⎭⎫R -d R 3M ,则矿井底部处的重力加速度g ′=GM ′R -d2,则矿井底部处的重力加速度和地球表面的重力加速度之比为g ′g =1-dR,选项A 正确;选项B 、C 、D 错误.『答案』 A4、『解析』 人造卫星绕地球做圆周运动的向心力由万有引力提供. 根据万有引力提供向心力得G Mm r 2=m v 2r ①而动能E k =12mv 2②由①②式得E k =GMm2r ③由题意知,引力势能E p =-GMmr④ 由③④式得卫星的机械能E =E k +E p =-GMm2r由功能关系知,因摩擦而产生的热量Q =ΔE 减=E 1-E 2=GMm 2(1R 2-1R 1),故选项C 正确. 『答案』 C5、『解析』 应用万有引力公式及力的合成规律分析.地球与卫星之间的距离应为地心与卫星之间的距离,选项A 错误,B 正确;两颗相邻卫星与地球球心的连线互成120°角,间距为3r ,代入数据得,两颗卫星之间引力大小为Gm 23r 2,选项C 正确;三颗卫星对地球引力的合力为零,选项D 错误.『答案』BC。
第4课时 万有引力与航天 考纲解读 1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度..【知识要点】1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G , 天体密度ρ=M V =M 43πR 3=3g 4πGR . (2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.3.卫星的各物理量随轨道半径变化的规律4.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s(3)两种卫星的轨道平面一定通过地球的球心.1.第一宇宙速度又叫环绕速度.推导过程为:由mg =m v 21R =GMm R 2得: v 1= GM R =gR =7.9 km/s. 2.第一宇宙速度是人造地球卫星在 环绕地球做匀速圆周运动时具有的速度.3.第一宇宙速度是人造卫星的 速度,也是人造地球卫星的 速度. 注意 (1)两种周期——自转周期和公转周期的不同.(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度.(3)两个半径——天体半径R 和卫星轨道半径r 的不同.(4)第二宇宙速度(脱离速度):v 2= km/s ,使物体挣脱 引力束缚的最小发射速度.(5)第三宇宙速度(逃逸速度):v 3= km/s ,使物体挣脱 引力束缚的最小发射速度. 【典型例题】 例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度 例2(2013·广东·14)如图1,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动,下列说法正确的是( )A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大 例3 某人在一星球表面上以速度v 0竖直上抛一物体,经过时间t后物体落回手中.已知星球半径为R ,那么沿星球表面将物体抛出,要使物体不再落回星球表面,抛射速度至少为( )A.v 0t RB. 2v 0R tC.v 0R t D.v 0Rt【拓展训练】1.(2013·江苏单科·1)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积2.2013年6月13日,神舟十号与天宫一号成功实现自动交会对接.假设神舟十号与天宫一号都在各自的轨道做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )A .由神舟十号运行的周期和轨道半径可以求出地球的质量B .由神舟十号运行的周期可以求出它离地面的高度C .若神舟十号的轨道半径比天宫一号大,则神舟十号的周期比天宫一号小D .漂浮在天宫一号内的宇航员处于平衡状态3.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的14,不考虑卫星质量的变化,则变轨前、后卫星的( ) A .向心加速度大小之比为4∶1 B .角速度大小之比为2∶1C .周期之比为1∶8D .轨道半径之比为1∶24.随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后小球回到出发点.已知月球的半径为R ,引力常量为G ,则下列说法正确的是( )A .月球表面的重力加速度为v 0tB .月球的质量为2v 0R 2GtC .宇航员在月球表面获得 v 0R t 的速度就可能离开月球表面围绕月球做圆周运动D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为 Rt v 05.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍.某时刻,航天站使登月器减速分离,登月器沿如图1所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回.当第一次回到分离点时恰与航天站对接.登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g 0,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )A .4.7πR g 0B .3.6πR g 0C .1.7πR g 0D .1.4πR g 06.2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P ,这个行星围绕某恒星Q 做匀速圆周运动.测得P 的公转周期为T ,公转轨道半径为r .已知引力常量为G ,则( )A .恒星Q 的质量约为4π2r 3GT 2B .行星P 的质量约为4π2r 3GT 2C .以7.9 km/s 的速度从地球发射的探测器可以到达该行星表面D .以11.2 km/s 的速度从地球发射的探测器可以到达该行星表面7.一行星绕恒星做匀速圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( )A .恒星的质量为v 3T 2πGB .行星的质量为4π2v 3GT 2C .行星运动的轨道半径为v T 2πD .行星运动的加速度为2πv T 8.我国于2013年6月11日17时38分发射“神舟十号”载人飞船,并与“天宫一号”目标飞行器对接.如图3所示,开始对接前,“天宫一号”在高轨道,“神舟十号”飞船在低轨道,各自绕地球做匀速圆周运动,距离地面的高度分别为h 1和h 2(设地球半径为R ),“天宫一号”的运行周期约为90分钟.则以下说法正确的是( )A .“天宫一号”跟“神舟十号”的线速度大小之比为h 2h 1B .“天宫一号”跟“神舟十号”的向心加速度大小之比为(R +h 2)2(R +h 1)2 C .“天宫一号”的角速度比地球同步卫星的角速度大D .“天宫一号”的线速度大于7.9 km/s9.2014年10月8日,月全食带来的“红月亮”亮相天空,引起人们对月球的关注.我国发射的“嫦娥三号”探月卫星在环月圆轨道绕行n 圈所用时间为t ,如图4所示.已知月球半径为R ,月球表面处重力加速度为g 月,引力常量为G .试求:(1)月球的质量M ;(2)月球的第一宇宙速度v 1;(3)“嫦娥三号”卫星离月球表面的高度h .(3)计算物体在前3 s 内和前6 s 内的位移大小.。
第4讲 万有引力与航天微知识1 开普勒行星运动定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,表达式:a 3T2=k 。
微知识2 万有引力定律 1.公式:F =Gm 1m 2r2,其中G =6.67×10-11_N·m 2/kg 2,叫引力常量。
2.公式适用条件:此公式适用于质点间的相互作用。
当两物体间的距离远远大于物体本身的大小时,物体可视为质点。
均匀的球体可视为质点,r 是两球心间的距离。
一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离。
微知识3 卫星运行规律和宇宙速度 1.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合。
(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s 。
(3)角速度一定:与地球自转的角速度相同。
(4)高度一定:据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.24×104km ,卫星离地面高度h =r -R ≈5.6R (为恒量)。
(5)速率一定:运动速度v =2πr /T =3.08 km/s(为恒量)。
(6)绕行方向一定:与地球自转的方向一致。
2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。
(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s 。
(3)两种卫星的轨道平面一定通过地球的球心。
3.三种宇宙速度比较微知识4 经典时空观和相对论时空观 1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的。
第4讲 万有引力与航天【基础梳理】一、开普勒行星运动定律二、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =Gm 1m 2r,其中G =6.67×10-11 N ·m 2/kg 2. 3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离.三、宇宙速度1.第一宇宙速度(环绕速度)(1)数值 v 1=7.9 km/s ,是人造卫星的最小发射速度,也是人造卫星最大的环绕速度. (2)第一宇宙速度的计算方法①由G Mm R 2=m v 2R 得v = ②由mg =m v 2R得v2.第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. 3.第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度. 四、经典力学的时空观和相对论时空观 1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的. 2.相对论时空观(1)在狭义相对论中,物体的质量随物体的速度的增加而增加,用公式表示为m =m 01-v 2c2.(2)在狭义相对论中,同一物理过程的位移和时间的测量与参考系有关,在不同的参考系中不同. 3.经典力学的适用范围:只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.【自我诊断】判一判(1)所有物体之间都存在万有引力.( )(2)地面上的物体所受地球的引力方向一定指向地心.( ) (3)两物体间的距离趋近于零时,万有引力趋近于无穷大.( ) (4)第一宇宙速度的大小与地球质量有关.( ) (5)同步卫星可以定点在北京市的正上方.( )(6)同步卫星的运行速度一定小于地球第一宇宙速度.( ) 提示:(1)√ (2)√ (3)× (4)√ (5)× (6)√做一做(2018·河南洛阳模拟)使物体脱离星球的引力束缚,不再绕星球运行,从星球表面发射所需的最小速度称为第二宇宙速度,星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16.