513同位角、内错角、同旁内角_教学设计
- 格式:doc
- 大小:470.00 KB
- 文档页数:6
人教版七年级下册5.1.3同位角、内错角、同旁内角教学设计一、教学目标1.知识与技能1.了解同位角、内错角、同旁内角的定义和性质;2.能够判断所给角是同位角、内错角还是同旁内角;3.掌握求解简单同位角、内错角、同旁内角的方法。
2. 过程与方法通过讲解、引导、举例等方式,让学生逐渐掌握同位角、内错角、同旁内角的概念和性质,引导学生灵活运用所学知识解决实际问题。
3. 情感态度与价值观1.能够理解几何学知识在实际问题中的应用,增强几何学习的兴趣和信心;2.培养学生的逻辑思维和判断能力,增强学生的数学素养。
二、教学重点和难点1.教学重点1.掌握同位角、内错角、同旁内角的定义和性质;2.积累和运用求解同位角、内错角、同旁内角的方法。
2.教学难点1.理解同位角、内错角、同旁内角在图形中的位置关系;2.运用所学知识解决实际问题。
三、教学准备和过程1.教学准备1.教师准备PPT课件和白板笔;2.学生准备好纸笔。
2.教学过程(1)引入通过让学生观察图片,引导学生对图形中角的位置和性质进行讨论,初步了解同位角、内错角和同旁内角。
(2)讲解1.同位角:相对角,位于两平行直线上且在同侧的两组相等的内角;2.内错角:相对角,位于两平行直线之间的两组非相邻内角;3.同旁内角:与内错角同侧的两组内角。
(3)举例通过让学生观察图片,引导学生判断所给角是否为同位角、内错角、同旁内角,并求解其大小。
(4)练习让学生在课堂上完成相关的练习题,巩固所学知识。
(5)归纳通过引导学生总结所学知识,进一步理解同位角、内错角和同旁内角的性质和求解方法。
(6)拓展引导学生运用所学知识解决实际问题,如在日常生活中根据投影角的大小判断电影院座位的好坏等。
四、教学评价1.教学方法评价本节课采用了讲述、引导、举例、练习等多种教学方法,能够让学生全面的了解同位角、内错角和同旁内角的概念和性质,并能够运用所学知识解决实际问题。
2. 教学效果评价通过课堂教学和课后作业的检查,学生掌握了同位角、内错角、同旁内角的概念,以及判断和求解同位角、内错角、同旁内角的方法,大部分学生能够灵活运用所学知识解决实际问题。
5.1.3同位角、内错角、同旁内角教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第五章“相交线与平行线”5.1.3同位角、内错角、同旁内角,内容包括:同位角、内错角、同旁内角的概念及辨识.2.内容解析本节内容主要是学习同位角、内错角、同旁内角的概念,在研究了两条相交直线构成的角(对顶角,邻补角)的基础上进一步探究平面内三条直线相交形成的不共顶点的角的位置关系,主要学习同位角、内错角、同旁内角的概念.它是进一步学习平行线的判定和性质的必要准备.教科书通过两条直线相交的四个角的知识为基础,引出一条直线分别与两条直线相交构成的八个角中,通过分类讨论思想,把不共顶点的两个角的位置关系分为同位角、内错角、同旁内角三类.紧接着,通过一个例题来让学生学习同位角、内错角、同旁内角的概念,教学时可根据情况适当要求学生说明同位角、内错角与同旁内角是哪两条直线被哪一条直线所截得到的,为后面学习平行线的性质与判定做好铺垫.基于以上分析,确定本节课的教学重点为:理解同位角、内错角、同旁内角的概念.二、目标和目标解析1.目标(1)理解同位角、内错角、同旁内角的概念;(2)结合图形识别同位角、内错角、同旁内角;(3)从复杂图形分解为基本图形的过程中,体会化繁为简,化难为易的化归思想.2.目标解析理解同位角、内错角、同旁内角的概念结合图形识别同位角、内错角、同旁内角;通过变式图形的识图训练,培养学生的识图能力;通过例题口答“为什么”,培养学生的推理能力;从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点;通过“三线八角”基本图形,使学生认识几何图形的位置美.三、教学问题诊断分析七年级学生对几何图形的认识有浓厚的兴趣,但相对掌握的几何知识还是较浅显的.特别是“图形、符合、文字”三种语言之间的相互转化.因此,本节课我重点以概念教学为主.通过学生看书、思考、组内交流、汇报、教师评价等形式得出“同位角、内错角、同旁内角”的概念.