3.数字滤波器的直接设计 - 数字信号处理实验报告
- 格式:doc
- 大小:117.00 KB
- 文档页数:7
《数字信号处理》实验报告学院:信息科学与工程学院专业班级:通信1303姓名学号:实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。
二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。
如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k k e n x e X其中 1,,1,02-==M k k Mw k ,π 通常M 应取得大一些,以便观察谱的细节变化。
取模|)(|k jw e X 可绘出幅频特性曲线。
数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。
⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。
2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。
⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。
3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。
要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。
⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
20211DOI:10.19392/ki.1671-7341.202102030《数字信号处理》课程中的数字滤波器实验设计王为天津师范大学电子与通信工程学院天津300387摘要:数字信号处理是电子信息、通信类专业核心课程,因其内容多、概念抽象、理论性强等特点,传统讲授式教学方法效果不理想,同时也无法突出该课程的应用性特色。
本文探索将数字信号处理中理论知识与实验设计相结合的教学方法,将理论知识讲解贯彻到实验设计过程,以无限冲激响应数字低通滤波器设计为例,通过对滤波器设计原理讲解、程序设计介绍以及实验仿真分析进一步加深理解理论知识以及相关知识如何应用,取得了较好的教学效果。
关键词:数字信号处理;数字滤波器;级联结构;实验教学;教学方法一、绪论作为电子信息、通信工程等相关专业重要的核心课程,《数字信号处理》课程具有内容多、概念抽象、理论性强、公式繁多等特点,并与《高等数学》《电路原理》《信号与系统》《通信原理》等课程知识联系紧密门⑷。
在实际教与学过程中,一方面教师大多数注重知识的理论性、逻辑性进行讲解,突出数字信号的频域变换方法和数字滤波器系统的理论设计方法介绍;另一方面学生对理论知识、数学公式等兴趣不足,或者理解上有困难,造成学习参与度不高,课程教学效果不理想。
同时《数字信号处理》课程知识具有很强的应用性,广泛应用于在实际生活、工程实践中,如关于信号的频谱分析与显示、数字信号的传输、运用数字滤波器系统进行信号处理等。
但在《数字信号处理》实验实践教学方面多采用仪器箱或者Matlab已有函数进行仿真,往往只能展示结果或现象,无法体现出《数字信号处理》课程中各种理论知识是如何具体应用的,学生无法将所学的数学理论知识和实验实践建立有效的联系,进一步降低了《数字信号处理》课程教学质量-5切#为了改善《数字信号处理》教学效果,提高教学质量,特别是提高学生学以致用的能力,本文将以无限冲激响应低通滤波器知识点的理论知识讲解和仿真实验程序设计为例,探索理论与实践相结合的《数字信号处理》教学方式。
数字信号处理实验数字巴特沃思滤波器的设计数字信号处理技术是现代通信、音频、图像等领域中不可或缺的一门技术。
数字信号处理的核心是数字滤波器设计,本文将介绍一种常用的数字滤波器——数字巴特沃斯滤波器的设计方法。
一、数字滤波器简介数字滤波器是将连续时间信号转换成离散时间信号,实现对离散时间信号的滤波处理,具有实时性好、精度高、可重复性强等优点。
数字滤波器有两种类型:有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
二、数字巴特沃斯滤波器数字巴特沃斯滤波器是一种常用的IIR滤波器,其主要特点是具有平坦的通/阻带,通/阻带边缘陡峭。
因此在实际应用中,数字巴特沃斯滤波器应用较为广泛。
数字巴特沃斯滤波器的设计方法一般包括以下步骤:确定滤波器类型、确定通/阻带的截止频率、确定滤波器的阶数、计算滤波器的系数。
1、确定滤波器类型在实际应用中,数字巴特沃斯滤波器有四种类型:低通、高通、带通和带阻滤波器,应根据实际需求选择。
2、确定通/阻带的截止频率通常情况下,固定本例中采用的是低通滤波器,需要确定的就是通带和阻带的截止频率。
对于低通滤波器,通带截止频率ωc应该比信号频率fs的一半小,阻带截止频率ωs 应该比ωc大一些,通常ωs/ωc取0.5~0.7比较好。
滤波器的阶数一般是与滤波器的性能相关的。
