压电复合材料
- 格式:docx
- 大小:15.25 KB
- 文档页数:4
压电复合材料
近日,美国宾夕法尼亚州立大学的研究人员采用柔性聚合物载体支撑的压电泡沫陶瓷,有望将通过标准的压电复合材料采集机械能与热能的能力提高10倍
背景
压电效应(piezoelectric effect),是指对压电材料施加压力,使其产生电位差(正压电效应);反之施加电压,则产生机械应力(逆压电效应)。
通过压电材料,我们可以利用机械形变产生电场,也可以利用电场产生机械形变,它为机械能与电能之间相互转化提供了一种途径。
压电材料一般包括:骨头、蛋白质、DNA、陶瓷、塑料、织物等,其应用范围非常广阔,例如:移动电话的谐振器和振动器、深海声纳、超声波成像等等。
压电效应的一项典型的用途就是发电。
为了采集微小的机械运动能量并转化为电能,供应可穿戴的移动电子设备或健康监测传感器的运行,研究人员通常会向柔性聚合物载体中添加硬质陶瓷纳米颗粒或者纳米线。
聚合物提供柔性,而压电纳米颗粒可以将机械能转化为电能。
但是,这些材料的效率相对较差,因为当机械负载产生时,机械能大部分被聚合物吸收,只有少部分转移到压电纳米颗粒上。
虽然添加更多的陶瓷可以提高能量效率,但是也会降低柔性。
创新
近日,美国宾夕法尼亚州立大学的研究人员采用柔性聚合物载体支撑的压电泡沫陶瓷,有望将通过标准的压电复合材料采集机械能与热能的能力提高10倍。
相关论文发表于《Energy and Environmental Science》杂志。
论文通讯作者、宾夕法尼亚州立大学工程科学与机械系教授Sulin Zhang 与他的学生负责模拟三维复合材料压电性能的计算工作。
压电复合材料压电复合材料是由压电相材料与非压电相材料按照一定的连通方式组合在一起而构成的一种具有压电效应的复合材料。
与压电陶瓷相比较具有更低的密度和声阻抗,从而使其与生物体、非金属材料、水与气体介质有着更好的匹配特性;其Qm值比普通压电陶瓷低2-3个数量级,使其很适合制作宽带窄脉冲换能器;压电复合材料具有较高的接收电压灵敏度;其平面机电耦合系数要小于普通压电陶瓷的平面机电耦合系数,使能量更能集中于厚度模。
因此压电复合材料在料位、液位传感器;医疗探头;无机非金属材料无损检测超声领域;声纳、水听器、深度仪、鱼探仪等水声领域;声学成象、机器人领域都有巨大的应用前景。
目前世界压电复合材料的市场前景相当可观,其在军事领域的作用也是巨大的,用其制作的被动声纳换能器,作用距离可以提高1-3倍,因此,压电复合材料的研究,无论是在民用方面还是军事领域都具有非常重要的意义。
一:1压电效应某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个表面上便产生符号相反的电荷,当外力去掉后,又重新恢复到不带电状态。
这种现象称压电效应(Piezoelectric Effect)。
正压电效应:机械能转化为电能逆压电效应:当在电介质极化方向施加电场,这些电介质也会产生几何变形,即电致伸缩效应。
——具有压电效应的压电材料可以实现机械能和电能的相互转化。
正压电效应的电位移与施加的应力有:D=dT逆压电效应的应变与施加的电场强度有:S=dE——d为压电常数2压电材料①压电晶体,主要包括压电石英晶体和其它压电单晶。
