线弹性有限元法分析的基本步骤
- 格式:doc
- 大小:90.00 KB
- 文档页数:3
线弹性有限元法分析的基本步骤有限元法是工程领域应用最为广泛的一种计算方法,它不但可以解决工程中的结构分析问题,而且已成功地解决了热力学、流体力学、电磁学和声学等领域的问题。
经过数十年的发展,有限元方法的理论已相当完善。
将有限元理论、计算机图形学以及优化技术相结合而开发的各类专用有限元软件。
能高速高效地解决各类有限元问题。
线弹性有限元法分析的基本步骤线弹性有限元法分析有限元一般分为6步。
第一步:定义形函数)(x N ,进而通过单元节点变量a 描述单元域内连续的变量)(x ue a x N x u )()(=第二步:定义单元材料的响应;如应力、应变和热流等。
e Ba x u L x ==)]([)(ε)()(x D x εσσ==第三步:形成单元矩阵,建立单元与外界的平衡关系:0=+e e e f a K式中e K :单元刚度矩阵e a :单元节点位移e f :单元节点上的等效外力刚度矩阵按下式计算:⎰Ω=e DBdV B K T e节点等效外力为: F tdS x N bdV x N f ee T T e++=-⎰⎰ΓΩ)()( 单元刚度矩阵代表了结构单元的刚度或传热单元的传导性,节点外载荷单元内体力(或内热源)、面力(或热流)、及节点集中力的贡献。
第四步:集成。
将覆盖结构全域的所有单元的刚度矩阵和节点外力对平衡的贡献集成,建立整体结构的平衡方程。
∑=ee K K∑=ee f f第五步:求解平衡方程。
指定一些节点位移后,可将平衡方程按已知节点位移和未知的场变量分解为两部分。
⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡r a s u ss suus uu f f a a K K K K 式中 u a 为未知节点变量s a 为已知节点变量a f 为外加的节点力r f 为节点反作用力求解变成获得已知位移的节点反作用力和已知的载荷节点位移。
第六步:回代。
根据计算出的节点变量,代入第二步的表达式中,获得单元应变、应力或热流等量。
有限元分析及应用习题答案有限元分析及应用习题答案有限元分析是一种广泛应用于工程领域的数值计算方法,可以用来解决各种结构力学问题。
在学习有限元分析的过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高应用能力。
本文将给出一些有限元分析及应用的习题答案,希望对读者有所帮助。
1. 什么是有限元分析?有限元分析的基本步骤是什么?有限元分析是一种通过将结构划分为有限数量的子域,然后对每个子域进行数值计算,最终得到整个结构的应力、应变等力学参数的方法。
其基本步骤包括:建立有限元模型、选择适当的数学模型、进行数值计算、分析计算结果。
2. 有限元分析的优点是什么?有限元分析具有以下优点:- 可以处理任意形状的结构,适用范围广。
- 可以考虑材料非线性、几何非线性等复杂情况。
- 可以对结构进行优化设计,提高结构的性能。
- 可以得到结构的应力、应变等力学参数分布,为工程实际应用提供参考。
3. 有限元分析中的单元是什么?常见的有哪些类型?有限元分析中的单元是指将结构划分为有限数量的子域,每个子域称为一个单元。
常见的单元类型有:- 一维单元:如梁单元、杆单元等,适用于解决一维结构问题。
- 二维单元:如三角形单元、四边形单元等,适用于解决平面或轴对称问题。
- 三维单元:如四面体单元、六面体单元等,适用于解决立体结构问题。
4. 如何选择适当的单元类型?选择适当的单元类型需要考虑结构的几何形状、边界条件、材料性质等因素。
一般来说,对于简单的结构,可以选择较简单的单元类型;对于复杂的结构,需要选择更复杂的单元类型。
此外,还需要根据具体问题的要求和计算资源的限制进行选择。
5. 有限元分析中的边界条件有哪些类型?有限元分析中的边界条件包括:- 位移边界条件:指定某些节点的位移或位移的导数。
- 力边界条件:施加在结构上的外力或力矩。
- 约束边界条件:限制某些节点的位移或位移的导数为零。
6. 有限元分析中的材料模型有哪些?有限元分析中常用的材料模型有:- 线性弹性模型:假设材料的应力与应变之间存在线性关系。
结构有限元分析原理有限元分析(Finite Element Analysis,FEA)是一种广泛应用于工程领域的计算方法,用于解决结构力学问题。
它把复杂的结构划分为有限个简单的元素,通过对这些元素进行力学求解,来预测结构在各种载荷情况下的行为。
