七年级数学多边形(1)
- 格式:pptx
- 大小:1.37 MB
- 文档页数:9
7.3.1 多边形教学目标了解多边形及有关概念,理解正多边形及其有关概念.2.区别凸多边形与凹多边形.重点:(1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形.难点:多边形定义的准确理解.教学过程一、新课讲授图形见课本P79图7.3一l.你能从里找出几个由一些线段围成的图形吗?上面三图中让同学边看、边议.在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?提问:三角形的定义.你能仿照三角形的定义给多边形定义吗?1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)2.多边形的边、顶点、内角和外角.多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线:连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形图形见课本P80.7.3—6.在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形:由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.二、课堂练习:课本P81练习1.2.三、课堂小结:引导学生总结本节课的相关概念.四、课后作业:课本P83第1题.。
初中数学——(47)多边形的有关概念一、多边形(一)定义:在平面内,由一些线段首尾顺次相接组成的图形(二)内角:多边形相邻两边组成的角叫做它的内角(三)外角:多边形的边与邻边的延长线组成的角叫多边形的外角(四)对角线:连接多边形不相邻的两个顶点的线段二、多边形的性质(一)多边形的内角和:n 边形的内角和等于(n-2)×180°(二)多边形的外角和:任意多边形的外角和等于360°(三)多边形对角线的条数:1、从n边形的一个顶点出发可以引(n-3)条对角线2、从n边形的一个顶点出发可以把多边形分(n-2)个三角形2、n边形共有23)-n(n条对角线三、镶嵌(一)同一种正三边形、正方形、正六边形可以进行平面镶嵌(二)正三角形与正四边形、正三角形与正六边形、正四边形与正八边形、正三角形与正十二边形可以进行平面镶嵌(三)同一种任意三角形、任意四边形可以进行镶嵌四、练习题(一)正方形每个内角都是_____,每个外角都是 ____(二)多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有条(三)将一个三角形截去一个角后,所形成的一个新的多边形的内角和(四)若一个多边形的内角和与外角和相等,则这个多边形是()A、三角形B、六边形B、五边形 D、四边形(五)一个多边形内角和是1080°,则这个多边形的边数为()A、 6B、 7C、 8D、 9(六)若一个多边形的内角和与外角和相加是1800°,则此多边形是( )A、八边形B、十边形C、十二边形D、十四边形(七)下列正多边中,能铺满地面的是()A、正方形B、正五边形C、等边三角形D、正六边形(八)下列正多边形的组合中,不能够铺满地面的是( )A、正六边形和正三角形B、正三角形和正方形C、正八边形和正方形D、正五边形和正八边形。
认识三角形三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.有关三角形的概念:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.④三角形的外角:三角形的角的一边与另一边的反向延长线组成的角叫做三角形的外角.注意:(1)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.三角形外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.注意:(1)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.三角形的分类:按角分⎩⎨⎧直角三角形斜三角形⎩⎨⎧锐角三角形钝角三角形按边分⎩⎨⎧不等边三角形(不规则三角形)等腰三角形⎩⎨⎧只有两条边相等的等腰三角形等边三角形锐角三角形 直角三角形 钝角三角形三个角都是锐角 有一个角为直角 有一个角是钝角不等边三角形 等腰三角形 等边三角形 三边不相等 有两条边相等 三条边都相等①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形; ③直角三角形:有一个角为90°的三角形。
①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形。
三角形的三线:三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线.这个角的顶点与交点之间的线段.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫做三角形的高.注意:(1)三角形分别有三条高线,三条中线,三条角平分线;(2)任意三角形三条角平分线,三条中线,分别交于一点,且都在三角形的内部;(3)直角三角形的三条高线的交点就是直角顶点,钝角三角形的三条高线的交点在三角形的外部,锐角三角形的三条高线在三角形的内部。
章节测试题1.【答题】若凸n边形的每个外角都是36°,则从一个顶点出发引的对角线条数是()A. 6B. 7C. 8D. 9【答案】B【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7.选B.2.【答题】一个n边形共有20条对角线,则n的值为()A. 5B. 6C. 8D. 10【答案】C【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】设这个多边形是n边形,则=20,∴n2−3n−40=0,(n−8)(n+5)=0,解得n=8,n=−5(舍去).故选C.3.【答题】从五边形的一个顶点,可以引几条对角线()A. 2B. 3C. 4D. 5【答案】A【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】根据n边形从一个顶点出发可引出(n-3)条对角线可直接得到从五边形的一个顶点可以引:5−3=2条对角线。
选A.4.【答题】多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A. 8B. 9C. 10D. 11【答案】C【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】设多边形有n条边,则n−2=11,解得n=13.故这个多边形是十三边形。