②压电陶瓷一元系:钛酸铅(PT)二元系:锆钛酸铅系列PbTiO3-PbZrO3(PZT)和铌酸盐系列KNbO3-PbNb2O3三元系:PMN 由铌镁酸铅Pb(Mg1/3Nb2/3)O3钛酸铅PbTiO3-锆钛酸铅PbZrO3三成分配比而成四元系:综合性能更加优越③高分子聚合物,聚氟乙烯(PVF)、聚偏二氟乙烯(PVDF)④压电复合材料3压电材料的性能(1)机电偶合系数(2)机械品质因数(3)频率常数(4)压电常数(5)弹性模量、相对介电常数、居里温度等。
2023年压电复合材料行业市场环境分析随着市场需求的增长,压电复合材料行业日益壮大。
本文将从市场需求、政策环境和竞争格局三个方面分析压电复合材料行业市场环境。
一、市场需求压电复合材料行业主要应用于新能源、航空、汽车、机器人等领域,这些领域的发展将对压电复合材料行业的发展产生巨大影响。
新能源方面,太阳能、风能等新能源领域需要大量的能量转换设备,而压电复合材料正好具有能量转换的特性,因此在这些领域有广泛的应用需求。
航空方面,随着民航市场的快速发展,机身材料的重量成为了限制航线和运营成本的重要因素。
压电复合材料具有轻量化、高韧性、高温性能等特点,因此在航空领域有广泛的应用前景。
汽车方面,压电复合材料可以用于车内智能控制装置、发动机部件、传感器等领域,这些应用会为汽车行业带来更高效、更智能化的产品,对于不断增长的汽车市场而言,具有广泛的市场需求。
机器人方面,压电复合材料在机器人传动、感知等领域的应用较为广泛,随着机器人市场的快速发展,压电复合材料将会成为其重要组成部分,对此市场需求也在不断增加。
二、政策环境在政策环境方面,国家对于新材料行业的支持力度逐年增加,为压电复合材料行业的发展提供了政策支持。
2016年国务院发布的《新材料产业发展规划(2016-2020年)》明确指出,要加快推进压电材料等具备自主知识产权的新材料的研发和产业化。
此外,各地方政府也相继制定了相应的新材料产业发展规划,为压电复合材料行业的发展提供政策支持。
除此之外,国家也在加强知识产权保护、鼓励民营资本进入等方面为新材料行业提供政策保障。
三、竞争格局由于压电复合材料行业市场前景广阔,吸引了众多企业进入。
目前行业竞争格局主要呈现两种模式:“龙头企业模式”和“小规模企业模式”。
“龙头企业模式”主要由少数几家大型企业垄断市场,此类企业具有较强的资金实力、技术实力和品牌影响力,具有较高的市场竞争力。
这种模式主要适用于航空和汽车等大规模的高价值领域。
常见的压电材料有哪些
首先,最常见的压电材料之一就是石英晶体。
石英晶体是一种自然界中存在的
矿物,具有良好的压电性能。
它在电子设备中被广泛应用,例如用于制作石英晶振,作为电子钟、计时器、无线电等设备的稳定振荡器。
除了石英晶体,陶瓷材料也是常见的压电材料之一。
陶瓷材料具有良好的压电
性能和机械性能,因此被广泛应用于压电换能器、压电陶瓷换能器、压电陶瓷传感器等领域。
此外,聚合物压电材料也是一类新型的压电材料。
相比传统的陶瓷材料,聚合
物压电材料具有更好的柔韧性和可塑性,可以在更广泛的领域得到应用。
目前,科研人员正在积极研究开发具有优良压电性能的聚合物材料,以满足不同领域对压电材料的需求。
此外,压电复合材料也是一种常见的压电材料。
压电复合材料是将压电陶瓷与
聚合物等材料复合而成,具有良好的压电性能和机械性能。
它在医疗、声学、振动控制等领域有着广泛的应用。
总的来说,常见的压电材料包括石英晶体、陶瓷材料、聚合物压电材料和压电
复合材料。
这些材料具有不同的特性和应用领域,但都具有良好的压电性能,为各种电子设备和器件的制造提供了重要的支持。
随着科学技术的不断发展,相信压电材料将会在更多领域发挥重要作用。
压电复合材料摘要:压电材料具有一定的条件反射以及指令分析能力,在智能材料系统具有广泛的应用前景。