不计其他星球的影响,则该星球的第二宇宙速度为________.提示:由G Mm r 2=m v 2r ,G Mm r 2=mg6,联立解得星球的第一宇宙速度v 1=16gr ,星球的第二宇宙速度v 2=2v 1=2×16gr = 13gr . 答案: 13gr想一想(1)如图所示的球体是均匀球体,其中缺少了一规则球形部分,如何求球体剩余部分对质点P 的引力?(2)两物体间的距离趋近于零时,万有引力趋近于无穷大吗?提示:(1)求球体剩余部分对质点P 的引力时,应用“挖补法”,先将挖去的球补上,然后分别计算出补后的大球和挖去的小球对质点P 的引力,最后再求二者之差就是阴影部分对质点P 的引力.(2)不是.当两物体无限接近时,不能再视为质点.对万有引力定律的理解及应用[学生用书P74]【知识提炼】1.开普勒行星运动定律(1)开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)开普勒第二定律(面积定律):对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的面积.(3)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,即a 3T2=k . 2.天体质量和密度的计算(1)自力更生法:利用天体表面的重力加速度g 和天体半径R .①由G Mm R 2=mg 得天体质量M =gR 2G .②天体密度:ρ=M V =M 43πR 3=3g 4πGR.(2)借助外援法:测出卫星绕天体做匀速圆周运动的半径r 和周期T .①由G Mm r 2=m 4π2r T 2得天体的质量为M =4π2r 3GT 2.②若已知天体的半径R ,则天体的密度ρ=M V =M 43πR3=3πr 3GT 2R 3.③若卫星绕天体表面运行时,可认为轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2,可见,只要测出卫星环绕天体表面运行的周期T ,就可估算出中心天体的密度.【典题例析】(多选)(2015·高考全国卷Ⅰ)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103kg ,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s 2.则此探测器( )A .在着陆前的瞬间,速度大小约为8.9 m/sB .悬停时受到的反冲作用力约为2×103NC .从离开近月圆轨道到着陆这段时间内,机械能守恒D .在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度[审题指导] 由月球和地球的质量、半径关系可求出月球表面的重力加速度,从而求出速度、反冲作用力等问题.[解析] 设月球表面的重力加速度为g 月,则g 月g 地=GM 月R 2月GM 地R 2地=M 月M 地·R 2地R 2月=181×3.72,解得g 月≈1.7 m/s 2.由v 2=2g月h 得,着陆前的速度为v =2g 月h =2×1.7×4 m/s ≈3.7 m/s ,选项A 错误.悬停时受到的反冲力F =mg 月≈2×103N ,选项B 正确.从离开近月圆轨道到着陆过程中,除月球引力做功外,还有其他外力做功,故机械能不守恒,选项C 错误.设探测器在近月圆轨道上和人造卫星在近地圆轨道上的线速度分别为v 1、v 2,则v 1v 2=GM 月R 月GM 地R 地=M 月M 地·R 地R 月= 3.781<1,故v 1<v 2,选项D 正确. [答案]BD1.计算星球表面(附近)的重力加速度g (不考虑星球自转):mg =G mM R 2,得g =GM R2.2.计算星球上空距离星体中心r =R +h 处的重力加速度g ′:mg ′=GmM (R +h )2,得g ′=GM(R +h )2.所以g g ′=(R +h )2R 2.3.万有引力与重力的关系(1)在赤道上F 万=F 向+mg ,即mg =G MmR2-m ω2R ; (2)在两极F 万=mg ,即mg =G Mm R2;(3)在一般位置,万有引力等于mg 与F 向的矢量和.【迁移题组】迁移1 开普勒三定律在椭圆轨道上的应用1.(多选)(2017·高考全国卷Ⅱ)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 0/4B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功解析:选CD.在海王星从P 到Q 的运动过程中,由于引力与速度的夹角大于90°,因此引力做负功,根据动能定理可知,速率越来越小,C 项正确;海王星从P 到M 的时间小于从M 到Q 的时间,因此从P 到M 的时间小于T 04,A 项错误;由于海王星运动过程中只受到太阳引力作用,引力做功不改变海王星的机械能,即从Q 到N 的运动过程中海王星的机械能守恒,B 项错误;从M 到Q 的运动过程中引力与速度的夹角大于90°,因此引力做负功,从Q 到N 的过程中,引力与速度的夹角小于90°,因此引力做正功,即海王星从M 到N 的过程中万有引力先做负功后做正功,D 项正确.迁移2 星球附近重力加速度的求解2.(2015·高考重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0B .GM(R +h )2 C.GMm(R +h )2 D .GM h2解析:选B.飞船受到的万有引力等于在该处所受的重力,即G Mm (R +h )2=mg ,得g =GM(R +h )2,选项B正确.迁移3 天体质量和密度的计算3.(多选)1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度解析:选AB.对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G,A 项正确.对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L 32GT 22,B 项正确.对月球绕地球运动来说,能求地球质量,不知道月球的相关参量及月球的卫星运动参量,无法求出它的质量和密度,C 、D 项错误.卫星运行规律及特点[学生用书P75]【知识提炼】1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种.(2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气象卫星. (3)其他轨道:除以上两种轨道外的卫星轨道,且轨道平面一定通过地球的球心. 2.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.23×104km ,卫星离地面高度h =r -R ≈6R (为恒量).(5)绕行方向一定:与地球自转的方向一致.3.卫星的各物理量随轨道半径变化的规律4.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能和卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大.【典题例析】研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大[解析] 卫星绕地球做圆周运动,万有引力提供向心力,即G Mm r 2=mr ⎝ ⎛⎭⎪⎫2πT 2,得r = 3GMT 24π2,由于同步卫星的周期等于地球的自转周期,当地球自转变慢,自转周期变大,则同步卫星做圆周运动的半径会变大,离地面的高度变大,A 项正确;由G Mm r 2=ma 得,a =GM r 2,半径变大,向心加速度变小,B 项错误;由G Mm r 2=m v 2r 得,v =GM r ,半径变大,线速度变小,C 项错误;由ω=2πT分析得,同步卫星的周期变大,角速度变小,D 项错误.[答案] A1.解决天体圆周运动问题的两条思路(1)在中心天体表面或附近而又不涉及中心天体自转运动时,万有引力等于重力,即G MmR2=mg ,整理得GM =gR 2,称为黄金代换.(g 表示天体表面的重力加速度)(2)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=m v 2r =mr ω2=m 4π2r T 2=ma n . 2.用好“二级结论”,速解参量比较问题 “二级结论”有:(1)向心加速度a ∝1r2,r 越大,a 越小;(2)线速度v ∝1r,r 越大,v 越小,r =R 时的v 即第一宇宙速度(绕行天体在圆轨道上最大的线速度,发射卫星时的最小发射速度);(3)角速度ω∝1r 3,r 越大,ω越小;(4)周期T ∝r 3,r 越大,T 越大.即“高轨低速周期长,低轨高速周期短”.【迁移题组】迁移1 卫星运行参量的比较1.地球赤道上有一物体随地球的自转,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度忽略),所受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球的同步卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3;地球表面的重力加速度为g ,第一宇宙速度为v ,假设三者质量相等,则( )A .F 1=F 2>F 3B .a 1=a 2=g >a 3C .v 1=v 2=v >v 3D .ω1=ω3<ω2解析:选D.地球同步卫星的运动周期与地球自转周期相同,角速度相同,即ω1=ω3,根据关系式v =ωr 和a =ω2r 可知,v 1<v 3,a 1<a 3;人造卫星和地球同步卫星都围绕地球转动,它们受到的地球的引力提供向心力,即G Mm r 2=m ω2r =mv 2r =ma 可得v =GM r ,a =G Mr 2,ω=GMr 3,可见,轨道半径大的线速度、向心加速度和角速度均小,即v 2>v 3,a 2>a 3,ω2>ω3;绕地球表面附近做圆周运动的人造卫星(高度忽略)的线速度就是第一宇宙速度,即v 2=v ,其向心加速度等于重力加速度,即a 2=g ;所以v =v 2>v 3>v 1,g =a 2>a 3>a 1,ω2>ω3=ω1,又因为F =ma ,所以F 2>F 3>F 1.由以上分析可见,选项A 、B 、C 错误,D 正确.迁移2 同步卫星的运行规律分析2.(2017·高考全国卷Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( )A .周期变大B .速率变大C .动能变大D .向心加速度变大解析:选C.组合体比天宫二号质量大,轨道半径R 不变,根据GMm R 2=m v 2R,可得v =GMR,可知与天宫二号单独运行时相比,组合体运行的速率不变,B 项错误;又T =2πRv,则周期T 不变,A 项错误;质量变大、速率不变,动能变大,C 项正确;向心加速度a =GMR2,不变,D 项错误.迁移3 宇宙速度问题3.(多选)据悉,我国的火星探测计划将于2018年展开.2018年左右我国将进行第一次火星探测,向火星发射轨道探测器和火星巡视器.已知火星的质量约为地球质量的19,火星的半径约为地球半径的12.下列关于火星探测器的说法中正确的是( )A .发射速度只要大于第一宇宙速度即可B .发射速度只有达到第三宇宙速度才可以C .发射速度应大于第二宇宙速度且小于第三宇宙速度D .