故经过这一点的对角线的条数是13−3=10.选C.5.【答题】十五边形从一个顶点出发有()条对角线.A. 11B. 12C. 13D. 14【答案】B【分析】本题主要涉及多边形对角线的问题,熟练掌握多边形对角线的计算公式是解题的关键;连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,n边形过一个顶点有(n-3)条对角线.【解答】n边形(n>3)从一个顶点出发可以引(n−3)条对角线,所以十五边形从一个顶点出发有:15−3=12条对角线。
第九章多边形章末测试(一)一.选择题(共8小题,每题3分)1.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°2.一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D. 90°4.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°5.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A. 1 B. 2 C. 3 D. 4A.30°B.20°C.10°D. 40°7.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形8.一个多边形的每个外角都等于72°,则这个多边形的边数为()A. 5 B. 6 C. 7 D. 8二.填空题(共6小题,每题3分)9.如图,一束平行太阳光线照射到正五边形上,则∠1=_________ .10.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是_________ .11.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=_________ .12.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为_________ .13.如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_________ .14.如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB= _________ .三.解答题(共10小题)15.(6分)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.16.(6分)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.17.(6分)如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)18.(8分)△ABC中,AB=AC,△ABC周长为16cm,BD为中线,且将△ABC分成的两个小三角形周长的差为2cm.求△ABC各边的长.19.(8分)如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.20.(8分)已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数.(1)请写出一个三角形符合上述条件的第三边长.(2)若符合上述条件的三角形共有n个,求n的值.(3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例.21.(8分)下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A (不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:_________ .22.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB 的度数.23.(10分)如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).24.(10分)将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图1,当∠A=45°时,∠ABC+∠ACB=_________ 度,∠DBC+∠DCB=_________ 度;(2)如图2,改变直角三角板DEF的位置,使该三角板的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD的大小是否发生变化?若变化,请举例说明;若没有变化,请探究∠ABD+∠ACD与∠A的关系.第九章多边形章末测试(一)参考答案与试题解析一.选择题(共8小题)1.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°考点:平行线的性质;三角形的外角性质.分析:首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.解答:解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,∴∠3的度数是70°.故选:A.点评:此题主要考查了平行线的性质以及三角形内角和定理等知识,根据已知得出∠5的度数是解题关键.2.一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:360÷36=10.故选C.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.4.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°考点:三角形的外角性质.专题:探究型.分析:先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.解答:解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.点评:本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.5.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1 B.2 C.3 D.4考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.30°B.20°C.10°D.40°考点:平行线的性质;三角形的外角性质.