有限元分析的原理可以概括为以下几个步骤:1. 划分结构:首先,将要分析的结构进行划分,通常采用简单的几何形状(如三角形、四边形等)作为元素的基本形式。
这些元素将定义结构的几何形状及其内部的应力分布。
2. 建立本构关系:在有限元分析中,材料的特性通常由一个本构模型来描述。
本构模型是一种数学表达式,通过描述应力和应变之间的关系来描述材料的力学行为。
常见的本构模型有线弹性模型、非线弹性模型和塑性模型等。
3. 装配刚度矩阵:元素划分完成后,将每个元素的刚度矩阵装配成整个结构的刚度矩阵。
刚度矩阵描述了结构在外力作用下的刚度响应。
4. 施加边界条件:在进行有限元分析时,需要施加边界条件来限制结构的自由度。
这些边界条件包括位移边界条件(如固定边界、约束边界等)和力边界条件(如受力边界、加载边界等)。
5. 求解方程组:在边界条件确定后,可以得到结构的总位移方程。
这个方程可以通过将边界条件代入刚度方程组中,从而得到一个线性方程组。
通过求解这个线性方程组,可以得到结构内部应力和应变的分布情况。
6. 分析结果:最后,通过分析线性方程组的解,可以得到结构在各种载荷情况下的位移、应力和应变等参数。
这些参数可以帮助工程师评估结构的强度和刚度,以及进行结构优化设计。
总的来说,有限元分析原理是将一个复杂的结构划分为有限个简化的元素,通过对这些元素进行力学求解,来预测结构在各种载荷情况下的行为。
它通过建立本构关系、装配刚度矩阵、施加边界条件、求解方程组和分析结果等步骤,为工程师提供了一种有效的工具来分析和设计结构。
有限元分析已经成为现代工程设计不可或缺的一部分,被广泛应用于建筑、汽车、航空航天、机械等领域,为解决工程问题提供了可靠的数值计算方法。
有限元分析过程有限元分析过程可以分为以下三个阶段:1.建模阶段:建模阶段是根据结构的实际形状和实际工况,建立有限元分析的计算模型——有限元模型,为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是离散结构。
然而,我们仍然需要处理许多相关的工作:如结构形式处理、集合模型建立、元素特征定义、元素质量检查、编号顺序、模型边界条件定义等。
2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。
3.后处理阶段:它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
注:在上述三个阶段中,有限元模型的建立是整个有限元分析过程的关键。
首先,有限元模型为计算提供了所有原始数据,这些输入数据的误差将直接决定计算结果的准确性;其次,有限元模型的形式对计算过程有很大影响。
合理的模型不仅可以保证计算结构的准确性,而且可以避免计算量过大和对计算机存储容量要求过高;第三,由于结构形状和工作条件的复杂性,不容易建立实用的有限元模型。
需要综合考虑多种因素,对分析人员提出了更高的要求;最后,建模时间在整个分析过程中占相当大的比例,约占整个分析时间的70%。
因此,缩短整个分析周期的关键是注重模型的建立,提高建模速度。
原始数据的计算模型,模型中一般包括以下三类数据:1.节点数据:包括每个节点的编号、坐标值等;2.单元数据:A.组成单元的单元号和节点号;b、单位材料特性,如弹性模量、泊松比、密度等;c、单元的物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d、一维单元的截面特征值,如截面面积、惯性矩等;e、相关几何数据3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.建立有限元模型的一般过程:1分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。
有限元分析Finite Element Analysis李建宇天津科技大学内容Chp.3 弹性力学基础知识2:补充内容1. 边界条件2. 弹性力学中的能量表示3. 弹性力学边值问题要求理解:弹性力学边界条件的提法了解:弹性力学边值问题的内涵掌握:弹性力学中的能量表述课后作业继续检索、阅读弹性力学基本文献有限元分析——弹性力学补充内容弹性力学的“三个基本”1、基本假定2、基本变量3、基本方程弹性力学的基本假定五个基本假定:1、连续性(Continuity)2、线弹性(Linear elastic)3、均匀性(Homogeneity)4、各向同性(Isotropy)5、小变形假定(Small deformation)弹性力学基本变量变形体的描述:在外部力和约束作用下的变形体位移的描述形状改变的描述力的描述材料的描述弹性力学基本变量材料参数位移物体变形后的位置物体的变形程度物体的受力状态物体的材料特性应变应力描述变形体的三类变量:dyxyzuvwdzdx(x,y,z)S uS pΩT位移(displacement)是指位置的移动。