火星探测器环绕火星运行的最大速度约为地球的第一宇宙速度的23解析:选CD.要将火星探测器发射到火星上去,必须脱离地球引力,即发射速度要大于第二宇宙速度,火星探测器仍在太阳系内运转,因此从地球上发射时,发射速度要小于第三宇宙速度,选项A 、B 错误,C 正确;由第一宇宙速度的概念,得G Mm R 2=m v 21R,得v 1=GMR,故火星探测器环绕火星运行的最大速度与地球的第一宇宙速度的比值约为29=23,选项D 正确.双星及多星模型[学生用书P76]【知识提炼】1.模型特征 (1)多星系统的条件 ①各星彼此相距较近.②各星绕同一圆心做匀速圆周运动. (2)多星系统的结构【跟进题组】1.(2018·吉林长春高三质检)2016年2月11日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前的预测,弥补了爱因斯坦广义相对论中最后一块缺失的“拼图”.双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由a 、b 两颗星体组成,这两颗星绕它们连线的某一点在万有引力作用下做匀速圆周运动,测得a 星的周期为T ,a 、b 两颗星的距离为l ,a 、b 两颗星的轨道半径之差为Δr (a 星的轨道半径大于b 星的),则( )A .b 星的周期为l -Δrl +ΔrTB .a 星的线速度大小为π(l +Δr )TC .a 、b 两颗星的轨道半径之比为ll -ΔrD .a 、b 两颗星的质量之比为l +Δrl -Δr解析:选B.a 、b 两颗星体是围绕同一点绕行的双星系统,故周期T 相同,选项A 错误;由r a -r b =Δr ,r a +r b =l 得r a =l +Δr 2,r b =l -Δr 2,所以r a r b =l +Δr l -Δr ,选项C 错误;a 星的线速度v =2πr a T =π(l +Δr )T,选项B 正确;由m a ω2r a =m b ω2r b ,得m a m b =r b r a =l -Δrl +Δr,选项D 错误.2.(多选)(2018·广州执信中学考试)太空中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式;一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,设这三个星体的质量均为M ,并设两种系统的运动周期相同,则( )A .直线三星系统中甲星和丙星的线速度相同B .直线三星系统的运动周期T =4πRR5GMC .三角形三星系统中星体间的距离L =3125RD .三角形三星系统的线速度大小为125GM R解析:选BC.直线三星系统中甲星和丙星的线速度大小相等,方向相反,选项A 错误;三星系统中,对直线三星系统有G M 2R 2+G M 2(2R )2=M 4π2T 2R ,解得T =4πR R5GM,选项B 正确;对三角形三星系统根据万有引力定律可得2G M 2L 2cos 30°=M 4π2T 2·L2cos 30°,联立解得L =3125R ,选项C 正确;三角形三星系统的线速度大小为v =2πr T =2π⎝ ⎛⎭⎪⎫L2cos 30°T ,代入解得v =36·3125·5GMR,选项D 错误.卫星的变轨问题[学生用书P77]【知识提炼】1.卫星轨道的渐变当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将做变轨运动:(1)当卫星的速度突然增加时,G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GMr,可知其运行速度比原轨道时减小. (2)当卫星的速度突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr,可知其运行速度比原轨道时增大,卫星的发射和回收就是利用这一原理.2.卫星轨道的突变:由于技术上的需要,有时要在适当的位置短时间内启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.如图所示,发射同步卫星时,可以分多过程完成:(1)先将卫星发送到近地轨道Ⅰ.(2)使其绕地球做匀速圆周运动,速率为v 1,变轨时在P 点点火加速,短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ.(3)卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动.【典题例析】如图所示,1、3轨道均是卫星绕地球做圆周运动的轨道示意图,1轨道的半径为R ,2轨道是一颗卫星绕地球做椭圆运动的轨道示意图,3轨道与2轨道相切于B 点,O 点为地球球心,AB 为椭圆的长轴,三轨道和地心都在同一平面内.已知在1、2两轨道上运动的卫星的周期相等,引力常量为G ,地球质量为M ,三颗卫星的质量相等,则下列说法正确的是( )A .卫星在3轨道上的机械能小于在2轨道上的机械能B .若卫星在1轨道上的速率为v 1,卫星在2轨道A 点的速率为v A ,则v 1<v AC .若卫星在1、3轨道上的加速度大小分别为a 1、a 3,卫星在2轨道A 点的加速度大小为a A ,则a A <a 1<a 3D .若OA =0.4R ,则卫星在2轨道B 点的速率v B >5GM 8R[审题指导] 卫星变轨过程中速度变化要从离心、向心的角度来分析,而加速度要从受力的角度来分析. [解析] 2、3轨道在B 点相切,卫星在3轨道相对于2轨道是做离心运动的,卫星在3轨道上的线速度大于在2轨道上B 点的线速度,因卫星质量相同,所以卫星在3轨道上的机械能大于在2轨道上的机械能,A 错误;以OA 为半径作一个圆轨道4与2轨道相切于A 点,则v 4<v A ,又因v 1<v 4,所以v 1<v A ,B 正确;加速度是万有引力产生的,只需要比较卫星到地心的高度即可,应是a A >a 1>a 3,C 错误;由开普勒第三定律可知,2轨道的半长轴为R ,OB =1.6R ,3轨道上的线速度v 3=5GM8R,又因v B <v 3,所以v B < 5GM8R,D 错误. [答案] B1.从引力和向心力的关系分析变轨问题(1)卫星突然加速(通过发动机瞬间喷气实现,喷气时间不计),则万有引力不足以提供向心力,GMm r 2<m v ′2r,卫星将做离心运动,变轨到更高的轨道.(2)当卫星突然减速时,卫星所需向心力减小,万有引力大于向心力,卫星变轨到较低的轨道. 2.变轨问题考查的热点(1)运动参量的比较:两个轨道切点处,加速度由GMmr 2=ma 分析,式中“r ”表示卫星到地心的距离,a 大小相等;由于变轨时发动机要点火工作,故线速度大小不等.(2)能量的比较:在离心运动过程中(发动机已关闭),卫星克服引力做功,其动能向引力势能转化,机械能保持不变.两个不同的轨道上(圆轨道或椭圆轨道),轨道越高卫星的机械能越大.【迁移题组】迁移1 卫星变轨过程中运动参量的变化分析1.(多选)(2018·湖北八校联考)如图为嫦娥三号登月轨迹示意图.图中M 点为环地球运行的近地点,N 点为环月球运行的近月点.a 为环月球运行的圆轨道,b 为环月球运行的椭圆轨道,下列说法中正确的是( )A .嫦娥三号在环地球轨道上的运行速度大于11.2 km/sB .嫦娥三号在M 点进入地月转移轨道时应点火加速C .设嫦娥三号在圆轨道a 上经过N 点时的加速度为a 1,在椭圆轨道b 上经过N 点时的加速度为a 2,则a 1>a 2D .嫦娥三号在圆轨道a 上的机械能小于在椭圆轨道b 上的机械能解析:选BD.嫦娥三号在环地球轨道上运行速度v 满足7.9 km/s ≤v <11.2 km/s ,则A 错误;嫦娥三号要脱离地球需在M 点点火加速让其进入地月转移轨道,则B 正确;由a =GMr2,知嫦娥三号在经过圆轨道a 上的N 点和在椭圆轨道b 上的N 点时的加速度相等,则C 错误;嫦娥三号要从b 轨道转移到a 轨道需要减速,机械能减小,则D 正确.迁移2 卫星的追及、相遇问题 2.我国于2016年9月15日发射了“天宫二号”空间实验室,之后在10月17日,又发射了“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )A .使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B .使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C .飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D .飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接解析:选C.为了实现飞船与空间实验室的对接,必须使飞船在较低的轨道上加速做离心运动,上升到空间实验室运动的轨道后逐渐靠近空间实验室,两者速度接近时实现对接,选项C 正确.[学生用书P78]1.(2016·高考全国卷Ⅲ)关于行星运动的规律,下列说法符合史实的是( ) A .开普勒在牛顿定律的基础上,导出了行星运动的规律 B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律解析:选B.开普勒在第谷的观测数据的基础上,总结出了行星运动的规律,B 项正确;牛顿在开普勒总结的行星运动规律的基础上发现了万有引力定律,找出了行星运动的原因,A 、C 、D 项错误.2.(2017·高考北京卷)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离解析:选D.由于不考虑地球自转,则在地球表面附近,有G Mm 0R 2=m 0g ,故可得M =gR 2G ,A 项错误;由万有引力提供人造卫星的向心力,有G Mm 1R 2=m 1v 2R ,v =2πR T ,联立得M =v 3T2πG,B 项错误;由万有引力提供月球绕地球运动的向心力,有G Mm 2r 2=m 2⎝ ⎛⎭⎪⎫2πT ′2r ,故可得M =4π2r 3GT ′2,C 项错误;同理,根据地球绕太阳做圆周运动的周期及地球与太阳间的距离,不可求出地球的质量,D 项正确.3.(2016·高考全国卷Ⅰ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 hC .8 hD .16 h解析:选B.设地球半径为R ,画出仅用三颗地球同步卫星使地球赤道上任意两点之间保持无线电通讯时同步卫星的最小轨道半径示意图,如图所示.由图中几何关系可得,同步卫星的最小轨道半径r =2R .设地球自转周期的最小值为T ,则由开普勒第三定律可得,(6.6R )3(2R )3=(24 h )2T 2,解得T ≈4 h ,选项B 正确.4.(多选)(2018·贵阳花溪清华中学高三模拟)“嫦娥一号”探月卫星沿地月转移轨道到达月球附近,在距月球表面200 km 的P 点进行第一次“刹车制动”后被月球俘获,进入椭圆轨道Ⅰ绕月飞行,如图所示.之后,卫星在P 点经过几次“刹车制动”,最终在距月球表面200 km 的圆形轨道Ⅲ上绕月球做匀速圆周运动.用T 1、T 2、T 3分别表示卫星在椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ上运动的周期,用a 1、a 2、a 3分别表示卫星沿三个轨道运动到P 点的加速度,用v 1、v 2、v 3分别表示卫星沿三个轨道运动到P 点的速度,用F 1、F 2、F 3分别表示卫星沿三个轨道运动到P 点时受到的万有引力,则下面关系式中正确的是( )A. a 1=a 2=a 3 B . v 1<v 2<v 3 C. T 1>T 2>T 3 D . F 1=F 2=F 3解析:选ACD.由ma =GMm r 2得a =GMr2,三个轨道上的P 点到月心距离r 均相等,故a 相等,故A 正确;由能量守恒定律知,由P 点飞出时动能越大,远月点离月球中心越远,即v 1>v 2>v 3,故B 错误;由开普勒第三定律。