分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠CFE,又由三角形外角的性质,求得答案.解答:解:∵AB∥CD,∴∠CFE=∠ABE=60°,∵∠D=50°,∴∠E=∠CFE﹣∠D=10°.故选C.点评:此题考查了平行线的性质以及三角形外角的性质.此题比较简单,注意掌握数形结合思想的应用.7.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形考点:多边形内角与外角.分析:首先求得外角的度数,然后利用360除以外角的度数即可求解.解答:解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理8.一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5 B.6 C.7 D.8考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:多边形的边数是:360÷72=5.故选A.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.二.填空题(共6小题)9.如图,一束平行太阳光线照射到正五边形上,则∠1=30°.考点:平行线的性质;多边形内角与外角.分析:作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.解答:解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.点评:本题考查了平行线的性质,注意掌握两直线平行:内错角相等、同位角相等.10.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是正五边形.考点:平面镶嵌(密铺).分析:求出各个正多边形的每个内角的度数,结合密铺的条件即可求出答案.解答:解:正三角形的每个内角是60°,能整除360°,能密铺;正四边形的每个内角是90°,4个能密铺;正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;正六边形的每个内角是120°,能整除360°,能密铺.故不能单独密铺的是正五边形.点评:本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.11.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.考点:三角形的外角性质;三角形内角和定理.分析:由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.解答:解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.点评:本题考查三角形外角的性质以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.12.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .考点:三角形的面积.分析:根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.解答:解:∵B E=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S △ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.点评:本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.13.如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是56°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.14.如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB= 70°.考点:平行线的性质;三角形的外角性质.分析:根据平行线的性质求出∠BAM,再由三角形的内角和定理可得出∠AMB.解答:解:∵AB∥CD,∴∠A+∠MDN=180°,∴∠A=180°﹣∠MDN=45°,在△ABM中,∠AMB=180°﹣∠A﹣∠B=70°.故答案为:70°.点评:本题考查了平行线的性质,解答本题的关键是掌握:两直线平行同胖内角互补,及三角形的内角和定理.三.解答题(共10小题)15将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:压轴题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF;(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.16.已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:本题考查的是平行线的性质以及三角形内角和定理.解答:解:∵AB∥CD,AE平分∠BAC,CE平分∠ACD,又∠BAC+∠DCA=180°⇒∠CAE+∠ACE=(∠BAC+∠DCA)=90°,∠E=180°﹣(∠CAE+∠ACE)=90°,∴∠E=90°.点评:此类题解答的关键是求出∠CAE+∠ACE的度数,再求解即可.17.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)考点:平行线的性质;三角形的外角性质.专题:开放型;探究型.分析:关键过转折点作出平行线,根据两直线平行,内错角相等,或结合三角形的外角性质求证即可.解答:解:如图:(1)∠APC=∠PAB+∠PCD;证明:过点P作PF∥AB,则AB∥CD∥PF,∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等).(2)∠APC+∠PAB+∠PCD=360°;(3)∠APC=∠PAB﹣∠PCD;(4)∵AB∥CD,∴∠POB=∠PCD,∵∠POB是△AOP的外角,∴∠APC+∠PAB=∠POB,∴∠APC=∠POB﹣∠PAB,∴∠APC=∠PCD﹣∠PAB.点评:两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.18.△ABC中,AB=AC,△ABC周长为16cm,BD为中线,且将△ABC分成的两个小三角形周长的差为2cm.求△ABC各边的长.考点:三角形;二元一次方程组的应用.