本文结合压电材料的种类及应用,重点分析了我国压电材料的发展现状。
压电材料是具有压电效应材料的总称,属于具有特殊效应的新型复合材料。
近年来,在化工、机械、医疗等领域的应用发展迅速,逐渐成为国际竞争的重要新技术新材料。
同时,驰豫型铁电单晶、压电复合材料、高居里温度压电陶瓷、三元及多元系压电陶瓷、压电薄膜、细晶粒压电陶瓷、无铅压电陶瓷等均成为了国内外压电材料行业主要研发热点。
压电材料产品种类多21世纪最具应用潜能的新型复合材料之一——压电材料在我国发展现状几何?压电材料指在压力作用下,两端面间出现电压的晶体材料。
根据材料的性能不同,一般分为无机压电材料和有机压电材料两大类。
常见的压电材料分类1.无机压电材料无机压电材料包括压电晶体及压电陶瓷。
相比而言,压电晶体介电常数低、稳定性高、机械品质因子高,常见的有水晶、锗酸锂、镓酸锂等。
压电陶瓷压电性能强、介电常数高、稳定性差、电损耗较大,常见的有钛酸钡BT、改性钛酸铅PT、锆钛酸铅PZT等。
此外,压片陶瓷工艺较为复杂,生产过程中需完成配料、混合磨细、预烧、二次磨细、造粒、成形、排塑、烧结成瓷、外形加工、被电极、高压极化、老化测试等工艺,产品种类较多,包括分割电极方片、单面引线电极、分割电极等。
2.有机压电材料有机压电材料又称压电聚合物,该类材料具有密度低、柔韧度高、阻抗力低、压电电压常数高等优势,在水声、超声、电声等领域应用较广。
压电材料可用作能量转换器国内外压电材料的应用不断取得突破压电材料可将机械能转化为电能,常用于制造换能器,可以分为震动能—电能转换器和超声振动能—电能转换器两大类,包括水能换能器、电能换能器、超声换能器。
此外,压电材料在传感器、驱动器、新能源技术上均有应用。
换能器的应用,可应用工业生产麦克风、高频扬声器、立体声耳机等。
压电材料用于压力传感器方面,可用于生产干式压力传感器。
2023年压电复合材料行业市场前景分析近年来,压电复合材料作为一种新型的智能材料,其应用范围不断扩大,市场需求不断增加。
未来,压电复合材料的应用前景将越来越广泛。
一、市场需求1. 电声设备市场:压电复合材料可以广泛应用于电子设备,尤其是电子音响领域。
现代电子音响设备要求小巧、精细、无噪音,这些特点正好符合了压电复合材料的特性,因此这个市场前景很广阔。
2. 医疗器械市场:压电复合材料在医疗器械上的应用也很多,例如可用于超声探头、射频消融、诊断设备等等。
医疗器械市场是市场前景较好的行业之一。
3. 智能装备市场:智能装备是未来的发展趋势,而压电复合材料是智能装备的重要材料之一,可以用于振动探测器、物位控制等方面,市场需求也在不断增加。
二、技术研发1. 研发难度较高:压电复合材料的研发难度较高,需要涉及到多个学科领域,如材料科学、机械制造等。
另外,压电复合材料的制备工艺也比较复杂,需要大量的实验和试验,所以研发成本也较高。
2. 技术水平存在差异:不同的压电复合材料制备公司技术水平差别较大,一些小企业由于在技术研发上缺乏投入,导致成品质量欠佳,无法满足市场需求,市场竞争激烈。
三、市场竞争1. 行业进入门槛较低:压电复合材料行业进入门槛相对比较低,一些小型企业也能够进入市场,导致市场竞争比较激烈。
2. 中小企业处境不利:因为规模小、资金少,很难在研发和生产方面进行大规模投入,导致生产成本高,成品价格偏高,因此他们在市场上的竞争力比大型企业相对较弱。
总体来说,随着科技的不断进步,压电复合材料行业的市场前景越来越广阔,其中电声设备市场、医疗器械市场、智能装备市场等市场前景较好。