万有引力定律与其应用对点训练:开普勒行星运动定律与万有引力定律1.(2016·某某黄浦区期末)关于万有引力定律,如下说法正确的答案是( ) A .牛顿提出了万有引力定律,并测定了引力常量的数值 B .万有引力定律只适用于天体之间C .万有引力的发现,揭示了自然界一种根本相互作用的规律D .地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是一样的解析:选C 牛顿提出了万有引力定律,卡文迪许测定了引力常量的数值,万有引力定律适用于任何物体之间,万有引力的发现,揭示了自然界一种根本相互作用的规律,选项A 、B 错误C 正确;地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是不一样的,选项D 错误。
2.对于环绕地球做圆周运动的卫星来说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r 与周期T 关系作出如图1所示图像,如此可求得地球质量为(引力常量为G )( )图1A .4π2a Gb B .4π2bGaC .Ga4π2b D .Gb4π2a解析:选A 由GMm r 2=m 4π2T 2·r 可得r 3T 2=GM 4π2,结合图线可得,a b =GM 4π2,故M =4π2aGb,A正确。
3.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力的( )A .0.25倍B .0.5倍C .2.0倍D .4.0倍解析:选C 由F 引=GMm r2=12GM 0m ⎝ ⎛⎭⎪⎫r 022=2GM 0mr 02=2F 地,故C 项正确。
4.(2016·福州二模)北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,该系统将由35颗卫星组成,卫星的轨道有三种:地球同步轨道、中地球轨道和倾斜轨道。
课时作业【根底练习】一、天体质量的估算1.(多项选择)我国将于2017年11月发射“嫦娥五号〞探测器,假设“嫦娥五号〞到达月球后,先绕月球外表做匀速圆周运动,然后择机释放登陆器登陆月球.“嫦娥五号〞绕月球飞行的过程中,在较短时间t 内运动的弧长为s ,月球半径为R ,引力常量为G ,如此如下说法正确的答案是( )A .“嫦娥五号〞绕月球运行一周的时间是πRtsB .“嫦娥五号〞的质量为s 2R Gt2C .“嫦娥五号〞绕月球运行的向心加速度为s 2t 2RD .月球的平均密度为3s24πGR 2t2CD 解析:因绕月球外表做匀速圆周运动的“嫦娥五号〞在较短时间t 内运动的弧长为s ,可知其线速度为v =st,所以其运行一周的时间为T =2πRts,选项A 错误;天体运动中只能估算中心天体质量而无法估算环绕天体质量,选项B 错误;由a =v 2R 知a =s 2t 2R,选项C 正确;根据万有引力提供向心力有G Mm R 2=m v 2R ,再结合M =ρ·43πR 3可得ρ=3s24πGR 2t2,选项D 正确. 2.(2018漯河二模)宇航员站在某一星球外表h 高处,以初速度v 0沿水平方向抛出一个小球,经过时间t 后小球落到星球外表,该星球的半径为R ,引力常量为G ,如此该星球的质量为( )A.2hR2Gt 2B.2hR2GtC.2hRGt2D.Gt 22hR2 A 解析:设该星球的质量为M 、外表的重力加速度为g ,在星球外表有mg =GMmR 2,小球在星球外表做平抛运动,如此h =12gt 2.由此得该星球的质量为M =2hR2Gt2.二、卫星运行参量的分析与计算3.(2015山东理综)如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以一样的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动.以a 1,a 2分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小.以下判断正确的答案是( )A .a 2>a 3>a 1B .a 2>a 1>a 3C .a 3>a 1>a 2D .a 3>a 2>a 1D 解析:地球同步卫星受月球引力可以忽略不计,地球同步卫星轨道半径r 3、空间站轨道半径r 1、月球轨道半径r 2之间的关系为r 2>r 1>r 3,由GMm r 2=ma 知,a 3=GM r 23,a 2=GMr 22,所以a 3>a 2;由题意知空间站与月球周期相等,由a =(2πT)2r ,得a 2>a 1.因此a 3>a 2>a 1,D 正确.4.(2014浙江理综)长期以来“卡戎星(Charon)〞被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 km ,公转周期T 1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48 000 km ,如此它的公转周期T 2最接近于( )A .15天B .25天C .35天D .45天B 解析:由开普勒第三定律可知r 31T 21=r 32T 22,得出T 2=r 32T 21r 31=〔4.8×107〕3×6.392〔1.96×107〕3天≈25天,应当选项B 正确.5.(2017广东华南三校联考,19)(多项选择)石墨烯是目前世界上的强度最高的材料,它的发现使“太空电梯〞的制造成为可能,人类将有望通过“太空电梯〞进入太空.设想在地球赤道平面内有一垂直于地面延伸到太空的轻质电梯,电梯顶端可超过地球的同步卫星A 的高度延伸到太空深处,这种所谓的太空电梯可用于降低本钱发射绕地人造卫星.如下列图,假设某物体B 乘坐太空电梯到达了图示的位置并停在此处,与同高度运行的卫星C 相比拟( )A .B 的线速度大于C 的线速度 B .B 的线速度小于C 的线速度C .假设B 突然脱离电梯,B 将做离心运动D .假设B 突然脱离电梯,B 将做近心运动BD 解析:A 和C 两卫星相比,ωC >ωA ,而ωB =ωA ,如此ωC >ωB ,又据v =ωr ,r C=r B ,得v C >v B ,故B 项正确,A 项错误.对C 星有GMm C r 2C =m C ω2C r C ,又ωC >ωB ,对B 星有G Mm B r 2B>m B ω2B r B ,假设B 突然脱离电梯,B 将做近心运动,D 项正确,C 项错误.6.(2014江苏卷,2)地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,如此航天器在火星外表附近绕火星做匀速圆周运动的速率约为( )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/sA 解析:由万有引力提供向心力可得:G Mm r 2=m v 2r,在行星外表运行时有r =R ,如此得v=GMR ∝M R ,因此v 火v 地=M 火M 地×R 地R 火 =110×2=55,又由v 地=7.9 km/s ,故v 火≈3.5 km/s ,应当选A 正确.三、卫星变轨问题分析7.(2017湖南长沙三月模拟,20)(多项选择)暗物质是二十一世纪物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在2015年12月17日成功发射了一颗被命名为“悟空〞的暗物质探测卫星.“悟空〞在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t (t 小于其运动周期),运动的弧长为s ,与地球中心连线扫过的角度为β(弧度),引力常量为G ,如此如下说法中正确的答案是( )A .“悟空〞的线速度大于第一宇宙速度B .“悟空〞的向心加速度大于地球同步卫星的向心加速度C .“悟空〞的环绕周期为2πtβD. “悟空〞的质量为s 3Gt 2βBC 解析:“悟空〞的线速度小于第一宇宙速度,A 错误.向心加速度a =GM r2,因r 悟空<r同,如此a 悟空>a 同,B 正确.由ω=βt =2πT ,得“悟空〞的环绕周期T =2πtβ,C 项正确.由题给条件不能求出悟空的质量,D 错误.关键点拨 第一宇宙速度是卫星最小的发射速度,是最大的环绕速度.卫星做匀速圆周运动时ω=2πT =βt.8.(2019哈尔滨师范大学附中)卫星 信号需要通过地球同步卫星传送,地球半径为r ,无线电信号传播速度为c ,月球绕地球运动的轨道半径为60r ,运行周期为27天。
第4课时 万有引力与航天 考纲解读 1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度..【知识要点】1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G, 天体密度ρ=M V =M 43πR 3=3g 4πGR . (2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.3.卫星的各物理量随轨道半径变化的规律4.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s(3)两种卫星的轨道平面一定通过地球的球心.1.第一宇宙速度又叫环绕速度.推导过程为:由mg =mv 21R =GMm R 2得: v 1= GM R=gR =7.9 km/s. 2.第一宇宙速度是人造地球卫星在 环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的 速度,也是人造地球卫星的 速度. 注意 (1)两种周期——自转周期和公转周期的不同.(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度.(3)两个半径——天体半径R 和卫星轨道半径r 的不同.(4)第二宇宙速度(脱离速度):v 2= km/s ,使物体挣脱 引力束缚的最小发射速度.(5)第三宇宙速度(逃逸速度):v 3= km/s ,使物体挣脱 引力束缚的最小发射速度.【典型例题】例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21 D .可求月球、地球及太阳的密度 例2(2013·广东·14)如图1,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动,下列说法正确的是( )A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大例3 某人在一星球表面上以速度v 0竖直上抛一物体,经过时间t 后物体落回手中.已知星球半径为R ,那么沿星球表面将物体抛出,要使物体不再落回星球表面,抛射速度至少为( )A.v 0t R B. 2v 0R t C. v 0R t D.v 0Rt【拓展训练】1.(2013·江苏单科·1)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积2.2013年6月13日,神舟十号与天宫一号成功实现自动交会对接.假设神舟十号与天宫一号都在各自的轨道做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )A .