分析:首先画出图形,设AD=xcm,BC=ycm,根据将△ABC分成的两个小三角形周长的差为2cm可得此题要分两种情况:①AB+DA比BC+CD大2cm,②AB+DA比BC+CD小2cm,根据两种情况分别计算即可.解答:解:设AD=xcm,BC=ycm.∵BD为中线,AB=AC,∴DC=xcm,AB=2xcm.∴|3x﹣(x+y)|=2,∴|2x﹣y|=2,∴2x﹣y=2或2x﹣y=﹣2.又4x+y=16,∴6x=18,x=3,y=4或6x=14,.∴△ABC各边长分别是6,6,4或.点评:此题主要考查了三角形,关键是画出图形,分别分两种情况计算,不要漏解.19.如图,已知△ABC的高AD,角平分线AE,∠B=26°,∠ACD=56°,求∠AED的度数.考点:三角形的角平分线、中线和高.分析:由三角形的一个外角等于与它不相邻的两个内角和知,∠BAC=∠ACD﹣∠B,∠AEC=∠B+∠BAE,而AD平分∠BAC,故可求得∠AEC的度数.解答:解:∵∠B=26°,∠ACD=56°∴∠BAC=30°∵AE平分∠BAC∴∠BAE=15°∴∠AED=∠B+∠BAE=41°.点评:本题利用了三角形内角与外角的关系和角平分线的性质求解.20.已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数.(1)请写出一个三角形符合上述条件的第三边长.(2)若符合上述条件的三角形共有n个,求n的值.(3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例.考点:三角形三边关系.分析:(1)根据三角形三边关系求得第三边的取值范围,即可求解;(2)找到第三边的取值范围内的正整数的个数,即为所求;(3)用周长为偶数的三角形个数÷三角形的总个数,列式计算即可求解.解答:解:两边长分别为5和7,设第三边是a,则7﹣5<a<7+5,即2<a<12.(1)第三边长是3.(答案不唯一);(2)∵2<a<12,∴n=9;(3)周长为偶数的三角形个数是4,周长为偶数的三角形所占的比例为4:9.点评:考查了三角形三边关系定理:三角形两边之和大于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.21.(2012•樊城区模拟)下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+∠A (不要求证明).探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BO C与∠A有怎样的数量关系?请说明理由.探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:∠BOC=90°﹣∠A.考点:三角形内角和定理;三角形的角平分线、中线和高.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.22.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.考点:三角形的角平分线、中线和高;三角形内角和定理.分析:根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.解答:解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.点评:此题主要考查了角平分线的性质以及高线的性质和三角形内角和定理,根据已知得出∠B的度数是解题关键.23.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F.(1)试说明∠BCD=∠ECD;(2)请找出图中所有与∠B相等的角(直接写出结果).考点:三角形的角平分线、中线和高;三角形内角和定理.分析:(1)根据直角三角形的两锐角互余求出∠BCD的度数,再利用三角形的内角和定理求出∠ACB,然后根据角平分线的定义求出∠BCE,从而可以求出∠ECD的度数,即可得解;(2)根据三角形的角度关系,找出度数是70°的角即可.解答:解:(1)∵∠B=70°,CD⊥AB于D,∴∠BCD=90°﹣70°=20°,在△ABC中,∵∠A=30°,∠B=70°,∴∠ACB=180°﹣30°﹣70°=80°,∵CE平分∠ACB,∴∠BCE=∠ACB=40°,∴∠ECD=∠BCE﹣∠BCD=40°﹣20°=20°,∴∠BCD=∠ECD;(2)∵CD⊥AB于D,DF⊥CE于F,∴∠CED=90°﹣∠ECD=90°﹣20°=70°,∠CDF=90°﹣∠ECD=90°﹣20°=70°,所以,与∠B相等的角有:∠CED和∠CDF.点评:本题主要考查了三角形的高线的定义,角平分线的定义,三角形的内角和定理,根据求出的角的度数相等得到相等关系是解题的关键.24.将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图1,当∠A=45°时,∠ABC+∠ACB=135 度,∠DBC+∠DCB=90 度;(2)如图2,改变直角三角板DEF的位置,使该三角板的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD的大小是否发生变化?若变化,请举例说明;若没有变化,请探究∠ABD+∠ACD与∠A的关系.考点:三角形内角和定理;三角形的外角性质.专题:计算题.分析:(1)根据三角形内角和定理∴∠ABC+∠ACB=180°﹣∠A=135°,∠DBC+∠DCB=180°﹣∠DBC=90°;(2)根据三角形内角和定义有90°+(∠ABD+∠ACD)+∠A=180°,则∠ABD+∠ACD=90°﹣∠A.解答:解:(1)在△ABC中,∵∠A=45°,∴∠ABC+∠ACB=180°﹣45°=135°,在△DBC中,∵∠DBC=90°,∴∠DBC+∠DCB=180°﹣90°=90°;(2)不变.理由如下:∵90°+(∠ABD+∠ACD)+∠A=180°,∴(∠ABD+∠ACD)+∠A=90°,∴∠ABD+∠ACD=90°﹣∠A.故答案135,90.点评:本题考查了三角形内角和定理:三角形内角和为180°.。
七年级数学上册多边形上的动点问题专
题训练
本文档旨在为七年级学生提供关于多边形上的动点问题的专题训练。
通过研究这些问题,学生将能够提升他们的数学能力,并且更好地理解多边形的性质和特点。
问题一:线段分割
1. 已知在直角三角形的斜边上取一点P,过点P分别作斜边两边上的垂线,垂足分别为A和B。
如果PA=4cm,PB=9cm,求斜边的长度。
2. 在正方形的边上取一点P,过点P作正方形两个相邻边的垂线,垂足分别为A和B。
如果AP=5cm,PB=12cm,求正方形的边长。
问题二:距离关系