阶数越高,性能越好,但同时计算量也会更大。
在实际应用中,一般取4~8的阶数即可。
4、计算滤波器的系数根据上述参数计算滤波器的系数,这里介绍两种常用的方法:一种是脉冲响应不变法(Impulse Invariant Method),另一种是双线性变换法(Bilinear Transformation)。
脉冲响应不变法是一种较为简单的设计方法,但由于其数字滤波器与连续时间滤波器之间的不同,可能会引入一定程度的失真。
双线性变换法可以使二阶系统和一阶系统的增益分别为1和0dB,这是一种比较理想的设计方法。
四、实验步骤本实验采用Matlab软件进行数字滤波器的设计,具体步骤如下:1、打开Matlab软件,新建一个.m文件;2、输入需要滤波的数字信号,此处可以使用Matlab自带的signal工具箱中的一些模拟信号;4、使用filter函数实现数字滤波器对信号的滤波过程;5、通过比较信号的频谱图,评估滤波器的性能。
数字信号处理实验报告-FIR滤波器的设计与实现在数字信号处理中,滤波技术被广泛应用于时域处理和频率域处理中,其作用是将设计信号减弱或抑制被一些不需要的信号。
根据滤波器的非线性抑制特性,基于FIR(Finite Impulse Response)滤波器的优点是稳定,易设计,可以得到较强的抑制滤波效果。
本实验分别通过MATLAB编程设计、实现、仿真以及分析了一阶低通滤波器和平坦通带滤波器。
实验步骤:第一步:设计一阶低通滤波器,通过此滤波器对波型进行滤波处理,分析其对各种频率成分的抑制效果。
为此,采用零极点线性相关算法设计滤波器,根据低通滤波器的特性,设计的低通滤波器的阶次为n=10,截止频率为0.2π,可以使设计的滤波器被称为一阶低通滤波器。
第二步:设计平坦通带滤波器。
仿真证明,采用兩個FIR濾波器組合而成的阻礙-提升系統可以實現自定義的總三值響應的設計,得到了自定義的總三值響應函數。
实验结果:1、通过MATLAB编程,设计完成了一阶低通滤波器,并通过实验仿真得到了一阶低通滤波器的频率响应曲线,证明了设计的滤波器具有良好的低通性能,截止频率为0.2π。
在该频率以下,可以有效抑制波形上的噪声。
2、设计完成平坦通带滤波器,同样分析其频率响应曲线。
从实验结果可以看出,此滤波器在此频率段内的通带性能良好,通带范围内的信号透过滤波器后,损耗较小,滞后较小,可以满足各种实际要求。
结论:本实验经过实验操作,设计的一阶低通滤波器和平坦通带滤波器具有良好的滤波特性,均已达到预期的设计目标,证明了利用非线性抑制特性实现FIR滤波处理具有较强的抑制滤波效果。
本实验既有助于深入理解FIR滤波器的设计原理,也为其他应用系统的设计和开发提供了指导,进而提高信号的处理水平和质量。
数字信号处理实验:FIR数字滤波器的设计1. 引言数字滤波器是数字信号处理的关键技术之一,用于对数字信号进行滤波、降噪、调频等操作。
FIR (Finite Impulse Response) 数字滤波器是一种常见的数字滤波器,具有线性相应和有限的脉冲响应特性。
本实验旨在通过设计一个FIR数字滤波器来了解其基本原理和设计过程。
2. FIR数字滤波器的基本原理FIR数字滤波器通过对输入信号的每一个样本值与滤波器的冲激响应(滤波器的系数)进行线性加权累加,来实现对信号的滤波。
其数学表达式可以表示为:y(n) = b0 * x(n) + b1 * x(n-1) + b2 * x(n-2) + ... + bN * x(n-N)其中,y(n)表示滤波器的输出,x(n)表示滤波器的输入信号,b0~bN表示滤波器的系数。
FIR数字滤波器的脉冲响应为有限长度的序列,故称为有限冲激响应滤波器。
3. FIR数字滤波器的设计步骤FIR数字滤波器的设计主要包括以下几个步骤:步骤1: 确定滤波器的阶数和截止频率滤波器的阶数决定了滤波器的复杂度和性能,而截止频率决定了滤波器的通带和阻带特性。
根据实际需求,确定滤波器的阶数和截止频率。
步骤2: 选择滤波器的窗函数窗函数是FIR滤波器设计中常用的一种方法,可以通过选择不同的窗函数来实现不同的滤波器特性。
常用的窗函数有矩形窗、汉宁窗、汉明窗等。
根据实际需求,选择合适的窗函数。
步骤3: 计算滤波器的系数根据选择的窗函数和滤波器的阶数,使用相应的公式或算法计算滤波器的系数。
常见的计算方法有频率采样法、窗函数法、最小二乘法等。
步骤4: 实现滤波器根据计算得到的滤波器系数,可以使用编程语言或专用软件来实现滤波器。
步骤5: 评估滤波器性能通过输入测试信号,观察滤波器的输出结果,评估滤波器的性能和滤波效果。
常见评估指标有滤波器的幅频响应、相频响应、群延迟等。
4. 实验步骤本实验将以Matlab软件为例,演示FIR数字滤波器的设计步骤。
XX XX 大学XXXX 学院实验名称 IIR 数字滤波器的设计实验目的:加深理解IIR 数字滤波器的时域特性和频域特性,掌握IIR 数字滤波器的设计原理与设计方法,以及I IR数字滤波器的应用。