由神舟十号运行的周期和轨道半径可以求出地球的质量B .由神舟十号运行的周期可以求出它离地面的高度C .若神舟十号的轨道半径比天宫一号大,则神舟十号的周期比天宫一号小D .漂浮在天宫一号内的宇航员处于平衡状态3.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的14,不考虑卫星质量的变化,则变轨前、后卫星的( ) A .向心加速度大小之比为4∶1 B .角速度大小之比为2∶1C .周期之比为1∶8D .轨道半径之比为1∶24.随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后小球回到出发点.已知月球的半径为R ,引力常量为G ,则下列说法正确的是( )A .月球表面的重力加速度为v 0tB .月球的质量为2v 0R 2GtC .宇航员在月球表面获得v 0R t的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为 Rt v 0 5.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍.某时刻,航天站使登月器减速分离,登月器沿如图1所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回.当第一次回到分离点时恰与航天站对接.登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g 0,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )A .4.7πR g 0B .3.6πR g 0C .1.7πR g 0D .1.4πR g 06.2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P ,这个行星围绕某恒星Q 做匀速圆周运动.测得P 的公转周期为T ,公转轨道半径为r .已知引力常量为G ,则( )A .恒星Q 的质量约为4π2r 3GT 2B .行星P 的质量约为4π2r 3GT2 C .以7.9 km/s 的速度从地球发射的探测器可以到达该行星表面D .以11.2 km/s 的速度从地球发射的探测器可以到达该行星表面7.一行星绕恒星做匀速圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( )A .恒星的质量为v 3T 2πGB .行星的质量为4π2v 3GT 2C .行星运动的轨道半径为vT 2πD .行星运动的加速度为2πv T8.我国于2013年6月11日17时38分发射“神舟十号”载人飞船,并与“天宫一号”目标飞行器对接.如图3所示,开始对接前,“天宫一号”在高轨道,“神舟十号”飞船在低轨道,各自绕地球做匀速圆周运动,距离地面的高度分别为h 1和h 2(设地球半径为R ),“天宫一号”的运行周期约为90分钟.则以下说法正确的是( )A .“天宫一号”跟“神舟十号”的线速度大小之比为h 2h 1B .“天宫一号”跟“神舟十号”的向心加速度大小之比为R +h 22R +h 12C .“天宫一号”的角速度比地球同步卫星的角速度大D .“天宫一号”的线速度大于7.9 km/s9.2014年10月8日,月全食带来的“红月亮”亮相天空,引起人们对月球的关注.我国发射的“嫦娥三号”探月卫星在环月圆轨道绕行n 圈所用时间为t ,如图4所示.已知月球半径为R ,月球表面处重力加速度为g 月,引力常量为G .试求:(1)月球的质量M ;(2)月球的第一宇宙速度v 1;(3)“嫦娥三号”卫星离月球表面的高度h .(3)计算物体在前3 s 内和前6 s 内的位移大小.。
第4讲 万有引力与航天◎根底巩固练1.某人造地球卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球运转半径的19,设月球绕地球运动的周期为27天,如此此卫星的运转周期大约是( )A.19天B.13天 C .1天D .9天解析: 由于r 卫=19r 月,T 月=27天,由开普勒第三定律可得r 3卫T 2卫=r 3月T 2月,如此T 卫=1天,故C 正确。
答案: C 2.如下列图是在同一轨道平面上的三颗不同的人造地球卫星,关于各物理量的关系,如下说法正确的答案是( )A .线速度v A <vB <vC B .万有引力F A >F B >F C C .角速度:ωA >ωB >ωCD .向心加速度a A <a B <a C解析: 因为卫星的质量大小关系不知,所以卫星的万有引力大小关系无法判断,B 错误;卫星绕地球做圆周运动,有G Mm r 2=m v 2r =mrω2=ma 向,得v =GMr ,ω=GM r 3,a 向=GMr2,由于r A <r B <r C ,如此v A >v B >v C ,ωA >ωB >ωC ,a A >a B >a C ,故A 、D 错误,C 正确。
答案: C3.(多项选择)美国宇航局发射的“好奇号〞火星车发回的照片显示,火星外表曾经有水流过,使这颗星球在人们的心目中更具吸引力。
火星的质量约为地球质量的19,火星的半径约为地球半径的12。
如下关于人类发射的关于火星探测器的说法正确的答案是( )A .发射速度只要大于第一宇宙速度即可B .发射速度只有达到第三宇宙速度才可以C .发射速度应大于第二宇宙速度而小于第三宇宙速度D .火星探测器环绕火星运行的最大速度为地球第一宇宙速度的23解析: 根据三个宇宙速度的意义,可知选项A 、B 错误,选项C 正确;M 火=M 地9,R火=R 地2,如此v 火v 地=GM 火R 火∶GM 地R 地=23,选项D 正确。
万有引力与航天主干梳理 对点激活知识点 开普勒行星运动定律 Ⅰ 1.定律内容开普勒第一定律:所有行星绕太阳运动的轨道都是□01椭圆,太阳处在椭圆的一个□02焦点上。
开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间扫过相等的□03面积。
开普勒第三定律:所有行星的轨道的□04半长轴的三次方跟它的□05公转周期的二次方的比值都相等,即□06a 3T2=k 。
2.适用条件:适用于宇宙中一切环绕同一中心天体的运动。
知识点 万有引力定律及应用 Ⅱ1.内容:自然界中任何两个物体都是相互吸引的,引力的大小与□01两物体的质量的乘积成正比,与□02两物体间距离的二次方成反比。
2.公式:F =□03G m 1m 2r2,其中G 为万有引力常量,G =6.67×10-11 N·m 2/kg 2,其值由卡文迪许通过扭秤实验测得。
公式中的r 是两个物体之间的□04距离。
3.适用条件:适用于两个□05质点或均匀球体;r 为两质点或均匀球体球心间的距离。
知识点 环绕速度 Ⅱ1.第一宇宙速度又叫□01环绕速度,其数值为□027.9 km/s 。
2.第一宇宙速度是人造卫星在□03地球表面附近环绕地球做匀速圆周运动时具有的速度。
3.第一宇宙速度是人造卫星的最小□04发射速度,也是人造卫星的最大□05环绕速度。
4.第一宇宙速度的计算方法(1)由G Mm R 2=m v 2R ,解得:v =□06 GMR; (2)由mg =m v 2R,解得:v =□07gR 。
知识点 第二宇宙速度和第三宇宙速度 Ⅰ 1.第二宇宙速度(脱离速度)使物体挣脱□01地球引力束缚的最小发射速度,其数值为□0211.2 km/s 。
2.第三宇宙速度(逃逸速度)使物体挣脱□03太阳引力束缚的最小发射速度,其数值为□0416.7 km/s 。
知识点 经典时空观和相对论时空观 Ⅰ 1.经典时空观(1)在经典力学中,物体的质量不随□01运动速度改变;(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是□02相同的。
第4讲 万有引力与航天一、开普勒行星运动定律二、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成⑥ 正比 ,与它们之间距离r 的二次方成⑦ 反比 。
2.公式:F=⑧ Gm 1m 2m 2,其中G=6.67×10-11 N·m 2/kg 2。
3.适用条件:严格地说,公式只适用于⑨ 质点 间的相互作用,当两个物体间的距离⑩ 远大于 物体本身的大小时,物体可视为质点。
均匀的球体可视为质点,其中r 是 两球心 间的距离。
一个均匀球体与球外一个质点间的万有引力也适用,其中r 为 球心 到质点间的距离。
三、宇宙速度1.第一宇宙速度(环绕速度)(1)v 1= 7.9 km/s,是人造卫星的最小 发射 速度,也是人造卫星最大的 环绕 速度。
(2)第一宇宙速度的计算方法 ①由Gmm m 2=m m 2m得v= √mm R。
②由mg=m m 2m得v= √mm 。
2.第二宇宙速度(逃逸速度):v 2= 11.2 km/s,使物体挣脱 地球 引力束缚的最小发射速度。
3.第三宇宙速度:v 3= 16.7 km/s,使物体挣脱 太阳 引力束缚的最小发射速度。
四、经典力学时空观和相对论时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的。
(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的。
(1)在狭义相对论中,物体的质量随物体的速度的增加而增加,用公式表示为m=0√1-2m2(2)在狭义相对论中,同一物理过程的位移和时间的测量与参考系有关 ,在不同的参考系中不同。
3.经典力学的适用X围:只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界。
1.判断以下说法对错。
(1)所有行星绕太阳运行的轨道都是椭圆。
(√)(2)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越大。
第4课时 万有引力与航天考纲解读1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度.1.[对开普勒三定律的理解]火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C解析 火星和木星在各自的椭圆轨道上绕太阳运动,速度的大小不可能始终相等,因此B 错;太阳在这些椭圆的一个焦点上,因此A 错; 在相同时间内,某个确定的行星与太阳连线在相同时间内扫过的面积相等,因此D 错,本题答案为C.2.[对万有引力定律的理解]关于万有引力公式F =G m 1m 2r2,以下说法中正确的是 ( )A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于0时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中引力常量G 的值是牛顿规定的 答案 C解析 万有引力公式F =G m 1m 2r ,虽然是牛顿由天体的运动规律得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值是卡文迪许在实验室里用实验测定的,而不是人为规定的.故正确答案为C.3.[第一宇宙速度的计算]美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒—22b ”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估算该行星的第一宇宙速度等于( )A .3.3×103 m/sB .7.9×103 m/sC .1.2×104 m/sD .1.9×104 m/s答案 D解析 由该行星的密度和地球相当可得M 1R 31=M 2R 32,地球第一宇宙速度v 1=GM 1R 1,该行星的第一宇宙速度v 2=GM 2R 2,联立解得v 2=2.4v 1=1.9×104 m/s ,选项D 正确. 4.