1. 在等边三角形ABC的边上任取一动点P,求证:
AP+BP+CP=AC。
2. 在矩形ABCD上任取一动点P,求证:AP+CP=BP+DP。
问题三:面积关系
1. 平行四边形ABCD中,点P是边AD上的动点,且角
BPC=90°,求证:△APB的面积等于△CPD的面积。
2. 在梯形ABCD中,点P是边AD上的动点,且角BPC=90°,求证:△APB的面积加上△CPD的面积等于梯形的面积。
以上是七年级数学上册关于多边形上的动点问题的专题训练。
学生可以通过解答这些问题来加深对多边形性质和特点的理解,并提升他们的数学能力。
祝愿同学们在研究中取得好成绩!
(字数:215)。
9.2.2 多边形的外角和一、教学目标【知识与技能】1、多边形外角的概念。
2、多边形外角和的推导及应用。
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的推理能力,积累数学活动的经验,在探索中学会与人合作,学会和别人交流自己的思想和方法。
【情感态度】让学生体验猜想得到证实的喜悦和成就感,在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
【教学重点】多边形外角和定理的探索和应用。
【教学难点】多边形的外角和的推导。
二、学习过程(一)知识回顾1、三角形的外角概念?三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角。
2、三角形的外角和?三角形的外角和等于360°3、多边形的概念?由n条不在同一直线上的线段首尾顺次连结组成的平面图形称为n边形,又称为多边形。
(n≥3的自然数)4、多边形的内角和?n边形的内角和为(n-2)·180°(二)获取新知1、概念:①多边形内角的一边与另一边的反向延长线所组成的角叫多边形的外角。
②在每一个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。
n边形有n个外角。
2、探究①四边形ABCD,∠1、∠2、∠3、∠4分别是四个外角,求:∠1+∠2+∠3+∠4的度数。
②五边形ABCDE,∠1、∠2、∠3、∠4、∠5分别是五个外角,求:∠1+∠2+∠3+∠4+∠5的度数。
通过上面推导多边形的外角和的过程,我们充分利用了多边形的每一个内角与它的相邻的外角都互为,可以求得多边形的外角和.据此,请将数据填入下表中.归纳结论:任意多边形的外角和为(三)典例讲解例1:一个多边形的每个外角都是72°,这个多边形是几边形?例2:一个多边形的内角和等于它外角和的5倍,这个多边形是几边形?例3:若正n边形的一个内角是144°,这个多边形是几边形?(四)课堂练习1、一个多边形的外角都等于60°,这个多边形是几边形?2、一个多边形的内角都等于140°,这个多边形是几边形?3、若n边形的内角和与外角和的比为7∶2,这个多边形是几边形?4、如果一个正多边形的一个内角和它相邻外角的比是2∶1,那么这个多边形是几边形?(五)课堂小结:任意多边形的外角和等于360°三、课后作业练习册:9.2四、课后反思。
4.5多边形和圆的初步认识1.了解多边形的概念,知道三角形、四边形、五边形、六边形等都是多边形.2.掌握多边形的顶点、边、内角、对角线、正多边形的概念.3.理解圆的定义,掌握圆弧、圆心角、扇形的概念.4.把圆分成几个扇形,能够理解每个扇形的面积和整个圆的面积的关系,并会求扇形的圆心角.一、情境导入周末,加菲猫兴奋地挥舞着剪刀,对照着美工书上猫的图案,制作了一副自己的“肖像”(如图).主人乔恩走过来说:“画的不错,有点像你呀”,“对了,问你个问题:这幅图案中包含的多边形有哪些?请你至少说出五种”.听到这样的问题,加菲猫不由得挠起了头.聪明的同学,你能帮他找出来吗?二、合作探究探究点一:判定多边形图中共有多边形()A.1个B.2个C.3个D.4个解析:根据多边形的定义可知,图②不是由线段组成的;图①、④不是由线段首尾顺次相连而成的,只有图③、⑤符合多边形的定义.故选B项.方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015B.2016C.2017D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;360°×42+3+4=160°.方法总结:圆心角度数=每个扇形圆心角占整个圆的百分比×360°.教学过程中,指导学生经历从现实世界中抽象出平面图形的过程,感受丰富的图形世界,体会知识来源于生活实践,又服务于生活实践的道理.。
13.2 多边形(第一课时)一、判断题1.由一些线段相接组成的图形叫多边形; ( )2.三角形不是多边形; ( )3.三角形有三条对角线。
( )4.n 边形的边数n 的最小值是3; ( )5.如果一个多边形的各边都相等,那么它是正多边形; ( )6.由四条线段首尾顺次相接组成的图形叫四边形。
( ) 二、填空题.1.图中的多边形是 边形, 条边 个角 顶点。
2.连接多边形 的线段,叫做多边形的对角线.3.各个角 ,各条边 的多边形,叫正多边形.4.已知一个多边形从一个顶点出发做出了19条对角线,这是 边形。
三、图中的多边形是几边形,写出它的边、顶点与内角。
【巩固提升】第二题1图AB CDEF第三题图1.下列图形中,是正多边形的是( )A.直角三角形B.等腰三角形C.长方形D.正方形 2.下列叙述正确的是( )A.每条边都相等的多边形是正多边形B.三角形是多边形C.每个角都相等的多边形叫正多边形D.每条边、每个角都相等的多边形叫正多边形 3.小学学过的下列图形中不可能是正多边形的是( ) A.三角形 B.正方形 C.四边形 D.梯形 4.九边形的对角线有( )A.25条B.31条C.27条D.30条5.过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是_______。
6.一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数。
7.画出右图正五边形ABCDE 的所有对角线。
8.有一个家庭联谊会,参加的家庭全部是三口之家,在联谊会期间,每个人都要和别的家庭的每个成员握一次手。
(1)若参加会议的人数为15,则一共要握手多少次?(2)若一共握手170次,则参加会议的人数是多少?EABCD13.2 多边形(第二课时)一、填空题1.多边形每个内角都相等,内角和为720°,则它的每一个外角为.2.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= .3.四边形的四个内角中,直角最多有个,钝角最多有个,锐角最多有个.4.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.二、选择题1.一个多边形的内角和为720°,那么这个多边形的对角线条数为()A.6条B.7条C.8条D.9条2.随着多边形的边数n的增加,它的外角和()A.增加B.减小C.不变D.不定3.多边形的内角和为它的外角和的4倍,这个多边形是()A.八边形B.九边形C.十边形D.十一边形三、解答题1.多边形内角和是四边形内角和的2倍.2.已知多边形内角和等于1080º,求它的边数。