然后再通过达标练习进行反馈,在反馈中补充和升华,真正使学生达到理解、掌握的目的,从而为后续学习内容做铺垫.基于以上学情分析,确定本节课的教学难点为:从复杂图形分解为基本图形的过程中,体会化繁为简,化难为易的化归思想.四、教学过程设计自学导航三线八角如果有两条直线和另一条直线相交,可以得到几个角?八个角通常说:两条直线被第三条直线所截.如:直线a、b被直线c所截.同位角观察图中∠1和∠5的位置关系.两角的位置分别在直线AB,CD的同一方(上方),并且都在直线EF的同侧(右侧),具有这种位置关系的一对角叫做同位角.∠2和∠6是同位角吗?图中还有没有其他的同位角?标记出它们.∠2和∠6,∠3和∠7,∠4和∠8都是同位角.考点解析考点1:同位角★★★例1.如图,∠1与∠2不是同位角的是()【迁移应用】1.如图,直线a,6被直线c所截,下列各组角是同位角的是()A.∠1与∠2B.∠1与∠3C.∠2与∠3D.∠3与∠42.如图,与∠1是同位角的是()A.∠2B.∠3C.∠4D.∠53.如图_______和∠C是直线BE,CD被直线_____所截形成的同位角,_______和∠C是直线_____,_____被直线AC所截形成的同位角.自学导航内错角观察图中∠3和∠5的位置关系.两角的位置都在直线AB,CD之间,并且分别在直线EF两侧(∠3在直线EF左侧,∠5在直线EF右侧),具有这种位置关系的一对角叫做内错角.图中还有其它内错角吗?∠4和∠6是内错角考点解析考点2:内错角★★★例2.如图下列各组角中,是内错角的是()A.∠1和∠2B.∠2和∠3C.∠1和∠3D.∠2和∠5【迁移应用】1.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠52.如图,∠1与∠2是由直线______,______被直线______所截形成的内错角.3.如图,∠1的内错角有____个.自学导航同旁内角观察图中∠3和∠6的位置关系.两角的位置都在直线AB,CD之间,并且都在直线EF的同一旁(左侧),具有这种位置关系的一对角叫做同旁内角.图中还有其它同旁内角吗?∠4和∠5是同旁内角考点解析考点3:同旁内角★★★例3.如图,∠C与哪个角是同旁内角?解:∠C与∠EDC,∠DFC,∠ADC,∠ABC是同旁内角.【迁移应用】1.如图,下列两个角是同旁内角的是()A.∠1与∠2B.∠1与∠3C.∠1与∠4D.∠2与∠42.如图,下列结论:①∠2与∠3是内错角;②∠2与∠B是同位角;③∠A与∠B是同旁内角;④∠A与∠ACB不是同旁内角.其中正确的是________.(填序号)3.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于______,∠3的内错角等于______,∠3的同旁内角等于______.4.如图,∠D与哪个角是同旁内角?解:∠D与∠C,∠CED,∠BED是同旁内角.自学导航同位角、内错角、同旁内角的结构特征:注:上述三类角类似于对顶角都是成对出现.不能说哪个角是同位角、内错角、同旁内角.考点解析考点4:识别“三线八角”★★★★例4.如图,在∠1,∠2,∠3,∠4,∠5和∠B中,______是同位角,_____是内错角,______是同旁内角.解析:为了能正确地识别且防止遗漏,可以把图形分解成基本图形,如图①②③.【迁移应用】1.指出图中各对角的位置关系:(1)∠C和∠D是________角;(2)∠B和∠GEF是______角;(3)∠A和∠D是_______角;(4)∠AGE和∠BGE是_______角;(5)∠CFD和∠AFB是_______角.2.如图,下列说法不正确的是()A.∠1与∠3是对顶角B.∠2与∠6是同位角C.∠3与∠4是内错角D.∠3与∠5是同旁内角3.如图,在∠1,∠2,∠3,∠4,∠5中,同位角、内错角、同旁内角的对数分别是()A.1,1,4B.1,2,4C.2,1,4D.1,1,5考点5:通过同位角、内错角、同旁内角辨别截线、被截直线★★★★例5.填空:(1)如图①,∠1和∠ABC是直线______,______被直线______所截形成的_______角;(2)如图②,∠EDC和_______是直线DE,BC被直线______所截形成的内错角;(3)如图①,如果∠1=∠ABC,那么∠ABC与∠BCF相等吗?