它在x, y 和z轴上的投影用u, v和w。
dyxyzuvwdzdx(x,y,z)S uS pΩT微元体( Representative volume)应力张量(stress tensor )x xy xz yx y yz zx zy z στττστττσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦应变张量(strain tensor )dyuvwdzdx(x,y,z )xu x d d =εd xxσxσuu +d uτβαγ=α+βx xy xz yx y yz zx zy z εγγγεγγγε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦弹性力学的基本方程应力应变位移几何方程物理方程平衡方程弹性力学三大方程上节回顾上节回顾弹性力学基本方程x y z xy yz zx u x v y w z u v y x v w z y w u x zεεεγγγ∂=∂∂=∂∂=∂∂∂=+∂∂∂∂=+∂∂∂∂=+∂∂几何方程00000000x y z xy yz zx x y u z v w y x z y zx εεεγγγ∂⎡⎤⎢⎥∂⎢⎥∂⎢⎥⎧⎫⎢⎥∂⎪⎪⎢⎥∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬∂∂⎢⎥⎪⎪⎪⎪⎩⎭⎢⎥∂∂⎪⎪⎢⎥⎪⎪∂∂⎢⎥⎪⎪⎩⎭⎢⎥∂∂⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦Luε=L :微分算子上节回顾弹性力学基本方程000yx x zx x xy y zyy yz xz z z b x y z b x y zb x y zτσττστττσ∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂∂∂∂+++=∂∂∂平衡方程000000000x y x z y yx zzy xz x y z b b y x z b zyx σσστττ⎧⎫⎡⎤∂∂∂⎪⎪⎢⎥∂∂∂⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥∂∂∂⎪⎪⎪⎪+=⎨⎬⎨⎬⎢⎥∂∂∂⎪⎪⎪⎪⎢⎥⎩⎭⎪⎪⎢⎥∂∂∂⎪⎪⎢⎥∂∂∂⎪⎪⎣⎦⎩⎭A :微分算子A b σ+=TA L=上节回顾弹性力学基本方程物理方程()()()111x x y z y y z x z z x y xyxy yzyz zxzx E EE GGGεσνσσεσνσσεσνσστγτγτγ⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦===()()()()()()1000111000111000111121120000021120000021120021x x y y z z xy xy yz yz zx zx E ννννννσεννσεννννσενντγννντγντγννν⎡⎤⎢⎥--⎢⎥⎢⎥⎧⎫⎧⎫⎢⎥--⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥---⎪⎪⎪⎪⎢⎥=⎨⎬⎨⎬-+-⎢⎥⎪⎪⎪⎪-⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪-⎢⎥⎪⎪⎪⎪⎩⎭⎩⎭-⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦D :弹性矩阵D σε=对称上节回顾弹性力学基本方程dyxyzuvwdzdx(x,y,z )S uS pΩT0Lu A b D σεσε+===弹性力学三大方程in Ω边界上呢?