第58课时 多边形及其内角和姓名 学号 班级学习目标1.理解多边形、正多边形的定义;2.理解并掌握多变形内角和的公式的推导方法;3.会表示n 边形的内角和,知道内角和,能求n 边形的边数。
【思维激活】1. ______________________________________________叫三角形。
2.你能仿照三角形的定义给多边形定义吗?(1)多边形的定义:在平面内,由一些线段____________________组成的图形叫做多边形. 如果一个多边形由n 条线段组成,那么这个多边形叫做__________边形. (2)多边形的对角线:连接多边形的_______________的两个顶点的线段,叫做多边形的对角线. (3)凸多边形与凹多边形在图(1)中,四边形ABCD 称为_____多边形;在图(2)中,四边形ABCD 称为_____多边形 注意:今后我们在习题、练习中提到的多边形都是凸多边形.(4) 正多边形:_________ __________的多边形叫做正多边形.【思维碰撞】归纳:n 边形的内角和为_____________(用含n 的代数式表示)【思维迁移】例题1:一个多边形的内角和为4320°,求这个多边形的边数。
例题2:如果一个正多边形的每一个内角都等于144°,求这个多边形的边数。
1. 正七边形内角和的度数是( )A .1080°B .1260°C .1620°D .900°2. 若一个多边形的内角和为540°,则这个多边形的边数是( ) A .6B .5C .4D .33.如图,四边形ABCD 中,如果∠A +∠C+∠D=280°,则∠B 的度数是( ) A .80° B .90° C .170° D .20°4.如图,有一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( )A .120°B .180°C .240°D .300° 5.下列图(1)中x 的值为______;图(2)中x 的值为______°.6.如图,在四边形ABCD 中,∠A=∠C ,∠B=∠D ,AB 与CD 有怎样的位置关系?为什么? BC 与AD 呢?第4题C第3题【夯实积累】姓名学号班级1.下列多边形中,不是凸多边形的是()2.下列图形中,是正多边形的是()A.三条边都相等的三角形B.四个角都是直角的四边形C.四条边都相等的四边形D.六条边都相等的六边形3.从五边形的一个顶点出发,最多可画_____条对角线,共有______条对角线,内角和是______4.过多边形的一个顶点的所有对角线把该多边形分成8 个三角形,则这个多边形的边数是()A.8 B.9 C.10 D.115.一个正多边形的内角和是720°,这个多边形的边数是_____,每一个内角的度数是_____。
多边形中“一个角”问题一、剪下一个角大家可能遇到过四边形截去一个角后,还剩多少个角的问题,这个问题,我们可以用图形来说明.图(1)沿∠C的两边截去,不经过点B、点D,还剩5个角.即得到一个五边形.图(2)沿∠C的一边截去,经过点D(或点B),不经过点B(或点D),还剩4个角,即得到一个四边形.图(3)沿∠C的两边截去,经过点D、点B,则还剩3个角,即得一个三角形.不难看出,由于截下去的角位置不同,因此剩下角的个数也不同.我们可以进一步推广应用到n边形,它也有同样的情况:n边形即一个n边形剪去一个角后,可能是(n+1)边形,也可能是n边形,也可能是(n-1)边形,利用它我们可以解决一些具体问题.【例1】一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形的边数为()A.15B.16C.13或15D.15或16或17【分析】本题可设新多边形为n边形,由题意可知原多边形可以为n边形,(n+1)边形,(n-1)边形,即:(n-2)×180°=2520∴n=16,故n-1=15,n+1=17.因此原多边形可以是十五边形,也可以是十六边形,也可以是十七边形.所以应选D.二、漏算一个角【例2】小明在计算某个多边形内角和时,由于粗心,丢掉了一个内角,得到的结果是1650°,你能帮助他算出这个多边形的内角和吗?【解析】可设这个多边形为n边形,丢掉的这一个内角的度数为x°,由题意可得:(n-2)×180=1650+x.即n-2=.由于n-2是一个正整数,且0<x<180,所以1650+x=1800,n=12.这个十二边形的内角和为1800°.。
七年级数学多边形的内角和[教学目标]1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.[教学重点、难点]1.重点:(1)多边形的内角和公式.(2)多边形的外角和公式.2.难点:多边形的内角和定理的推导.[教学过程]一、探究1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.二、思考几个问题1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则n边形的内角和等于(n一2)·180°.想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.EB分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.D三、例题例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.ABCD解:如图,四边形ABCD 中,∠A +∠C =180°。