实验内容:IIR 数字滤波器一般为线性移不变的因果离散系统,N 阶IIR 数字滤波器的系统函数可以表达为-1z 的有理多项式,即 -1-1-2-M =0012-1-2-N -112=1z +z +z ++z (z)==1+z +z ++z 1+zM j j M N Ni i b b b b b H a a a a ∑∑ 式中:系数i a 至少有一个非零。
对于因果II R数据滤波器,应满足M N ≤。
IIR 数字滤波器的设计主要通过成熟的模拟滤波器设计方法来实现。
首先在频域将数字滤波器设计指标转换为模拟滤波器设计指标,然后将任意的模拟滤波器为原型模拟低通滤波器指标,根据模拟滤波器的设计指标来设计出模拟低通滤波器(s)LP H ,然后又(s)LP H 经过相应的复频域转换得到H(s),最后又H(s )经过脉冲响应不变法或双线性变换法得到所需要的III R数字滤波器H (z)。
由此可见,IIR 数字滤波器设计的重要环节是模拟滤波器的设计。
设计模拟低通滤波器的主要方法有Butterwor t、Ch eby shev 、和椭圆等滤波器设计方法。
实验步骤1.Butterw ort 数字滤波器设计(1) Bu tt erwort 滤波器是通带阻带都单调衰减的滤波器。
调用b uttord 函数可以确定巴特沃斯滤波器的阶数,其格式为:[N,Omegac ]=bu tt ord(Omegap,Ome gas,Rp,As ,’s ’)。
其中,输入参数Rp,As 分别为通带最大衰减和阻带最小衰减,以d B为单位;Om eg ap,Omegas 分别为通带截止频率和阻带截止频率,‘s ’说明所设计的是模拟滤波器。
输出参数为滤波器的阶数,Omegac为3dB截止频率。
综合实验1. 实验目的能综合利用信号处理的理论和Matlab 工具实现对信号进行分析和处理(1)熟练对信号进行时域和频域分析;(2)熟练进行滤波器设计和实现;(3)掌握对信号的滤波处理和分析。
2.实验原理设计并实现滤波器对信号进行分析和处理是信号处理课程学习的主要内容。
通过对信号进行频谱分析,能发现信号的频率特性,以及组成信号的频率分量。
对信号进行滤波处理,能改善信号的质量,或者为数据处理(如传输,分类等)提供预处理,等。
本次实验是对特定信号进行分析并进行滤波处理,需要综合应用之前的实验内容,主要有以下几个方面。
(1)离散时间信号与系统的时域分析Matlab 为离散时间信号与系统的分析提供了丰富且功能强大的计算函数和绘图分析函数,便于离散时间信号和系统的时域表示和分析。
(2)信号的频域分析信号处理课程主要学习了离散信号和系统的频域分析方法与实现,以及滤波器的设计与实现。
离散信号与系统的频域分析包括DTFT DFT Z变换等,FFT则是DFT的快速实现。
用Matlab分析信号的频谱可以用freqz函数或者FFT函数。
(3)滤波器设计滤波器的设计首先要确定滤波器的类型,即低通、高通、带通还是带阻。
滤波器的边缘频率可以通过对信号的频谱分析得到,滤波器的幅度指标主要有阻带最小衰减As 和通带最大衰减Ap。
一般来说,As越大,对截止通过的频率分量的衰减越大;Ap越小,对需要保留的频率分量的衰减越小。
因此,As 越大,Ap 越小,滤波器的性能越好,但随之而来,滤波器的阶数越大,实现的代价(包括计算时间和空间)越大。
由此,滤波器的设计需要对滤波器性能和实现代价进行均衡考虑。
另外根据冲激响应的长度可以分为IIR 和FIR 两种类型。
两种类型的滤波器各有特点。
用FIR 滤波器可以设计出具有严格线性相位的滤波器,但在满足同样指标的条件下,FIR 滤波器的阶数高于IIR 滤波器。
Matlab 为各种类型的滤波器的设计提供了丰富的函数,可以借助这些函数方便地设计出符合要求地滤波器。
数字信号处理的滤波器设计数字信号处理(Digital Signal Processing,DSP)是指对离散时间信号进行数字化处理的技术。
在数字信号处理领域中,滤波器是一项重要的技术,用于对信号进行去噪、频率调整和信号分析等操作。
本文将探讨数字信号处理中滤波器的设计原理和方法。
一、滤波器的基本原理滤波器是一种能够改变信号频谱特性的系统。
根据频率选择性,滤波器分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等几种类型。
滤波器的设计目标通常是在满足特定频率响应要求的前提下,降低噪声、改善信号质量。
数字滤波器主要分为无限脉冲响应(Infinite Impulse Response,IIR)滤波器和有限脉冲响应(Finite Impulse Response,FIR)滤波器两类。
IIR滤波器具有较高的灵敏度和较低的阶数,但可能引起不稳定性;而FIR滤波器具有稳定性好、相位线性等特点,但需要更高的阶数来达到相同的频率响应。
二、滤波器设计方法滤波器设计的一般步骤包括:确定滤波器类型、选择滤波器规格、设计滤波器传递函数、进行滤波器实现和性能评估。
根据具体应用需求,选择合适的滤波器类型与设计方法。
1. IIR滤波器设计IIR滤波器的设计方法主要包括模拟滤波器转换法、频率变换法、窗函数法和优化法等。
其中,窗函数法是一种简单且广泛使用的方法。
窗函数法通过将理想滤波器的频率响应与一个窗函数相乘,来设计出具有较好近似特性的滤波器。