[对人造卫星及卫星轨道的考查]a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上,b 、c 轨道在同一平面上.某时刻四颗卫星的运行方向及位置如图1所示.下列说法中正确的是( )图1A .a 、c 的加速度大小相等,且大于b 的加速度B .b 、c 的角速度大小相等,且小于a 的角速度C .a 、c 的线速度大小相等,且小于d 的线速度D .a 、c 存在在P 点相撞的危险 答案 A解析 由G Mm r 2=m v 2r =mrω2=mr 4π2T2=ma ,可知B 、C 、D 错误,A 正确.一、万有引力定律及其应用1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式:F =Gm 1m 2r 2,G 为引力常量:G =6.67×10-11 N·m 2/kg 2.3.适用条件(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离. 二、环绕速度1.第一宇宙速度又叫环绕速度.推导过程为:由mg =m v 21R =GMmR 2得:v 1=GMR=gR =7.9 km/s. 2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.特别提醒 1.两种周期——自转周期和公转周期的不同2.两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度 3.两个半径——天体半径R 和卫星轨道半径r 的不同 三、第二宇宙速度和第三宇宙速度1.第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. 2.第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.考点一 天体质量和密度的计算 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度). 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2;②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出 ( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22 C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度解析 对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G ,选项A 正确.对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L 32GT 22,B 项正确.对月球绕地球运动来说,能求地球质量,不知道月球的相关参量及月球的卫星运动参量,无法求出它的质量和密度,C 、D 项错误. 答案 AB突破训练1 (2012·福建·16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常量为G ,则这颗行星的质量为( )A.m v 2GNB.m v 4GNC.N v 2GmD.N v 4Gm答案 B解析 设卫星的质量为m ′由万有引力提供向心力,得G Mm ′R 2=m ′v 2R① m ′v 2R=m ′g② 由已知条件:m 的重力为N 得N =mg③由③得g =Nm ,代入②得:R =m v 2N代入①得M =m v 4GN ,故B 项正确.考点二 卫星运行参量的比较与运算 1.卫星的各物理量随轨道半径变化的规律2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心.深化拓展 (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其他量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定. (2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.例2 “嫦娥四号”,专家称“四号星”,计划在2017年发射升空,它是嫦娥探月工程计划中嫦娥系列的第四颗人造探月卫星,主要任务是更深层次、更加全面的科学探测月球地貌、资源等方面的信息,完善月球档案资料.已知月球的半径为R ,月球表面的重力加速度为g ,月球的平均密度为ρ,“嫦娥四号”离月球中心的距离为r ,绕月周期为T .根据以上信息下列说法正确的是( )A .月球的第一宇宙速度为grB .“嫦娥四号”绕月运行的速度为 gr 2RC .万有引力常量可表示为3πr 3ρT 2R3D .“嫦娥四号”必须减速运动才能返回地球解析 根据第一宇宙速度的定义有:mg =m v 2R ,v =gR ,A 错误;根据G Mmr 2=m v 2r 和G MmR2=mg 可以得到“嫦娥四号”绕月运行的速度为v = R 2g r ,B 错误;根据G Mm r2=m 4π2T 2r 和M =ρ43πR 3可以知道万有引力常量可表示为3πr 3ρT 2R 3,C 正确;“嫦娥四号”必须先加速离开月球,再减速运动才能返回地球,D 错误. 答案 C突破训练2 2013年6月13日,神州十号与天宫一号成功实现自动交会对接.对接前神州十号与天宫一号都在各自的轨道上做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )A .由神州十号运行的周期和轨道半径可以求出地球的质量B .由神州十号运行的周期可以求出它离地面的高度C .若神州十号的轨道半径比天宫一号大,则神州十号的周期比天宫一号小D .漂浮在天宫一号内的宇航员处于平衡状态 答案 A例3 如图2所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( )图2A.a 1a 2=r RB.a 1a 2=(R r)2C.v 1v 2=r RD.v 1v 2= R r解析 本题中涉及三个物体,其已知量排列如下: 地球同步卫星:轨道半径r ,运行速率v 1,向心加速度a 1; 地球赤道上的物体:轨道半径R ,随地球自转的向心加速度a 2; 近地卫星:轨道半径R ,运行速率v 2.对于卫星,其共同特点是万有引力提供向心力,有G Mmr 2=m v 2r ,故v 1v 2=Rr. 对于同步卫星和地球赤道上的物体,其共同点是角速度相等,有a =ω2r ,故a 1a 2=rR .答案 AD同步卫星的六个“一定”突破训练3 已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是 ( )A .卫星距地面的高度为 3GMT 24π2B .卫星的运行速度小于第一宇宙速度C .卫星运行时受到的向心力大小为G MmR2D .卫星运行的向心加速度小于地球表面的重力加速度 答案 BD解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F 万=F 向=m v 2r =4π2mr T 2.当卫星在地表运行时,F 万=GMmR 2=mg (R 为地球半径),设同步卫星离地面高度为h ,则F 万=GMm(R +h )2=F 向=ma 向<mg ,所以C 错误,D正确.由GMm(R +h )2=m v 2R +h 得,v = GMR +h< GM R ,B 正确.由GMm (R +h )2=4π2m (R +h )T 2,得R +h = 3GMT 24π2,即h = 3GMT 24π2-R ,A 错误.考点三 卫星变轨问题分析当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增大时,G Mm r 2<m v2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v = GMr可知其运行速度比原轨道时减小. (2)当卫星的速度突然减小时,G Mm r 2>m v2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v = GMr可知其运行速度比原轨道时增大. 卫星的发射和回收就是利用这一原理.例4 “嫦娥一号”探月卫星绕地运行一段时间后,离开地球飞向月球.如图3所示是绕地飞行的三条轨道,1轨道是近地圆形轨道,2和3是变轨后的椭圆轨道.A 点是2轨道的近地点,B 点是2轨道的远地点,卫星在轨道1的运行速率为7.7 km/s ,则下列说法中正确的是( )图3A .卫星在2轨道经过A 点时的速率一定大于7.7 km/sB .卫星在2轨道经过B 点时的速率一定小于7.7 km/sC .卫星在3轨道所具有的机械能小于在2轨道所具有的机械能D .卫星在3轨道所具有的最大速率小于在2轨道所具有的最大速率解析 卫星在1轨道做匀速圆周运动,由万有引力定律和牛顿第二定律得G Mm r 2=m v 21r ,卫星在2轨道A 点做离心运动,则有G Mm r 2<m v 22Ar ,故v 1<v 2A ,选项A 正确;卫星在2轨道B 点做近心运动,则有G Mm r 2B >m v 22B r B ,若卫星在经过B 点的圆轨道上运动,则G Mmr 2B=m v 2Br B,由于r <r B ,所以v 1>v B ,故v 2B <v B <v 1=7.7 km/s ,选项B 正确;3轨道的高度大于2轨道的高度,故卫星在3轨道所具有的机械能大于在2轨道所具有的机械能,选项C 错误;卫星在各个轨道上运动时,只有万有引力做功,机械能守恒,在A 点时重力势能最小,动能最大,速率最大,故卫星在3轨道所具有的最大速率大于在2 轨道所具有的最大速率,选项D 错误. 答案 AB突破训练4 2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落事件.如图4所示,一块陨石从外太空飞向地球,到A 点刚好进入大气层,之后由于受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是( )图4A .陨石正减速飞向A 处B .陨石绕地球运转时角速度渐渐变小C .陨石绕地球运转时速度渐渐变大D .进入大气层后,陨石的机械能渐渐变大 答案 C解析 由于万有引力做功,陨石正加速飞向A 处,选项A 错误.陨石绕地球运转时,因轨道半径渐渐变小,则角速度渐渐变大,速度渐渐变大,选项B 错误,C 正确.进入大气层后,由于受到空气阻力的作用,陨石的机械能渐渐变小,选项D 错误. 考点四 重力加速度和宇宙速度的求解1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMm R 2=m v 21R,所以v 1=GMR. (2)mg =m v 21R,所以v 1=gR .3.第二、第三宇宙速度也都是指发射速度.例5 “伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围.此后在t 秒内绕木星运行N 圈后,对木星及其卫星进行考察,最后坠入木星大气层烧毁.设这N 圈都是绕木星在同一个圆周上运行,其运行速率为v ,探测器上的照相机正对木星拍摄整个木星时的视角为θ(如图5所示),设木星为一球体.