∠ABC与∠BCE互补吗?为什么?(3)如果∠1=∠ABC,由对顶角相等,得∠1=∠BCF,那么∠ABC=∠BCF.因为∠1和∠BCE互补,所以∠1+∠BCE=180°.又∠1=∠ABC,所以∠ABC+∠BCE=180°,所以∠ABC与∠BCE互补.【迁移应用】1.如图,根据图形填空:(1)∠FAD和∠____是_____与_____被_____所截形成的同位角;(2)∠FAC和∠____是_____与_____被_____所截形成的同位角;(3)∠CAD和∠______是_____与_____被_____所截形成的内错角;(4)∠FAC和∠______是_____与_____被______所截形成的内错角;(5)∠BAD和∠______是_____与_____被______所截形成的同旁内角;(6)∠CAD和∠______是_____与_____被______所截形成的同旁内角.2.下列各图中,∠1和∠2,∠3和∠4分别是哪两条直线被哪一条直线所截形成的?它们各是什么角?解:图①中的∠1和∠2是直线AB,DC被直线DB所截形成的,它们是内错角;∠3和∠4是直线AD,BC 被直线DB所截形成的,它们是内错角.图②中的∠1和∠2是直线AB,DC被直线BC所截形成的,它们是同位角;∠3和∠4是直线AB,BC被直线AC所截形成的,它们是同旁内角.。
《513同位角内错角同旁内角》教案教案:513同位角、内错角、同旁内角教学目标:1.理解并能正确定义同位角、内错角和同旁内角的概念。
2.掌握同位角、内错角和同旁内角的性质和判定方法。
3.能够运用同位角、内错角和同旁内角的性质解决几何问题。
教学重点:1.同位角的定义和性质。
2.内错角的定义和性质。
3.同旁内角的定义和性质。
教学难点:1.运用同位角、内错角和同旁内角的性质解决几何问题。
2.全面理解同位角、内错角和同旁内角的定义和性质。
教学准备:1.教师准备多媒体课件和板书。
2.学生准备好教材和参考书。
教学过程:Step 1:导入 (5分钟)教师通过展示一张图片或给出一个问题引起学生思考:“两条平行线上的同位角有什么特点呢?”鼓励学生积极参与讨论。
Step 2: 学习同位角 (15分钟)1.教师向学生解释同位角的定义:“同位角是指在两条相交线上,位于同一边的两个角。
”2.通过多媒体课件或板书,教师向学生展示同位角的示意图,并给出几个示例。
3.教师引导学生从示例中总结同位角的性质:“同位角相等。
”Step 3: 学习内错角 (15分钟)1.教师向学生解释内错角的定义:“内错角是指两条平行线被一条截线所夹的两组相对角。
”2.通过多媒体课件或板书,教师向学生展示内错角的示意图,并给出几个示例。
3.教师引导学生从示例中总结内错角的性质:“内错角相等。
”Step 4: 学习同旁内角 (15分钟)1.教师向学生解释同旁内角的定义:“同旁内角是指两条平行线被一条截线所夹的两组内错角。
”2.通过多媒体课件或板书,教师向学生展示同旁内角的示意图,并给出几个示例。
3.教师引导学生从示例中总结同旁内角的性质:“同旁内角互补。
”Step 5: 综合运用 (20分钟)1.教师提供一些综合运用的练习题让学生进行练习和解答。
2.教师在黑板上讲解答案,并让学生进行自主订正。
3.学生在小组内讨论并解决一些实际应用问题。
4.教师选几个学生上台为大家展示解题的过程和方法。
§5.1.3 同位角、内错角、同旁内角【教学重点与难点】教学重点:同位角、内错角、同旁内角的概念教学难点:在较复杂的图形中辨认同位角、内错角、同旁内角【教学目标】1、理解同位角、内错角、同旁内角的概念;结合图形识别同位角、内错角、同旁内角。
2、通过变式图形的识图训练,培养学生的识图能力.3、从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点【教学方法】以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
【教学过程】一、复习回顾引入新课(设计说明:本节课是研究两条直线被第三条直线所截成的不共顶点的角的位置关系,它是以两条直线相交构成的四个角的知识为基础的,因此复习两线相交所成的四角的相关知识可起到承上启下的作用。