2. FIR滤波器设计FIR滤波器的设计方法主要包括窗函数法、频率采样法、最小均方误差法和频率响应约束法等。
其中窗函数法同样是一种常用的设计方法,通过将理想滤波器的频率响应与一个窗函数相乘,来得到FIR滤波器的系数。
三、性能评估与优化滤波器的性能评估通常包括频率响应、相位特性、阶数和计算复杂度等指标。
在滤波器设计中,常常需要在不同的性能指标之间进行平衡,找到最优设计方案。
为了满足实际应用需求,滤波器的设计也可以进行优化。
计算机与信息工程学院验证性实验报告一、实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
二、实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种II R数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数b utter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数f ilter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
三、 实验内容及步骤(1)调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st ,该函数还会自动绘图显示st 的时域波形和幅频特性曲线,如图10.4.1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图10.4.1 三路调幅信号st 的时域波形和幅频特性曲线(2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。
提示:抑制载波单频调幅信号的数学表示式为0001()cos(2)cos(2)[cos(2())cos(2())]2c c c s t f t f t f f t f f t ππππ==-++其中,cos(2)c f t π称为载波,fc 为载波频率,0cos(2)f t π称为单频调制信号,f0为调制正弦波信号频率,且满足0c f f >。
由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率fc 对称。
所以,1路抑制载波单频调幅信号的频谱图是关于载波频率fc 对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。
容易看出,图10.4.1中三路调幅信号的载波频率分别为250H z 、500Hz 、1000Hz 。
如果调制信号m(t)具有带限连续频谱,无直流成分,则()()cos(2)c s t m t f t π=就是一般的抑制载波调幅信号。
其频谱图是关于载波频率f c 对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波 (DSB -SC) 调幅信号,简称双边带 (DSB) 信号。
如果调制信号m(t)有直流成分,则()()cos(2)c s t m t f t π=就是一般的双边带调幅信号。
其频谱图是关于载波频率fc 对称的2个边带(上下边带),并包含载频成分。
(3)编程序调用MATLAB 滤波器设计函数ellipord 和ellip 分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。
(4)调用滤波器实现函数filter ,用三个滤波器分别对信号产生函数mstg 产生的信号st 进行滤波,分离出st 中的三路不同载波频率的调幅信号y1(n)、y2(n)和y3(n), 并绘图显示y1(n)、y2(n)和y3(n)的时域波形,观察分离效果。
四、实验结果: 1、滤波器参数选取观察图10.4.1可知,三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。
带宽(也可以由信号产生函数mstg 清单看出)分别为50Hz 、100Hz 、200Hz 。
所以,分离混合信号st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的指标参数选取如下:对载波频率为250Hz 的条幅信号,可以用低通滤波器分离,其指标为 带截止频率280p f =Hz ,通带最大衰减0.1dB p α=dB ; 阻带截止频率450s f =Hz ,阻带最小衰减60dB s α=dB ,对载波频率为500Hz 的条幅信号,可以用带通滤波器分离,其指标为 带截止频率440pl f =Hz ,560pu f =Hz ,通带最大衰减0.1dB p α=dB ; 阻带截止频率275sl f =Hz ,900su f =Hz ,Hz ,阻带最小衰减60dB s α=dB , 对载波频率为1000Hz 的条幅信号,可以用高通滤波器分离,其指标为 带截止频率890p f =Hz ,通带最大衰减0.1dB p α=dB ; 阻带截止频率550s f =Hz ,阻带最小衰减60dB s α=dB ,说明:(1)为了使滤波器阶数尽可能低,每个滤波器的边界频率选择原则是尽量使滤波器过渡带宽尽可能宽。