一、弹性力学的边界条件(Boundary condition)dyxyzuvwdzdx(x,y,z)S uS pΩT两类边界条件:S p:力的边界S u:位移边界一、弹性力学的边界条件1、位移边界条件边界上已知位移时,应建立物体边界上点的位移与给定位移相等的条件dyxyzuvwdzdx(x,y,z )S uS pΩTuu u v v on S w w =⎧⎪=⎨⎪=⎩一、弹性力学的边界条件以二维问题为例2、力的边界条件边界上给定面力时,则物体边界上的应力应满足与面力相平衡的力的平衡条件∑X=注意ds为边界斜边的长度,边界外法线n的方向余弦l=dy/ds,m=dx/ds有:一、弹性力学的边界条件以二维问题为例Y =∑同理:M =∑一、弹性力学的边界条件以二维问题为例二维情形的力的边界条件00x x x y y yx y xy p n n n n p σστ⎧⎫⎧⎫⎡⎤⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭⎪⎪⎩⎭其中:n x =l ;n y =m一、弹性力学的边界条件扩展到三维情形的力的边界条件00000000x y xy z x z y x z y xy zyx z yz zx n n n p n n n p n n n p σσστττ⎧⎫⎪⎪⎪⎪⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎩⎭⎣⎦⎪⎪⎪⎪⎪⎪⎩⎭n ppon S σ=二、弹性力学中的能量表述功能原理的两个基本概念:功(work):外力功;能量(energy):如动能、势能、热能等弹性问题中的功和能量:外力功:施加外力在可能位移上所做的功应变能:变形体由于变形而储存的能量二、弹性力学中的能量表述1. 弹性力学中的外力功(work by force )弹性力学中的外力包括:面力和体力,故外力功包括:Part 1:面力p i 在对应位移上u i 上的功(on S p )Part 2:体力b i 在对应位移上u i 上的功(in Ω)外力总功为:()()d d pxyzxyzS W p u p v p w S b u b v b w Ω=+++++Ω⎰⎰二、弹性力学中的能量表述2. 弹性力学中的应变能(strain energy)设加载缓慢,系统功能可忽略,同时略去其它能量(如热能等)的消耗,则所做的功全部以应变能的形式储存于内部。
有限元方法的求解步骤引言有限元方法是一种数值分析技术,用于求解连续介质力学问题。
它的基本思想是将复杂的物理问题离散化为简单的几何单元,并在每个单元上建立适当的数学模型。
通过在整个域内组装这些单元,最终得到整个系统的近似解。
本文将详细介绍有限元方法的求解步骤,包括问题建模、网格划分、单元模型与刚度矩阵计算、边界条件处理和求解方程等内容。
问题建模在使用有限元方法求解实际问题之前,首先需要对问题进行建模。
这涉及确定问题的几何形状、边界条件和材料属性等方面。
通常可以使用偏微分方程来描述力学行为,并根据具体情况选择适当的方程类型。
网格划分网格划分是有限元方法中非常重要的一步,它将连续域离散化为有限多个几何单元。
常用的网格类型包括三角形网格和四边形网格。
根据具体情况,可以选择不同密度和形状的网格来逼近真实几何形状。
单元模型与刚度矩阵计算在每个几何单元上,需要建立适当的数学模型来描述物理行为。
通常使用一些基本假设和理论模型来近似真实行为。
对于弹性力学问题,常用的单元模型包括线性弹性、非线性弹性和塑性等。
根据单元模型,可以计算每个单元的刚度矩阵。
刚度矩阵描述了单元内部各个节点之间的相互作用关系。
它是由材料属性和几何形状决定的,并且可以通过数值积分等方法进行计算。
边界条件处理边界条件是求解过程中必须考虑的重要因素。
它们描述了系统在边界上的约束条件,例如固定边界、施加力或位移等。
在有限元方法中,通常将边界条件转化为所谓的约束方程,以便将其应用于整个系统。
对于固定边界条件,可以直接将相应自由度设置为零。
而施加力或位移边界条件,则需要将其转化为等效荷载或约束方程,并在求解过程中进行处理。
求解方程有限元方法最终目标是求解整个系统的近似解。
为此,需要将所有单元的刚度矩阵组装成整个系统的刚度矩阵。
同时,需要将所有边界条件应用于约束方程中。
通过求解线性方程组,可以得到系统的节点位移。
常用的求解方法包括直接法和迭代法。
在实际计算中,可以根据问题特点选择最适合的方法。
有限元法及其应用概述及解释说明1. 引言1.1 概述有限元法是一种数值计算方法,广泛应用于工程领域中各种结构、流体和热传导问题的分析与求解。
该方法将实际问题转化为数学模型,并通过离散化方法将复杂的连续域分割成许多简单的子域,然后建立局部方程并组合求解得出整个系统的行为。
1.2 文章结构本文主要分为五个部分来阐述有限元法及其应用。
首先是引言部分,在这部分中我们对有限元法进行综述和概括性介绍。