)问题:我们已经知道,两条直线相交组成四个角(如图),任意两角间都关系,我们分别称它们为什么角?,它们之间又有怎样的数量关系?两条直线相交,形成两对对顶角(∠1和∠3、∠2与∠4),它们相等;四对邻补角(如∠1和∠2…),它们互补。
如果我们再加入一条直线CD也与直线EF相交,会出现什么情况呢?如图,直线AB、CD与EF相交(或者说成两条直线AB、CD被第三条直线EF所截),可以构成8个角,俗称"三线八角",在这八个角中,同一顶点上两个角的关系前面已经学过,今天,我们来研究不同顶点的两个角的关系。
(教学说明:通过在两线相交的基础上填线的方式引入了两条直线被第三条直线所截的情形,这可以让学生认识到这是相交线的又一种情况,而我们这节课所要研究的角也是与相交线有关系的角,从而让学生认识事物间是发展变化的辩证关系。
)二、合作交流探究新知(设计说明:利用问题串引导学生自主探究,让学生在探究中了解概念的形成,在合作交流中辨是非从而加深学识对知识的理解。
人教版数学七年级下册《5-1-3同位角、内错角、同旁内角》教学设计一. 教材分析人教版数学七年级下册《5-1-3同位角、内错角、同旁内角》是几何部分的一个重要内容。
本节课主要介绍同位角、内错角、同旁内角的概念及它们的性质。
通过本节课的学习,使学生能够了解直线与直线之间的位置关系,进一步理解平行线的性质。
本节课的内容在学生的数学知识体系中占有重要地位,为后续学习平行线的判定和性质奠定基础。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的基本概念,并了解了直线与直线之间的位置关系。
但由于年龄和认知水平的限制,学生在理解抽象的几何概念方面还存在一定的困难。
因此,在教学过程中,需要注重对学生直观形象的引导,激发学生的学习兴趣,提高学生参与课堂的积极性。
三. 教学目标1.知识与技能:使学生掌握同位角、内错角、同旁内角的概念及它们的性质,能够运用这些概念和性质解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:同位角、内错角、同旁内角的概念及它们的性质。
2.难点:同位角、内错角、同旁内角的性质在实际问题中的应用。
五. 教学方法1.情境教学法:通过设置具体情境,引导学生观察、操作、猜想、验证,激发学生的学习兴趣。
2.合作学习法:学生进行小组讨论,培养学生的团队合作精神和沟通能力。
3.启发式教学法:教师提问,引导学生思考,激发学生的求知欲望。
4.实践操作法:让学生亲自动手操作,提高学生的动手能力和实践能力。
六. 教学准备1.教具:直尺、三角板、多媒体设备。
2.学具:直尺、三角板、练习本。
3.教学课件:制作课件,内容包括情境图片、动画、例题等。
七. 教学过程1.导入(5分钟)利用多媒体展示直线与直线之间的位置关系,引导学生回顾直线的基本概念。
人教版七年级数学下册5.1.3.《同位角、内错角、同旁内角》教学设计一. 教材分析人教版七年级数学下册5.1.3.《同位角、内错角、同旁内角》是学生在掌握了角的概念、平行线的性质等基础知识后,进一步学习角与直线的关系。
本节内容通过介绍同位角、内错角、同旁内角的概念,让学生理解在两直线平行的情况下,这些角之间的关系,为后续学习几何图形的判定和计算打下基础。
二. 学情分析七年级的学生已经具备了一定的几何基础知识,对角的概念和平行线的性质有所了解。
但学生在理解和应用这些知识时,可能还存在一定的困难。
因此,在教学过程中,教师需要通过生动的实例、直观的图形和丰富的练习,帮助学生理解和掌握同位角、内错角、同旁内角的概念及应用。
三. 教学目标1.让学生了解同位角、内错角、同旁内角的概念,并能正确识别它们。
2.让学生理解在两直线平行的情况下,同位角、内错角、同旁内角之间的关系。
3.培养学生运用几何知识解决实际问题的能力。
四. 教学重难点1.重点:同位角、内错角、同旁内角的概念及它们之间的关系。
2.难点:如何在实际问题中运用这些知识解决问题。
五. 教学方法1.采用直观演示法,通过展示图形,让学生直观地了解同位角、内错角、同旁内角的概念。
2.采用实例教学法,通过分析实际问题,让学生理解同位角、内错角、同旁内角之间的关系。
3.采用练习法,让学生在实践中巩固所学知识。