求:图5(1)木星探测器在上述圆形轨道上运行时的轨道半径; (2)木星的第一宇宙速度.解析 (1)设木星探测器在题述圆形轨道运行时,轨道半径为r ,由v =2πr T可得:r =v T2π由题意,T =tN联立解得r =v t2πN(2)探测器在圆形轨道上运行时,万有引力提供向心力, G mMr 2=m v 2r. 设木星的第一宇宙速度为v 0,有,G m ′M R 2=m ′v 2R联立解得:v 0=rRv 由题意可知R =r sin θ2,解得:v 0=v sinθ2.答案 (1)v t2πN(2)v sinθ2突破训练5 随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后回到出发点.已知月球的半径为R ,万有引力常量为G ,则下列说法正确的是( )A .月球表面的重力加速度为v 0tB .月球的质量为2v 0R 2GtC .宇航员在月球表面获得v 0Rt的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为 Rt v 0答案 B解析 根据竖直上抛运动可得t =2v 0g ,g =2v 0t ,A 项错误;由GMm R 2=mg =m v 2R =m (2πT )2R可得:M =2v 0R 2Gt,v =2v 0Rt,T =2π Rt2v 0,故B 项正确,C 、D 项错误.20.双星系统模型问题的分析与计算绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图6所示,双星系统模型有以下特点:图6(1)各自需要的向心力由彼此间的万有引力相互提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2 (2)两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2(3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L (4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1(5)双星的运动周期T =2πL 3G (m 1+m 2)(6)双星的总质量公式m 1+m 2=4π2L 3T 2G例6 冥王星与其附近的星体卡戎可视为双星系统,它们的质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知卡戎绕O 点运动的( )A .角速度大小约为冥王星的7倍B .向心力大小约为冥王星的1/7C .轨道半径约为冥王星的7倍D .周期与冥王星周期相同 答案 CD解析 对于双星系统,任意时刻均在同一条直线上,故转动的周期、角速度都相同.彼此给对方的万有引力提供向心力,故向心力大小相同,由m 1ω2r 1=m 2ω2r 2,得r 2r 1=m 1m 2=7,故C 、D 项正确.高考题组1.(2013·山东·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2T B.n 3kTC.n 2kT D.n kT 答案 B解析 双星靠彼此的万有引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2 G m 1m 2L 2=m 2r 24π2T 2 并且r 1+r 2=L 解得T =2πL 3G (m 1+m 2)当双星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时T ′=2πn 3L 3Gk (m 1+m 2)=n 3k·T 故选项B 正确.2.(2013·新课标Ⅰ·20)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是( )A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 答案 BC解析 地球所有卫星的运行速度都小于第一宇宙速度,故A 错误.轨道处的稀薄大气会对天宫一号产生阻力,不加干预其轨道会缓慢降低,同时由于降低轨道,天宫一号的重力势能一部分转化为动能,故天宫一号的动能可能会增加,B 、C 正确;航天员受到地球引力作用,此时引力充当向心力,产生向心加速度,航天员处于失重状态,D 错误. 3.(2013·新课标Ⅱ·20)目前,在地球周围有许多人造地球卫星绕着它转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是 ( )A .卫星的动能逐渐减小B .由于地球引力做正功,引力势能一定减小C .由于气体阻力做负功,地球引力做正功,机械能保持不变D .卫星克服气体阻力做的功小于引力势能的减小 答案 BD解析 在卫星轨道半径逐渐变小的过程中,地球引力做正功,引力势能减小;气体阻力做负功,机械能逐渐转化为内能,机械能减小,选项B 正确,C 错误.卫星的运动近似看作是匀速圆周运动,根据G Mmr 2=m v 2r得v =GMr,所以卫星的速度逐渐增大,动能增大,选项A 错误.减小的引力势能一部分用来克服气体阻力做功,一部分用来增加动能,故D 正确. 模拟题组4.我校某同学在学习中记录了一些与地球月球有关的数据资料如表中所示,利用这些数据计算地球表面与月球表面之间的距离s ,则下列运算公式中不正确的是( )A.v 2g ′-R -rB.v T2π-R -r C. 3g 0R 2T 24π2-R -rD.ct 2答案 A5.为了探测X 星球,某探测飞船先在以该星球中心为圆心,高度为h 的圆轨道上运动,随后飞船多次变轨,最后围绕该星球做近表面圆周飞行,周期为T .引力常量G 已知.则( )A .变轨过程中必须向运动的反方向喷气B .变轨后与变轨前相比,飞船的机械能增大C .可以确定该星球的质量D .可以确定该星球的平均密度 答案 D6.据报道,嫦娥三号将于近期发射.嫦娥三号接近月球表面的过程可简化为三个阶段:距离月球表面15 km 时打开反推发动机减速,下降到距月球表面H =100 m 高度时悬停,寻找合适落月点;找到落月点后继续下降,距月球表面h =4 m 时速度再次减为0;此后,关闭所有发动机,使它做自由落体运动落到月球表面.已知嫦娥三号质量为140 kg ,月球表面重力加速度g ′约为1.6 m/s 2,月球半径为R ,引力常量G .求: (1)月球的质量;(用题给字母表示)(2)嫦娥三号悬停在离月球表面100 m 处时发动机对嫦娥三号的作用力; (3)嫦娥三号从悬停在100 m 处到落至月球表面,发动机对嫦娥三号做的功. 答案 (1)g ′R 2G (2)224 N (3)-21 504 J解析 (1)在月球表面G MmR2=mg ′解得:M =g ′R 2G(2)因受力平衡,有F =mg ′ 解得:F =224 N(3)从悬停在高100 m 处到达高4 m 处过程由动能定理 mg ′(H -h )+W 1=0从高4 m 处释放后嫦娥三号机械能守恒,发动机不做功.W 2=0 解得:W =W 1+W 2=-21 504 J(限时:30分钟)►题组1 万有引力定律及应用1.(2012·新课标全国·21)假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-dRB .1+dRC .(R -d R )2D .(R R -d)2答案 A解析 设地球的密度为ρ,地球的质量为M ,根据万有引力定律可知,地球表面的重力加速度g =GM R 2.地球质量可表示为M =43πR 3ρ.因质量分布均匀的球壳对壳内物体的引力为零,所以矿井下以(R -d )为半径的地球的质量为M ′=43π(R -d )3ρ,解得M ′=(R -d R )3M ,则矿井底部的重力加速度g ′=GM ′(R -d )2,则矿井底部的重力加速度和地面处的重力加速度大小之比为g ′g =1-dR,选项A 正确.2.(2013·浙江·18)如图1所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M 、半径为R .下列说法正确的是( )图1A .地球对一颗卫星的引力大小为GMm(r -R )2B .一颗卫星对地球的引力大小为GMmr 2C .两颗卫星之间的引力大小为Gm 23r2D .三颗卫星对地球引力的合力大小为3GMmr 2答案 BC解析 地球对一颗卫星的引力等于一颗卫星对地球的引力,由万有引力定律得其大小为GMmr 2,故A 错误,B 正确;任意两颗卫星之间的距离L =3r ,则两颗卫星之间的引力大小为Gm 23r 2,C 正确;三颗卫星对地球的引力大小相等且三个引力互成120°,其合力为0,故D 选项错误.3.2013年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是指弹道导弹在大气层外空间依靠惯性飞行的一段.如图2所示,一枚蓝军弹道导弹从地面上A 点发射升空,目标是攻击红军基地B 点,导弹升空后,红军反导预警系统立刻发现目标,从C 点发射拦截导弹,并在弹道导弹飞行中段的最高点D 将其击毁.下列说法中正确的是( )图2A .图中E 到D 过程,弹道导弹机械能不断增大B .图中E 到D 过程,弹道导弹的加速度不断减小C .弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆D .弹道导弹飞行至D 点时速度大于7.9 km/s答案 BC解析 弹道导弹从E 到D 靠惯性飞行,只受地球的引力作用,机械能守恒,选项A 错误;弹道导弹从E 到D ,与地心的距离R 增大,万有引力F =G M 地mR 2减小,弹道导弹的加速度a =Fm 减小,选项B 正确;由开普勒第一定律知,选项C 正确;D 点在远地点,弹道导弹的速度最小,由v = GMr可知,D 点到地心的距离r 大于地球的半径R 0,所以弹道导弹的速度v = GMr小于第一宇宙速度v 宇= GMR 0=7.9 km/s ,选项D 错误.►题组2 天体质量和密度的计算4.有一宇宙飞船到了某行星上(该行星没有自转运动),以速度v 贴近行星表面匀速飞行,测出运动的周期为T ,已知引力常量为G ,则可得( )A .该行星的半径为v T2πB .该行星的平均密度为3πGT 2C .无法求出该行星的质量D .该行星表面的重力加速度为4π2v 2T 2答案 AB解析 由T =2πR v 可得:R =v T 2π,A 正确;由GMmR 2=m v 2R 可得:M =v 3T 2πG ,C 错误;由M=43πR 3ρ得:ρ=3πGT 2,B 正确;由GMmR 2=mg 得:g =2πv T,D 错误. 5.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处,已知该星球的半径与地球半径之比R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面重力加速度为g ′,地球的质量为M 地,该星球的质量为M 星.空气阻力不计.则( ) A .g ′∶g =5∶1B .g ′∶g =1∶5C .M 星∶M 地=1∶20D .M 星∶M 地=1∶80答案 BD解析 小球以相同的初速度在星球和地球表面做竖直上抛运动,星球上:v 0=g ′·5t2得,g ′=2v 05t ,同理地球上的重力加速度g =2v 0t;则有g ′∶g =1∶5,所以A 错误,B 正。
第4讲 万有引力与航天知识排查知识点一 开普勒三定律定律 内容图示或公式开普勒第一定律(轨道定律) 所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等a 3T 2=k ,k 是一个与行星无关与中心天体有关的常量1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的平方成反比。