接下来是有限元法基础,包括定义与原理、离散化方法以及数学模型和方程组等内容。
第三部分是有限元法的应用领域,具体涵盖了结构力学分析、流体力学模拟以及热传导分析等方面。
紧接着是有限元法的优势与局限性的讨论,其中包含了优势点和局限性两个方面。
最后在结论与展望部分对目前取得的成果进行总结,并展望未来该领域发展的方向。
1.3 目的本文旨在全面介绍有限元法及其应用,使读者对该方法有一个全面的了解。
通过分析有限元法的原理和数学基础,以及讨论其在结构力学、流体力学和热传导等不同领域中的应用,读者可以更好地理解该方法在实际工程问题中的作用和意义。
同时,通过对有限元法的优势和局限性进行深入讨论,读者也可以对该方法的适用范围和限制条件有一个清晰的认识。
最后,在总结现有成果并展望未来发展方向的部分,本文希望促进该领域进一步的研究和应用,并为相关领域从业人员提供参考与借鉴。
2. 有限元法基础:2.1 定义与原理:有限元法(Finite Element Method,简称FEM)是一种工程数值分析方法,通过将复杂的连续体问题转化为离散的有限元模型,并通过求解一系列代数方程组来获得数值近似解。
它基于强大的计算能力和离散化技术,广泛应用于各个领域的工程问题求解。
有限元法原理包括两个基本步骤:离散化和解。
在离散化过程中,需要将复杂的连续体划分为多个单元,每个单元具有简单的几何形状(如线段、三角形或四边形)。
这些单元可以通过节点进行连接,并构成整个结构或区域。
机械设计基础如何进行有限元分析有限元分析(Finite Element Analysis,简称FEA),作为机械设计和结构分析的重要方法之一,可以帮助工程师预测和评估产品在不同负荷和环境条件下的性能及行为。
本文将介绍机械设计基础中进行有限元分析的步骤和技巧,以帮助读者更好地应用有限元分析解决实际问题。
一、概述有限元分析是一种通过模拟真实物体或系统的物理行为来预测其性能的方法。
它将复杂的物体或系统抽象为多个离散的有限元单元,并采用数学方法求解这些单元之间的力学关系和边界条件。
通过计算每个单元的应力、应变和变形,可以得到整个物体或系统的行为特性。
二、有限元分析的步骤1. 确定几何和边界条件:在进行有限元分析之前,首先需要确定物体或系统的几何形状和边界条件。
对于简单的物体,可以使用计算机辅助设计(CAD)软件进行建模;对于复杂的物体或系统,可以通过扫描现有样品或使用三维扫描仪获取数据。
2. 网格划分:将几何模型离散化为多个小单元,即有限元单元。
常见的有限元单元包括三角形、四边形和六面体。
划分网格需要考虑几何形状的复杂性和计算资源的限制,以保证计算结果的准确性和效率。
3. 材料属性和加载条件:为每个有限元单元指定材料属性,例如弹性模量、泊松比和密度。
此外,还需要定义加载条件,如受力的位置和大小、边界条件等。
4. 建立数学模型:通过应用力学原理和有限元方法,建立描述物体或系统行为的数学模型。
这包括定义位移场、应变场和力学方程,并应用适当的数值方法求解。
5. 求解方程:通过数值方法(如有限元方法、有限差分法等),构建刚度矩阵和荷载向量,并求解线性代数方程组。
常用的求解算法包括高斯消元法、雅可比迭代法、共轭梯度法等。
6. 后处理:根据求解的结果,对有限元模型进行后处理。
这包括计算应力和应变的分布、判断结构的安全性和稳定性,并进行结果的可视化和分析。
三、有限元分析的技巧1. 网格优化:为了保证有限元分析的准确性和效率,需要进行网格优化。
有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。
有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。
有限元法广泛应用于工程、材料、地球科学等领域。
2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。
离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。
加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。
形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。
3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。
建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。