4.采用小组合作学习法,培养学生团队合作精神。
六. 教学准备1.准备相关的图形资料和实例问题。
2.准备多媒体教学设备,如投影仪、白板等。
3.准备练习题和测试题。
七. 教学过程1.导入(5分钟)教师通过展示两直线相交的图形,引导学生观察并提问:“请大家观察这些图形,你能发现哪些特殊的角度?”让学生初步了解同位角、内错角、同旁内角的概念。
2.呈现(10分钟)教师通过讲解和展示实例,详细介绍同位角、内错角、同旁内角的概念,并解释它们之间的关系。
例如,当教师展示两直线平行时,同位角相等,内错角相等,同旁内角互补的图形,让学生直观地理解这些概念。
同位角内错角和同旁内角教案教案:同位角、内错角和同旁内角一、教学目标:1.了解同位角、内错角和同旁内角的定义和性质。
2.能够通过图形判断同位角、内错角和同旁内角。
3.能够应用同位角、内错角和同旁内角的性质解题。
二、教学内容:1.同位角概念介绍同位角是指两条直线被一条穿过后所形成的四组角。
这四组角有相同的内角或外角。
2.同位角性质同位角的内错角相等,外错角相等。
3.内错角概念介绍内错角是指两条直线被一条穿过后形成的一个线与另两条直线所围成的角。
内错角的和为180度。
4.内错角性质内错角的和为180度。
5.同旁内角概念介绍同旁内角是指一条直线被两条平行直线所穿过后形成的角。
同旁内角相等。
6.同旁内角性质同旁内角相等。
三、教学过程及学生活动安排:1.导入(10分钟)通过一个简单的问题导入课题:“两条直线相交时,关于相交点可以构造几个同位角?”请学生思考并回答问题。
2.概念讲解(15分钟)教师简要讲解同位角、内错角和同旁内角的概念,并提供几个简单的案例进行说明和比较。
3.练习活动(25分钟)将学生分为小组,让每个小组在纸上画出一组直线,然后找出其中的同位角、内错角和同旁内角。
每个小组将所画图形和角度结果展示给全班。
4.性质总结(15分钟)教师带领学生讨论同位角、内错角和同旁内角的性质,并总结归纳在黑板上。
5.深化训练(20分钟)教师随机抽取几道题目,让学生上台演示解题过程。
学生根据所学知识,解答问题,并给出详细的解释和证明过程。
6.拓展应用(15分钟)教师出示一些图形,让学生分析其中的同位角、内错角和同旁内角,并将分析结果写在纸上。
随后,教师选取一些学生分享自己的分析结果。
7.归纳和复习(10分钟)教师对今天所学知识进行归纳总结,并提醒学生将本节课的重点和要点进行复习。
四、教学评价:1.教师观察:教师观察学生在概念讲解和练习活动中的表现,包括学生是否能够理解概念、能否准确判断图形中的角度等。
2.学生表现:学生完成练习活动和解答问题的情况,包括是否能够准确找出同位角、内错角和同旁内角,是否能够给出正确的证明和解释。
课题:5.1.3同位角、内错角、同旁内角 课型:新授学习目标:1、理解同位角、内错角、同旁内角的意义。
2、会熟练地识别图中的同位角、内错角、同旁内角。
3、培养学生分析、抽象、归纳能力,培养学生的识图能力学习重点:同位角、内错角、同旁内角的识别。
学习难点:较复杂图形中同位角、内错角、同旁内角的识别。
学习过程:一、学前准备1、预习疑难: 。
2、直线AB 、CD 相交于O 小于平角的角有几个?有几对对顶角?有几对邻补角?二、探索与思考如图,直线AB 、CD 与EF 相交〔或两条直线AB 、CD 被第三条直线EF 所截〕构成 个角。
我们来研究其中没有公共顶点......的两个角的关系。
〔一〕同位角1、定义:如图1,∠1和∠5,分别在直线AB 、CD 的 ,在直线EF 的 。
具有这种位置关系的一对角叫做同位角。
2、请你找出图中还有哪几对角构成同位角。
3、两条直线被第三条直线所截构成的八个角中,共有 对同位角。
〔二〕内错角 〔1〕1、定义:如图2,∠3和∠5,分别在直线AB 、CD 的 , 在直线EF 的 。
具有这种位置关系的一对角 叫做内错角。
2、请你找出图中还有哪几对角构成内错角。
3、两条直线被第三条直线所截构成的八个角中,共有 对内错角(三)同旁内角1、定义:如图2,∠3和∠6,分别在直线AB 、CD 的 , 在直线EF 的 。
具有这种位置关系的一对角 叫做同旁内角。
(2)2、请你找出图中还有哪几对角构成同旁内角。