(2)与信号产生函数mstg相同,采样频率Fs=10kHz。
(3)为了滤波器阶数最低,选用椭圆滤波器。
按照图10.4.2 所示的程序框图编写的实验程序为exp4.m。
2、实验程序清单%IIR数字滤波器设计及软件实现clear all;clear all;%调用信号产生函数mstg产生又三路抑制载波调幅信号相加构成的复合信号st;% st=mstg;%低通滤波器设计与实现Fs=10000;fp=280;fs=450;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs= 60 ; %DF指标;(低通滤波器的通阻带边界频率)[N,wp0]=ellipord(wp,ws,rp,rs);%调用ellipod计算椭圆DF阶数N和通带截止频率wp[B,A]=ellip(N,rp,rs,wp0);%调用ellip计算椭圆带通DF系统函数系数向量B和A y1t=filter(B,A,st); %滤波器的软件实现%下面为绘图部分figure(2);subplot(2,1,1);[H1,w]=freqz(B,A,1000);m=abs(H1);plot(w/pi,20*log(m/max(m)));grid on;title('低通滤波损耗函数曲线');axis([0,1,-300,20]);xlabel('w/pi');ylabel('H1');subplot(2,1,2);ss=0:0.02/1600:0.02-0.02/1600;plot(ss,y1t);title('低通滤波后的波形');axis([0,0.02,-1.2,1.2]);xlabel('t/s');ylabel('y1t');%下面为尝试部分%N=1600; %N为信号st的长度。
%Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间%t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;%figure(5)%stem(k,abs(fft(y1t,1600))/max(abs(fft(y1t,1600))),'.');grid;title('(b) s(t)的频谱');axis([0,Fs/5,0,1.2]);%带通滤波器的实现与设计fpl=450;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp0]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp0);y2t=filter(B,A,st);figure(3);subplot(2,1,1);[H2,w]=freqz(B,A,1000);m=abs(H2);plot(w/pi,20*log(m/max(m)));grid on;axis([0,1,-300,20]);title('带通滤波损耗函数曲线');xlabel('w/pi');ylabel('H2');subplot(2,1,2);plot(ss,y2t);title('带通滤波后的波形');axis([0,0.02,-1.2,1.2]);xlabel('t/s');ylabel('y2t');%高通滤波器的实现与设计fp=890;fs=600;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;[N,wp0]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp0,'high');y3t=filter(B,A,st);figure(4);subplot(2,1,1);[H3,w]=freqz(B,A,1000);m=abs(H3);plot(w/pi,20*log(m/max(m)));grid on;title('高通滤波损耗函数曲线');axis([0,1,-250,20]);xlabel('w');ylabel('H3');subplot(2,1,2);plot(ss,y3t);title('高通滤波后的波形');axis([0,0.02,-1.2,1.2]);xlabel('t/s');ylabel('y3t');clc;clear五、实验程序运行结果实验4程序exp4.m运行结果如图所示。
由图可见,三个分离滤波器指标参数选取正确,算耗函数曲线达到所给指标。
分离出的三路信号y1(n),y2(n)和y3(n)的波形是抑制载波的单频调幅波。
(t)(a) 低通滤波器损耗函数及其分离出的调幅信号y1(t)(b) 带通滤波器损耗函数及其分离出的调幅信号y2(t)(c)高通滤波器损耗函数及其分离出的调幅信号y3六、实验总结:通过本次关于IIR数字滤波器的设计及软件实现实验,我们可以学到关于如何在MatLab软件上实现数字滤波器的设计与实现对现实数字波形的滤波处理。