建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。
施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。
求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。
后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。
4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。
结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。
板壳单元包括各种压力单元、弹性单元、混合单元等。
梁单元包括梁单元、横梁单元、大变形梁单元等。
壳单元包括薄壳单元、厚壳单元、折叠单元等。
体单元包括六面体单元、锥体单元、八面体单元等。
5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。
有限元分析—模态分析有限元分析是一种结构力学领域的分析方法,可以对结构进行数值求解,以获得其固有频率和振型。
模态分析是其中的一种应用,用于研究结构在固有频率下的振动情况。
本文将介绍有限元分析的基本原理、模态分析的步骤和应用,并讨论其在实际工程中的重要性。
有限元分析是一种利用数值方法对结构进行力学分析的技术。
它将结构离散化为有限数量的单元,通过单元之间的相互作用来模拟整个结构的力学行为。
在进行模态分析时,通常采用线性弹性模型,即假设结构在固有频率下是线性弹性振动的。
模态分析的主要目标是确定结构的固有频率和振型。
固有频率是结构自由振动的频率,与结构的几何形状、材料性质和边界条件等相关。
振型则描述了结构在不同频率下的振动模式。
通过模态分析,可以了解结构在特定频率下的振动情况,为结构设计和改进提供依据。
模态分析的步骤主要包括:建模、网格划分、边界条件的定义、求解和结果分析。
建模是指将实际结构抽象为数学模型,在计算机上进行仿真。
网格划分是将结构划分为有限数量的单元,以便进行数值求解。
边界条件的定义是指确定结构的受力和支撑情况,包括约束、荷载等。
求解是指通过数值计算方法求解结构的固有频率和振型。
结果分析是对求解结果进行解释和评价,了解结构的振动特性。
模态分析在工程中具有广泛的应用。
首先,它可以用于优化结构设计。
通过模态分析,可以评估结构在不同固有频率下的振动情况,从而优化结构的设计参数,使其在工作频率下保持稳定。
其次,模态分析可以用于故障诊断。
结构的振动特性在受到损伤或故障时会发生变化,通过模态分析可以检测出这些变化,从而确定结构的健康状况。
最后,模态分析还可以用于结构改进。
通过分析结构的振动模式,可以确定结构的薄弱部位,从而采取相应的改进措施,提高结构的性能。
在实际工程中,模态分析具有重要的应用价值。
例如,在航空航天领域,模态分析可用于研究航空器的振动特性,以评估其结构的可靠性和安全性。
在建筑领域,模态分析可用于评估建筑物的地震响应性能,从而确保其在地震中的安全性。
有限元法基本原理与应用有限元法(Finite Element Method, FEM)是一种数值计算方法,广泛应用于工程领域中的结构分析、流体力学、热传导等问题的数值模拟。
它的基本原理是将连续的物理问题转化为离散的有限元组装问题,通过对离散的有限元进行数值计算,得到问题的近似解。
有限元法的基本原理可以简要概括为以下几个步骤:1.建立问题的数学模型:将实际问题抽象为一个数学模型,例如线性弹性力学、热传导方程等。
模型包括物理量的表达式、边界条件和初始条件等。
2.离散化:将连续的物理问题离散化为一系列有限元。
有限元是由一些简单的几何形状(如三角形、四边形)组成的子区域,称为单元。
整个问题区域被划分为许多单元。
3.处理边界条件:在模型中,边界条件是非常重要的,它们描述了问题在边界上的行为。
有限元法通过施加适当的边界条件来模拟实际问题的边界行为。
4.建立单元模型:针对每个单元,建立其适当的数学模型。
常用的有线弹性力学的单元模型有三角形和四边形元素、梁单元、壳单元等。
5.组装方程:通过将所有单元的方程组合在一起,形成整个问题的方程组。
这个方程组通常是一个矩阵方程,可以通过求解该方程组来得到问题的数值解。
6.求解方程:有限元法适用于大规模、复杂的问题,可以通过迭代的方式求解。