3、两条直线被第三条直线所截构成的八个角中,共有 对同旁内角〔四〕总结:〔1〕以上三对角都有一边公共,是第三条直线〔截线〕.〔2〕识别“第三条直线〔两个角一边所在的同一直线〕〞是关键.三、应用〔一〕例 如图,直线DE 、BC 被直线AB 所截,〔1〕∠l 与∠2,∠1与∠3,∠1与∠4各是什么关系的角?〔2〕如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?〔二〕变式训练:找出图中所有的同位角、内错角、同旁内角。
人教版数学七年级下册5.1.3《同位角、内错角、同旁内角》教学设计一. 教材分析人教版数学七年级下册5.1.3《同位角、内错角、同旁内角》是几何部分的重要内容。
这部分内容主要让学生了解同位角、内错角、同旁内角的概念,并掌握它们的性质和应用。
为学生后续学习平行线的性质和判定奠定了基础。
二. 学情分析七年级的学生已具备一定的几何基础,对图形的认知和观察能力有一定的提高。
但学生在理解角度的概念和运用角度解决实际问题方面还需加强。
因此,在教学过程中,要注重引导学生通过观察、思考、交流等方式,掌握同位角、内错角、同旁内角的概念和性质。
三. 教学目标1.知识与技能:让学生掌握同位角、内错角、同旁内角的概念,能运用这些概念解决简单的实际问题。
2.过程与方法:通过观察、思考、交流等途径,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:同位角、内错角、同旁内角的概念及性质。
2.难点:运用同位角、内错角、同旁内角解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概念,激发学生兴趣。
2.互动教学法:引导学生参与讨论,培养学生团队合作精神。
3.实践教学法:让学生动手操作,提高学生的实践能力。
六. 教学准备1.准备相关的生活实例和图片,用于导入和新课呈现。
2.准备练习题,用于巩固和拓展。
3.准备黑板,用于板书重点知识点。
七. 教学过程1.导入(5分钟)利用生活实例引入同位角、内错角、同旁内角的概念。
例如,展示两辆火车从不同轨道相向而行,引导学生观察它们之间的角度变化。
2.呈现(10分钟)呈现教材中关于同位角、内错角、同旁内角的图片和文字,引导学生观察和思考,总结它们的性质。
3.操练(10分钟)让学生分组讨论,每组设计一个实例,运用同位角、内错角、同旁内角的概念解决实际问题。
讨论结束后,各组汇报成果,其他组进行评价。
4.巩固(10分钟)出示练习题,让学生独立完成。
5.1.3同位角、内错角、同旁内角一、新课引入1、直线AB、CD相交于0小于平角的角有几个?有几对对顶角?有几对邻补角?小于平角的角有4个、有两对对顶角、有四对邻补角。
2、直线AB、CD与EF相交(或两条直线AB、CD被第三条直线EF所截)构成 ______ 个角.二、研读课文认真阅读课本第6至7页的内容,完成下面练习并体验知识点的形成过程. 知识点一同位角、内错角、同旁内角的定义E____ 方,在直线EF的 ____ 侧,所以Z1和Z5就是一对______ 角。
如果两个角分别在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同, 这样的一对角叫做同位角思考:请你找出图中还有哪几对角构成同位角。
2、如图,Z3和Z5,分别在直线AB、CD ______ ,在直线EF的_______所以Z3和Z5就是一对角。
如果两个角分别在被截的两条直线之间(内)并且分别在截线的两侧(错),这样的一对角叫做内错角。
思考:请你找出图中还有哪几对角构成内错角。
讨论:图中Z2和Z8和Z1和Z7是内错角吗?为什么?3、如图,Z4和Z5,分别在直线AB、CD ______ ,在直线EF的_________所以Z4和Z5就是一对_________ 角。
如果两个角都在被截直线之间(内)并且分别在截线的同侧(同旁),这样的一对角叫做同旁内角。