第17讲 认识多边形教学目的1.了解多边形的有关概念,探索并了解多边形内角和和外角和公式.2.通过探索平面图形的镶嵌,知道任意一个三角形、四边形、或正六边形可以镶嵌平面,并能进行镶嵌设计.典题精析【例1】如图所示是一个六边形.(1)从顶点A 出发画这个多边形的所有对角线,这样的对角线有几条?它们将六边形分成几个三角形?(2)画出此六边形的所有对角线,数一数共有几条?【解法指导】本题主要考查多边形对角线的定义,对于n 边形,从n 边形的一个顶点出发,可引(n -3)条对角线,它们将这n 边形分成(n -2)个三角形,n 边形一共有(3)2n n 条对角线, 解:(1)从顶点A 出发,共可画三条对角线,如图所示,它们分别是AC 、AD 、AE .将六边形分成四个三角形:△ABC 、△ACD 、△ADE 、△AEF ;(2)六边形共有9条对角线.变式练习01.下列图形中,凸多边形有( )A .1个B .2个C .3个D .4个02.过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形对角线条数等于边数,则m =______,n =______,k =________.03.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,则此多边形的边数是 .【例2】(1)八边形的内角和是多少度?(2)几边形的内角和是八边形内角和的2倍?【解法指导】(1)多边形的内角和公式的推导:从n 边形一个顶点作对角线,可以作(n -3)条对角线,并且将n 边形分成(n -2)个三角形,这(n -2)个三角形内角和恰好是多边形内角和,等于(n -2)·1800;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.解:(1)八边形的内角和为(8-2)×1800=10800;(2)设n 边形的内角和是八边形内角和的2倍,则有(n -2)×1800=10800×2,解得n =14. 故十四边形的内角和是八边形内角和的2倍.变式练习01.已知n 边形的内角和为21600,求n 边形的边数.02.如果一个正多边的一个内角是1080,则这个多边形是( )A .正方形B .正五边形C . 正六边形D .正七边形03.已知一个多边形的内角和为10800,则这个多边形的边数是( )A .8B .7C .6D .504.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=700,则∠AED 的度数为( )A .1100B .1080C .1050D .10005.当多边形的边数增加1时,它的内角和与外角和( )A.都不变B.内角和增加1800,外角和不变C.内角和增加1800,外角和减少1800D.都增加1800【例3】一只蚂蚁从点A出发,每爬行5cm便左转600,则这只蚂蚁需要爬行多少路程才能回到点A?解:蚂蚁爬行的路程构成一个正多边形,其路程就是这个正多边形的周长,根据已知可得这个正多边形的每个外角均为600,则这个多边形的边数为36060=6.所以这只蚂蚁需要爬行5×6=30(cm)才能回到点A.【解法指导】多边形的外角和为3600.(1)多边形的外角和恒等于3600,它与边数的多少无关.(2)多边形的外角和的推导方法:由于多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于1800·n,外角和等于n·1800-(n-2)·1800=3600.(3)多边的外角和为什么等于3600,还可以这样理解:从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发点时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于3600.(4) 多边形的外角和为3600的作用:①已知各相等外角度数求多边形边数;②已知多边形边数,求各相等外角的度数.变式练习01.八边形的内角和为_____.度.02.如图所示,已知△ABC中,∠A=400,剪去∠A后成四边形,则∠1+∠2=_____03.n(n为整数,且n≥3)边形的内角和比(n+1)边形的内角和少____度.04.如图所示,小明在操场上从点A出发,沿直线前进10米后向左转400,再沿直线前进10米后,又向左转400,……,照这样下去,他第一次回到出发地A点时,一共走了_____米.【例4】已知两个多边形的内角和为18000,且两多边形的边数之比为2:5,求这两个多边形的边数.【解法指导】因为两个多边形的边数之比为2:5,可设两个多边形的边数为2x和5x,利用多边形的内角可列出方程.解:设这两个多边形的边数分别是2x和5x,则由多边形内角和定理可得:(2x-2)·1800+(5x-2)·1800=18000,解得x=2,∴2x=4,5x=10,故这两个多边形的边数分别为4和10.变式练习01.一个多边形除去一个角后,其余各内角的和为22100,这个多边形是___________02.若一个多边形的外角和是其内角和的25,则此多边形的边数为_____03.每一个内角都相等的多边形,它的一个外角等于一个内角的23,则这个多边形是()A.三角形B.四边形C.五边形D.六边形04.内角和与其外角和相等的多边形是___________【例5】某人到瓷砖商店去购买一种多边形瓷砖,用来铺设无缝地面,他购买的瓷砖不可以是()A.正三角形B.长方形C.正八边形D.正六边形【解法指导】根据平面镶嵌的定义可知:在一个顶点处各多边形的内角和为3600,由于正三角形、长方形、正六边形的内角都是3600的约数,因此它们可以用来完成平面镶嵌,而正八边形的每个内角为1350,不是3600的约数,所以正八边形不能把平面镶嵌.解:选C.变式练习01.用一种如下形状的地砖,不能把地面铺成既无缝隙,又不重叠的是()A.正三角形B.正方形C.长方形D.正五边形02.小明家装修房屋,用同样的正多边形瓷砖铺地,顶点连着顶点,要铺满地面而不重叠,瓷砖的形状可能有( )A .正三角形、正方形、正六边形B .正三角形、正方形、正五边形C .正方形、正五边形D .正三角形、正方形、正五边形、正六边形03.只用下列正多边形•能作平面镶嵌的是( )A .正五边形B .正六边形C .正八边形D .正十边形04.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后将其中的一个正方形再剪成四个小正方形,共得7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;……,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( )A .669B .670C .671D .672【例6】有一个十一边形,它由若干个边长为1的等边三角形和边长为1的正方形无重叠、无间隙地拼成,求此十一边形各内角的大小,并画出图形.【解法指导】正三角形的每个内角为600,正方形的每个内角为900,它们无重叠、无间隙可拼成600、900、1200、1500四种角度,根据十一边形内角和即可判断每种角的个数.解:因为正三角形和正方形的内角分别为600、900,由此可拼成600、900、1200、1500四种角度,十一边形内角和为(n -2)×1800=(11-2)×1800=16200.因为1200×11<16200<1500×11,所以这个十一边形的内角只有1200和1500两种.