常用的求解方法有直接法、迭代法、预处理共轭梯度法等。
7.后处理:对求解结果进行后处理,包括分析和可视化。
这些结果可以用来评估结构的安全性、优化设计等。
有限元法的应用非常广泛,涵盖了许多工程领域。
它可以用于结构分析,例如建筑物、桥梁、飞机等的强度和刚度分析、应变和位移分析等。
在流体力学中,有限元法可以用于模拟空气动力学、水动力学等。
在热传导问题中,有限元法可以用于计算物体在不同温度条件下的热传导情况。
有限元法的优点在于可以处理较为复杂的几何形状和边界条件,能够提供准确的数值结果。
它还具有良好的可扩展性,可以适应不同规模和复杂度的问题。
同时,有限元法还可以与其他数值方法相结合,如有限差分法和有限体积法,以提高数值计算的精度和效率。
线弹性有限元法分析的基本步骤
有限元法是工程领域应用最为广泛的一种计算方法,它不但可以解决工程中的结构分析问题,而且已成功地解决了热力学、流体力学、电磁学和声学等领域的问题。
经过数十年的发展,有限元方法的理论已相当完善。
将有限元理论、计算机图形学以及优化技术相结合而开发的各类专用有限元软件。
能高速高效地解决各类有限元问题。
线弹性有限元法分析的基本步骤
线弹性有限元法分析有限元一般分为6步。
第一步:定义形函数)(x N ,进而通过单元节点变量a 描述单元域内连续的变量)(x u
e a x N x u )()(=
第二步:定义单元材料的响应;如应力、应变和热流等。
e Ba x u L x ==)]([)(ε
)()(x D x εσσ==
第三步:形成单元矩阵,建立单元与外界的平衡关系:
0=+e e e f a K
式中
e K :单元刚度矩阵
e a :单元节点位移
e f :单元节点上的等效外力
刚度矩阵按下式计算:
⎰Ω=
e DBdV B K T e
节点等效外力为: F tdS x N bdV x N f e
e T T e
++=-⎰⎰ΓΩ)()( 单元刚度矩阵代表了结构单元的刚度或传热单元的传导性,节点外载荷单元内体力(或内热源)、面力(或热流)、及节点集中力的贡献。
第四步:集成。
将覆盖结构全域的所有单元的刚度矩阵和节点外力对平衡的贡献集成,建立整体结构的平衡方程。
∑=e
e K K
∑=e
e f f
第五步:求解平衡方程。
指定一些节点位移后,可将平衡方程按已知节点位移和未知的场变量分解为
两部分。
⎥⎦⎤⎢⎣⎡-=⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡r a s u ss su
us uu f f a a K K K K 式中 u a 为未知节点变量
s a 为已知节点变量
a f 为外加的节点力
r f 为节点反作用力
求解变成获得已知位移的节点反作用力和已知的载荷节点位移。
第六步:回代。
根据计算出的节点变量,代入第二步的表达式中,获得单元应变、应力或热流等量。
举例
以杆单元为例,其框图如下
第一步:定义形函数)(x N ,进而通过单元节点变量a 描述单元域内连续的变量)(x u
e a x N x u )()(=
⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=211)(u u l x l x x u 第二步:定义单元材料的响应;如应力、应变和热流等。
e Ba x u L x ==)]([)(ε
)()(x D x εσσ==
确定应力、应变关系
⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=2111)(u u l l x ε εσE =
第三步:形成单元矩阵,建立单元与外界的平衡关系:
0=x l x = 1u )(x u
2u x
0=+e e e f a K
假设在此需要分析的问题是一端铰结杆在自重作用下的变形和应力,则有:
⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛==⎰Ω
1111l AE DBdV B K e T e 第四步:集成。
将覆盖结构全域的所有单元的刚度矩阵和节点外力对平衡的贡献集成,建立整体结构的平衡方程。
∑=e
e K K
∑=e
e f f
有
⎥⎥⎦
⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛20111112AL r u l AE γ 第五步:求解平衡方程。
得出位移。
E AL u 22γ=
2
1AL r γ-= 第六步:回代。
2L
e γσ=。