2.表达式:F =Gm 1m 2r 2引力常量G =6.67×10-11N·m 2/kg 2。
3.适用条件(1)公式适用于质点间的相互作用。
当两个物体间的距离远远大于物体本身的大小时,物体可视为质点。
(2)公式适用于质量分布均匀的球体之间的相互作用,r 是两球心间的距离。
知识点三 宇宙速度 1.三个宇宙速度 第一宇宙速度(环绕速度) v 1=7.9 km/s ,是人造卫星的最小发射速度,卫星环绕地球的最大速度第二宇宙速度 v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度 第三宇宙速度 v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度第一宇宙速度是人造卫星在地面附近绕地球做匀速圆周运动的速度,也称为最大环绕速度。
(1)由G Mm R 2=m v 2R 得v 7.9 km/s(2)由mg =m v 2R得v 7.9 km/s知识点四 时空观 1.经典时空观(1)在经典力学中,物体的质量是不随运动状态而改变的。
(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的。
2.相对论时空观在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。
小题速练1.思考判断(1)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越大。
第四章 曲线运动 万有引力与航天一、知识网络1.运动的合成和分解 Ⅱ 2.抛体运动 Ⅱ 3.匀速圆周运动、角速度、线速度、向心加速度 Ⅰ 4.匀速圆周运动的向心力 Ⅱ 5.离心现象 Ⅰ 6.万有引力定律及其应用 Ⅱ 7.环绕速度 Ⅱ 8.第二宇宙速度和第三宇宙速度 Ⅰ 9.经典时空观和相对论时空观 Ⅰ 三、复习提要本章知识点,从近几年高考看,主要考查的有以下几点:(1)平抛物体的运动。
(2)匀速圆周运动及其重要公式,如线速度、角速度、向心力等。
(3)万有引力定律及其运用。
(4)运动的合成与分解。
注意圆周运动问题是牛顿运动定律在曲线运动中的具体应用,要加深对牛顿第二定律的理解,提高应用牛顿运动定律分析、解决实际问题的能力。
近几年对人造卫星问题考查频率较高,它是对万有引力的考查。
卫星问题与现代科技结合密切,对理论联系实际的能力要求较高,要引起足够重视。
本章内容常与电场、磁场、机械能等知识综合成难度较大的试题,学习过程中应加强综合能力的培养。
四、命题热点与展望本章内容在高考题中常有出现,考查重点是对概念和规律的理解和运用。
内容主要集中在平抛运动和天体运动、人造卫星的运动规律等方面,且均有一定难度。
本章的圆周运动经常与电磁场、洛仑兹力等内容结合起来考查。
§1 运动的合成与分解 平抛物体的运动一、曲线运动1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。
当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动 ,如平抛运动。
当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动。
如果物体受到约束,只能沿圆形轨道运动,而速率不断变化,是变速率圆周运动。
合力的方向并不总跟速曲线运动万有引力与航天度方向垂直。
2.曲线运动的特点:(1)曲线运动中速度的方向沿曲线的切线方向,在曲线运动中速度方向是时刻改变的,所以曲线运动一定是变速运动。
第4课时 万有引力与航天 考纲解读 1.掌握万有引力定律的内容、公式及应用.
2.理解环绕速度的含义并会求解.
3.了解第二和第三宇宙速度..
【知识要点】
1.解决天体(卫星)运动问题的基本思路
(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度).
2.天体质量和密度的计算
(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G
, 天体密度ρ=M V =M 43
πR 3=3g 4πGR . (2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .
①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3
GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天
体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.
3.卫星的各物理量随轨道半径变化的规律
4.极地卫星和近地卫星
(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.
(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s
(3)两种卫星的轨道平面一定通过地球的球心.
1.第一宇宙速度又叫环绕速度.推导过程为:由mg =mv 21R =GMm R 2得: v 1= GM R
=gR =7.9 km/s. 2.第一宇宙速度是人造地球卫星在 环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的 速度,也是人造地球卫星的 速度. 注意 (1)两种周期——自转周期和公转周期的不同.
(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度.
(3)两个半径——天体半径R 和卫星轨道半径r 的不同.
(4)第二宇宙速度(脱离速度):v 2= km/s ,使物体挣脱 引力束缚的最小发射速度.
(5)第三宇宙速度(逃逸速度):v 3= km/s ,使物体挣脱 引力束缚的最小发射速度.
【典型例题】
例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )
A .地球的质量m 地=gR 2G
B .太阳的质量m 太=4π2L 32GT 2
2
C .月球的质量m 月=4π2L 31GT 2
1 D .可求月球、地球及太阳的密度 例2(2013·广东·14)如图1,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的
行星做匀速圆周运动,下列说法正确的是( )
A .甲的向心加速度比乙的小
B .甲的运行周期比乙的小
C .甲的角速度比乙的大
D .甲的线速度比乙的大
例3 某人在一星球表面上以速度v 0竖直上抛一物体,经过时间t 后物体落回手中.已知星球半径为R ,那么沿星球表面将物体抛出,要使物体不再落回星球表面,抛射速度至少为
( )
A.
v 0t R B. 2v 0R t C. v 0R t D.v 0Rt
【拓展训练】
1.(2013·江苏单科·1)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )
A .太阳位于木星运行轨道的中心
B .火星和木星绕太阳运行速度的大小始终相等
C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
2.2013年6月13日,神舟十号与天宫一号成功实现自动交会对接.假设神舟十号与天宫一号都在各自的轨道做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )
A .由神舟十号运行的周期和轨道半径可以求出地球的质量
B .由神舟十号运行的周期可以求出它离地面的高度
C .若神舟十号的轨道半径比天宫一号大,则神舟十号的周期比天
宫一号小
D .漂浮在天宫一号内的宇航员处于平衡状态
3.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减
小为原来的14
,不考虑卫星质量的变化,则变轨前、后卫星的( ) A .向心加速度大小之比为4∶1 B .角速度大小之比为2∶1
C .周期之比为1∶8
D .轨道半径之比为1∶2
4.随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后小球回到出发点.已知月球的半径为R ,引力常量为G ,则下列说法正确的是( )
A .月球表面的重力加速度为v 0t
B .月球的质量为2v 0R 2Gt
C .宇航员在月球表面获得
v 0R t
的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为 Rt v 0 5.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍.某
时刻,航天站使登月器减速分离,登月器沿如图1所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返
回.当第一次回到分离点时恰与航天站对接.登月器快速启动时间可以忽
略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g 0,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )
A .4.7πR g 0
B .3.6πR g 0
C .1.7πR g 0
D .1.4πR g 0
6.2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P ,这个行星围绕某恒星Q 做匀速圆周运动.测得P 的公转周期为T ,公转轨道半径为r .已知引力常量为G ,则( )
A .恒星Q 的质量约为4π2r 3GT 2
B .行星P 的质量约为4π2r 3
GT
2 C .以7.9 km/s 的速度从地球发射的探测器可以到达该行星表面
D .以11.2 km/s 的速度从地球发射的探测器可以到达该行星表面
7.一行星绕恒星做匀速圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( )
A .恒星的质量为v 3T 2πG
B .行星的质量为4π2v 3GT 2
C .行星运动的轨道半径为vT 2π
D .行星运动的加速度为2πv T
8.我国于2013年6月11日17时38分发射“神舟十号”载人飞船,并与“天宫一号”目标飞行器对接.如图3所示,开始对接前,“天宫一号”在高轨道,“神舟十号”飞船在低轨道,各自绕地球做匀速圆周运动,距离地面的高度分别为h 1和h 2(设地球半径为R ),“天宫一号”的运行周期约为90分钟.则以下说法正确的是( )
A .“天宫一号”跟“神舟十号”的线速度大小之比为h 2h 1
B .“天宫一号”跟“神舟十号”的向心加速度大小之比为 R +h 2 2 R +h 1
2 C .“天宫一号”的角速度比地球同步卫星的角速度大
D .“天宫一号”的线速度大于7.9 km/s
9.2014年10月8日,月全食带来的“红月亮”亮相天空,引起人们对月球的关注.我国发射的“嫦娥三号”探月卫星在环月圆轨道绕行n 圈所用时间为t ,如图4所示.已知月球半径为R ,月球表面处重力加速度为g 月,引力常量为G .试求:
(1)月球的质量M ;
(2)月球的第一宇宙速度v 1;
(3)“嫦娥三号”卫星离月球表面的高度h .
(3)计算物体在前3 s 内和前6 s 内的位移大小.。