设1200的角有m 个,1500的角有n 个,则有1200m +1500n =16200,即4m +5n =54此方程有唯一正整数解110m n =⎧⎨=⎩,所以这个十一边形内角中有1个角为1200,10个角为1500,此十一边形如图所示.变式练习01.如图是某广场地面的一部分,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石砖镶嵌,从里向外共铺了12层(不包括中央的正六边形地砖),每一层的外边界都围成一个正多边形,若中央正六边形的地砖边长为0.5m ,则第12层的外边界所围成的多边形的周长是___________.02.小明的书房地面为210cm×300cm 的长方形,若仅从方便平面镶嵌的角度出发,最适宜选用的地砖规格为( )A .30cm×30cm 的正方形,B .50cm×50cm 的正方形,C .60cm×60cm 的正方形,D .120cm×120cm 的正方形,03.正m 边形、正n 边形及正p 边形各取一个内角,其和为3600,求111m n p++的值.巩固提高01.在一个顶点处,若正n 边形的几个内角的和为______,则此正n 边形可铺满地面,没有空隙.02.如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为20块时,白色瓷砖为______块,当白色瓷砖为n 2(n 为正整数)块时,黑色瓷砖为______块.03.用黑白两种颜色的正六边形地板砖按图所示的规律拼成如下若干地板图案:则第n 个图案中白色的地板砖有______块.04.如图所示的图案是由正六边形密铺而成,黑色正六边形周围的第一层有六个白色正六边形,则第n层有______个白色正六边形.05.如果只用一种正多边形作平面镶嵌,而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的边数为()A.3 B. 4 C.5 D.606.下列不能镶嵌的正多边组合是()A.正三角形与正六边形B.正方形与正六边形C.正三角形与正方形D.正五边形与正十边形07.用两种以上的正多边形镶嵌必须具备的条件是()A.边长相同B.在每一点的交接处各多边形的内角和为1800C.边长之间互为整数倍D.在每一点的交接处各多边形的内角和为3600,且边长相等08.用三块正多边形的木板铺地,拼在一起且相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数是()A.4 B.5 C.6 D.809.张珊的父母打算购买形状和大小都相同的正多边形瓷砖来铺卫生间的地面,张珊特意提醒父母,为了保证铺地面时既没缝隙、又不重叠,所购瓷砖形状不能是()A.正三角形B.正方形C.正六边形D.正八边形10.我们常常见到如图所示那样图案的地板,它们分别是由正方形、等边三角形的材料铺成的,(1)为什么用这样形状的材料能铺成平整、无空隙的地板?(2)你想一想能否用一些全等的任意四边形或不等边三角形镶嵌成地板,请画出图形.11.某单位的地板由三种各角相等、各边也相等的多边形铺成,假设它们的边数为x、y、z,你能找出x、y、z之间有何种数量关系吗?请说明理由.12.黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满,按第1,2,3个图案[如图(1)、(2)、(3)]规律依次下去,则第n个图案中黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1 C.4n,n2-n+3 D.4n,2n+1培优升级检测01.在一个多边形中,除了两个内角外,其余内角之和为20020,则这个多边形的边数为()A.12 B.12或13 C.14 D.14或1502.有一个边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,则需要这种瓷砖()A.216块B.288块C.384块D.512块03.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数等于( )A .3600B .4500C .5400D .720004.从凸n 边形的一个顶点引出的所有对角线把这个凸n 边形分成了m 个小三角形,若m 等于这个凸n 边形对角线条数的49,那么此n 边形的内角和为___________. 05.如图,已知DC ∥AB ,∠BAE =∠BCD ,AE ⊥DE ,∠D =1300,求∠B 的度数.06.如图,小亮从点A 出发,沿直线前进10米后向左转300,再沿直线前进10米,又向左转300,……,照这样下去,他第一次回到出发点A 时,一共走了______米.07.如图,两直线AB 、CD 平行,则∠1+∠2+∠3+∠4+∠5+∠6=( )A .6300B .7200C .8000D .900008.将一个宽度相等且足够长的纸条打开个结,如(1),然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形,ABCDE ,其中∠BAC =_________.09.矩形ABCD 的边长为16,宽为12,沿着对角线BD 剪开,得到两个三角形,将这两个三角形拼出各种凸四边形,设这些四边形中周长最大为m ,周长最小为n ,则m +n 的值为( )A .120B .128C .136D .14410.对正方形ABCD 分划如图①,其中E 、F 分别是BC 、CD 的中点,M 、N 、G 分别是OB 、OD 、EF 的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”(1)如果设正方形OGFN 的边长为1,这七块部件的各块长中,从小到大的四个不同值分别为1、x 1、x 2、x 3,那么x 1=______;各内角中最小内角是_____度,最大内角是_____度;用它们拼成一个五边形如图②,其面积是_____.(2)请用这块七巧板,既不留下一丝空白,又不相互重叠,拼出两种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上(格点图中上下左右相邻两点距离都为1).(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的多边形,其边数不能超过8”.你认为这个结论正确吗?请说明理由.11.我们常见到如图的图案地面,它们分别是全用正方形或全用正六边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.(1)你能不能另外想一个用一种多边形(不一定是正多边形)的材料铺地的方案,把你想到的方案画成草图;(2)请你再画一个用两种不同正多边形材料铺地的草图.试证明:该六边形必有两条对边是平行的.。