练一练: 分别指出下列图中的同位角、内错角.同旁内角同旁内角有:同位角有: 内错角有:b同位角有:内错角有:同旁内角有:知识点二:同位角、内错角和同旁内角的应用如图,直线DE, BC被直线AB所截(1) Z1和Z2, Z1和Z3, Z1和Z4各是什么位置关系的角?(2)如果Z1=Z4,那么Z1和Z2相等吗?Z1和Z3互补吗?为什么?(3)如果Z1=Z4,由对顶角相等,得Z2二—,那么_______________ o练一练:如图,ZB与哪个角是内错角,与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截成的?对ZC进行同样的讨论三、归纳小结1、归纳总结同位角、内错角、同旁内角的特征:同位角:“F ”字型,“同旁同侧”内错角:“Z ”字型,“之间两侧”同旁内角:“U ”字型,“之间同侧”2、学习反思:_____________________四、强化训练1、如下图,说出下列各对角是什么角?Z1与Z4是角,Z1与Z3是角,Z1与Z5是角,Z6与Z5是角,Z6与Z2是角,Z6与Z3是角。
513同位角内错角同旁内角教案教案主题:513同位角、内错角、同旁内角的认识和应用一、教学目标:1.了解和掌握同位角、内错角、同旁内角的定义和性质;2.学会通过几何图形结构对同位角、内错角、同旁内角进行推理和计算;3.能够运用同位角、内错角、同旁内角的性质解决几何问题。
二、教学准备:1.教师准备几何教具,如直尺、量角器等;2.教师准备多个几何图形,如线段、尺、角等;3.教师准备多个练习题,让学生进行课堂练习。
三、教学过程:1.导入(5分钟)通过展示一张含有角的几何图形,请学生讨论图中的角是否有关系,引导学生思考同位角、内错角、同旁内角的概念,并引导学生提出问题,启发他们探索这些角的性质。
例如:同位角是否相等?内错角是否互补?同旁内角之和是否为180度?2.概念讲解(15分钟)a.同位角:从图中选出两个顶点相同或两个边相交的两对角,这两对角就是同位角,同位角的度数相等。
b.内错角:当两条相交直线上有两个角,其中一个角的内侧角与另一个角的外侧角之和等于180度,这两个角就是内错角。
c.同旁内角:当两条平行线被一条截断时,位于被截线两侧但不同侧的两组相邻内角之和等于180度,这两组角就是同旁内角。
3.性质探究(25分钟)a.同位角的性质:i.同位角的度数相等,即如果一个角的度数为x度,则与它同位的角的度数也为x度。
ii. 同位角的互补角(补角)相等,即如果一个角的度数为x度,则它的补角的度数也为x度。
通过展示具体几何图形,让学生自己发现并验证同位角的性质。
例如,让学生在一张平行线被一条截线图中找出同位角,并比较它们的度数和补角的度数。
b.内错角的性质:i.内错角的度数和为180度,即如果一个角的度数为x度,则与它呈内错角的另一个角的度数为(180-x)度。
通过展示具体几何图形,让学生自己发现并验证内错角的性质。
例如,在一张相交直线上给出两个角的度数,让学生计算它们的度数之和是否为180度。
c.同旁内角的性质:i.同旁内角之和为180度,即如果两条平行线被一条截线截断,位于同一边的两组相邻内角之和为180度。
5.1.3 同位角、内错角、同旁内角
教学目标:
知识与技能目标:了解同位角、内错角、同旁内角的概念。
过程与方法目标:会识别同位角、内错角、同旁内角。
情感与态度目标:在活动中培养学生乐于探索、合作学习的习惯,培养学生“用数学”的意识和能力。
教学难重点
重点:已知两直线和截线,判断同位角、内错角、同旁内角。
难点:知两个角,要判别是哪两条直线被第3条直线所截而形成的什么位置关系的角
教学过程:
一创设情景,复习引入新课
(1)平面上的两条直线相交形成几个角?称之谓什么角?
(2)在实际生活中,还存在着两条直线被第3条直线所截的情况,如斜拉桥的灯柱子与其横梁,脚手架的钢管,交通线路中的道路,将这些事物抽象成几何图形,就是如图所示的图形
(3)两条直线被第3条直线所截形成几个角?这8个角中有多种关系,如
∠2与∠4,∠5与∠7,∠6与∠8, ∠1和∠3是对顶角,除了对顶角,还有没有其它新的关系的角呢?这节课我们就来研究同位角,内错角,同旁内角
二、合作交流,探索新知
(一) 同位角,内错角,同旁内角的概念
1、先看图中∠1和∠5,这两个角分别在直线AB、CD的上方,并且都在直线EF的右侧,像这样位置相同的一对角叫做同位角。
在图(1)中,像这样具有类似位置关系的角还有吗?如果你仔细观察,会发现∠2与∠6,∠3与∠7,∠4与∠8也是同位角。
变式图形:
图中的∠1与∠2都是同位角。
图形特征:在形如字母“F”的图形中有同位角。
