应用多元统计分析课后习题答案详解北大高惠璇(第三章部分习题解答)
- 格式:ppt
- 大小:632.50 KB
- 文档页数:46
多元统计分析课后练习答案第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
2(d c)(x 1 a)x 2 (b a)2(d c)2 2[(b a )(X 2 c) 2(X 1 a )(X 2 c)] (b a)2(d c)2dx 22(d c)(x.| a)x 222~(b a) (d c) c2[(b a)t 2(X 1 a)t]2 2 (b a) (d c)dt 2(d c)(x-i a)x 22 2(b a) (d c)所以d c2 2(b a) (d c) o2 2[(b a)t 2(X 1 a)t ] 第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,X (X !,X 2^|X p )的联合分布密度函数是-个p 维的函数,而边际分布讨论是 X (X i ,X 2」||X p)的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量(X 1 X 2)服从二元正态分布,写出其联合分布。
其中 a X 1 b , c X 2 d 。
求(1 )随机变量X 1和X 2的边缘密度函数、均值和方差;(2) 随机变量X 1和X 2的协方差和相关系数; (3) 判断X 1和X 2是否相互独立。
(1)解:随机变量 X 1和X 2的边缘密度函数、均值和方差;2[(d c)(x-i a) (b a)(x 2 c) 2(x 1 a)(x 2c)]2 2(b a) (d c)id解:设(X 1 X 2)的均值向量为口 ,协方差矩阵为21;,则其联合分布密度函数为21/21f(X).2-2.3已知随机向量(X 1f(X 1,X 2)型21122 2exp口)2112 2 2(X口)。
X 2) c)(X 的联合密度函数为a) (b a)(X 2c) 2 2(b a) (d c)2(X 1 a)(x 2 c)] dx(C d)(b a)36COV(N,X2)X i X2(3)解:判断X i和X2是否相互独立。
X i 和X2 由于f(X!,X2) f x,X i) f x,(X2),所以不独立。
第四章4-1 设⎪⎩⎪⎨⎧++=+-=+=,2,2,332211εεεb a y b a y a y ).,0(~323321I N σεεεε⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(1)试求参数b a ,的最小二乘估计;(2)试导出检验b a H =:0的似然比统计量,并指出当假设成立时,这个统计量是分布是什么?解:(1)由题意可知.,,,211201321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=εεεεβ b a y y y Y C 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==--321'1''1'211201************)(ˆy y y Y C C C β.ˆˆ)2(51)2(6132321⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++ba y y y y y(2)由题意知,检验b a H =:0的似然比统计量为2322ˆ⎪⎪⎭⎫ ⎝⎛=σσλ 其中,])ˆ2ˆ()ˆˆ2()ˆ[(31ˆ2322212b a y b a y a y --++-+-=σ。
当0H 成立时,设0a b a ==,则⎪⎩⎪⎨⎧+=+=+=,3,,303202101εεεa y a y a y ,311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C 可得,ˆ)3y (111311311311)(ˆ0321321'1''1'ay y y y y Y C C C =++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==--β ],)ˆ3()ˆ()ˆ[(31ˆ20320220120a y a y ay -+-+-=σ因此,当假设0H 成立时,与似然比统计量λ等价的F 统计量及其分布为).1,1(~ˆˆˆ2202F F σσσ-=4-3 设Y 与321,,x x x 有相关关系,其8组观测数据见表4.5.表 4.5 观测数据序号 1x2x3xY1 38 47.5 23 66.02 41 21.3 17 43.0 3 34 36.5 21 36.0 4 35 18.0 14 23.0 5 31 29.5 11 27.06 34 14.2 9 14.07 29 21.0 4 12.0 83210.087.6(1)设εββββ++++=3322110x x x Y ,试求回归方程及决定系数2R 和均方误差2s 。
第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd cc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。
多元统计分析课后习题答案多元统计分析课后习题答案在学习多元统计分析时,课后习题是巩固所学知识的重要环节。
通过解答习题,我们可以进一步理解和应用统计学的概念和方法。
下面将给出一些多元统计分析课后习题的答案,希望能对大家的学习有所帮助。
1. 在多元统计分析中,什么是协方差矩阵?如何计算协方差矩阵?答:协方差矩阵是用来衡量多个随机变量之间的线性关系的矩阵。
它是一个对称矩阵,对角线上的元素是各个变量的方差,非对角线上的元素是两个变量之间的协方差。
计算协方差矩阵的方法是,首先计算每个变量的平均值,然后计算每个变量与其他变量的协方差。
最后将这些协方差按照矩阵的形式排列,即得到协方差矩阵。
2. 什么是主成分分析?主成分分析的步骤是什么?答:主成分分析是一种用于降维的统计方法,它可以将多个相关变量转化为一组无关的主成分。
主成分分析的目标是找到能够解释原始变量大部分方差的少数几个主成分。
主成分分析的步骤如下:(1) 标准化数据:将原始数据进行标准化处理,使得每个变量的均值为0,标准差为1。
(2) 计算协方差矩阵:根据标准化后的数据计算协方差矩阵。
(3) 计算特征值和特征向量:求解协方差矩阵的特征值和特征向量。
(4) 选择主成分:根据特征值的大小选择主成分,通常选择特征值较大的前几个主成分。
(5) 构造主成分:将选择的主成分与原始数据进行线性组合,得到新的主成分。
3. 什么是判别分析?判别分析的步骤是什么?答:判别分析是一种用于分类的统计方法,它通过寻找最佳的分类边界,将样本分为不同的类别。
判别分析的目标是找到能够最大程度地区分不同类别的线性组合。
判别分析的步骤如下:(1) 收集样本数据:首先收集包含已知类别的样本数据。
(2) 计算类均值向量:根据样本数据计算每个类别的均值向量。
(3) 计算类内离散度矩阵:根据样本数据计算每个类别的类内离散度矩阵。
(4) 计算类间离散度矩阵:根据样本数据计算类间离散度矩阵。
(5) 计算投影向量:根据类内离散度矩阵和类间离散度矩阵计算投影向量。