2、再看∠3与∠5,这两个角都在直线AB、CD之间,且∠3在直线EF 左侧,∠5在直线EF右侧,像这样的一对角叫做内错角。
同样,∠4与∠6也具有类似位置特征,∠4与∠6也是内错角。
变式图形:
图中的∠1与∠2都是内错角。
图形特征:在形如“Z”的图形中有内错角。
3、在图(1)中,∠3和∠6也在直线AB、CD之间,但它们在直线EF的
同一旁像这样的一对角,我们称它为同旁内角。
具有类似的位置特征的还有∠
4与∠5,因此它们也是同旁内角。
变式图形:
图中的∠1与∠2都是同旁内角。
图形特征:在形如“n”的图形中有同旁内角。
4、辩一辩
与两直线的
位置关系
与截线的位
置关系
同位角两直线同侧截线的同旁
内错角两直线之间截线异侧
同旁内角两直线之间截线同侧
5,做一做(请一位学生上台展示学习成果)
请用三根竹条或小木棍制作一个如图的风筝骨架,观察风筝骨架中(图自己画)有几个角,请把它画成几何图形,并用符号表示这些角,然后分别指出所有的对顶角,同位角,内错角,同旁内角
归纳:寻找同位角,内错角,同旁内角关键要分清两条直线和截线,然后按相互的位置特征进行判别
三、例题讲解
1、例1.如图,直线DE截AB ,AC,构成8个角,指出所有的同位角,
内错角,同旁内角
(1)分析:两条直线是AB,AC,截线是DE,
所以8个角中
同位角:∠2与∠5,∠4与∠7,∠1与∠8, ∠6和∠3
内错角:∠4与∠5,∠1与∠6, 同旁内角:∠1与∠5,∠4与∠6
(2)变式:∠A与∠8是哪两条直线被第3条直线所截的角?它们是什么关系的角?
(AB与DE 被AC所截,是内错角)
∠A与∠5呢?(AB与DE 被AC所截,是同旁内角)
∠A与∠6呢?(AB与DE 被AC所截,是同位角)
(3)归纳:变式是例题的逆向思维,即已知两角,如何寻找两直线和截线,引导学生得出
两个角有一边在同一直线上,则这条直线就是截线,其余两边所在的直线是两直线。
2、练一练、
3、例2如图,直线DE交∠ABC的边BA于点F,如果∠1=∠2,那么同位角∠1和∠4相等,同旁内角∠1和∠3互补。
请说明理由分析:如果∠1=∠2,由对顶角相等,得∠2=∠4,那么∠1=∠4。
因为∠2与∠3互补,即∠2+∠3=180°,又因为∠1=∠2,所以∠1+∠3=180°,即∠1和∠3互补。
四、应用拓展
(1)图中,∠1与∠2,∠3与∠4各是哪一条直线截哪两条直线而成
的?它们各是什么角?
分析:两个角若有一边在同一条直线上,则这条直线即为截线,这两个角的另一边所在的两直线即为被截的两条直线。
解:图(1)中,∠1的边DA与∠2的边BD都在直线AB上,这两个角的另一边分别是DE、BC。
所以∠1和∠2是直线AB截DE、BC而成的一对同位角。
∠3的边DE和∠4的边ED都在直线DE上,这两个角的另一边分别是DB、EC。
所以∠3和∠4是直线DE截DB、EC所成的一对同旁内角。
图(2)中,∠1的边BD与∠2的边DB都在直线BD上,这两个角的另一边分别是DE、BC。
所以∠1和∠2是直线DB截直线DE、BC所成的一对内错角。
∠3的边AB与∠4的边BA都在直线AB上,它们的另一边分别是AE、BD。
所以∠3和∠4是直线AB截AE、BD成的一对同旁内角。
图(3)中的∠1的边AC与∠2的边CA都在直线AC上,它们的另一边分别是AB、CD。
所以∠1和∠2是直线AC截AB、CD所成的内错角。
同样∠3和∠4是直线AC截AD、CB所成的内错角。
五、小结:
本讲主要讲述了同位角、内错角、同旁内角的概念以及识别它们的方法:
(1)同位角、内错角、同旁内角都是两条直线被第三条直线所截时产生的,究其实质,它们主要是反映了直线相交产生的角中,相互位置所具有的特征:(1)两个同位角就是与直线的位置关系而言具有“同上、同右”、
“同上、同左”“同下、同右”或“同下、同左”的特征。
(2)内错角具有“同内、异侧”的特征。
(3)同旁内角具有“同内、同侧”的特征。
(2)掌握辩别这些角的关键是看哪两条直线被哪一条直线所截、分清哪一条直线截哪两条直线形成了哪些角,是作出正确判定的前提,在截线的同旁找同位角,同旁内角,在截线的不同旁,找内错角。
六、作业
反思:这节课能在规定的时间内完成教学任务,在语言组合上久精细。
调动学生的积极性不是很好。
三个探究活动的时间没有把握好。