压电复合材料行业的竞争形势比较激烈,中小型企业需要在研发和生产方面进行加强,提高产品的竞争力。
压电复合材料压电复合材料是一种具有压电效应的复合材料,由于其在传感器、换能器等领域具有广泛的应用前景,因此备受关注。
压电复合材料由压电陶瓷和复合材料两部分组成,具有良好的压电性能和优异的力学性能。
本文将从压电复合材料的材料特性、制备工艺、应用领域等方面进行介绍。
首先,压电复合材料具有优异的压电性能。
压电效应是指在外加电场作用下,材料会产生机械应变;反之,在外加机械应力作用下,材料也会产生电荷。
这种双向的耦合效应使得压电复合材料在传感器、换能器等领域具有广泛的应用前景。
其次,压电复合材料还具有良好的力学性能,具有较高的强度和刚度,能够满足不同工程领域的需求。
其次,压电复合材料的制备工艺主要包括材料选择、成型工艺和制备工艺等几个方面。
首先,在材料选择上,需要选择具有良好压电性能的陶瓷材料,并与复合材料进行复合,以确保材料具有良好的力学性能。
其次,在成型工艺上,可以采用注塑成型、压延成型等工艺,以获得所需形状的压电复合材料。
最后,在制备工艺上,需要进行烧结、热压等工艺,以确保压电复合材料具有良好的压电性能和力学性能。
最后,压电复合材料在传感器、换能器等领域具有广泛的应用。
在传感器方面,压电复合材料可以用于压力传感器、加速度传感器等领域,具有灵敏度高、频率响应宽等优点。
在换能器方面,压电复合材料可以用于声波换能器、超声波换能器等领域,具有转换效率高、频率稳定等优点。
因此,压电复合材料在工程领域具有广泛的应用前景。
综上所述,压电复合材料具有优异的压电性能和良好的力学性能,其制备工艺简单可行,应用领域广泛。
随着科学技术的不断发展,相信压电复合材料将会在工程领域发挥越来越重要的作用。
2023年压电复合材料行业市场分析现状压电复合材料是一种具有压电效应的复合材料,由于其具有良好的响应性能和广泛的应用前景,在各行各业得到了广泛的关注和应用。
目前,压电复合材料行业市场正处于快速发展阶段,以下是对该行业市场现状的分析:1. 市场规模不断扩大:随着技术的进步与创新,压电复合材料的应用领域不断拓展,市场需求不断增加。
预计在未来几年内,压电复合材料市场规模将持续扩大。
2. 应用领域多样化:压电复合材料的应用领域非常广泛,包括声学传感器、压力传感器、位移传感器、加速度传感器等。
此外,它还在医疗器械、电子设备、汽车制造等领域中有着重要的应用价值。
3. 技术创新推动市场发展:随着科技的进步,压电复合材料的制备技术不断创新。
新材料的研发以及制备工艺的改进,使得压电复合材料更加适应不同领域的需求,推动了市场的发展。
4. 产业链逐步完善:压电复合材料市场的快速发展也推动了行业内的产业链的逐步完善。
从压电材料的研发、生产到应用的市场推广,整个产业链正在逐步形成。
5. 国际竞争日趋激烈:随着国内压电复合材料行业的迅速崛起,国际压电复合材料行业也在不断发展壮大。
国际市场上的竞争日趋激烈,国内企业需要注重提升技术水平和创新能力,以增强竞争力。
6. 市场前景广阔:压电复合材料的应用前景非常广阔,从日常生活到高新技术领域都有着广泛的应用需求。
随着科技的不断进步和人们对新材料的需求不断增加,预计压电复合材料行业市场前景将持续看好。
综上所述,压电复合材料行业市场目前正处于快速发展阶段,市场规模不断扩大,应用领域多样化,技术创新推动行业发展,产业链逐步完善,但同时也面临国际竞争激烈的挑战。
然而,由于其广阔的应用前景和市场需求的增加,预计该行业市场将继续保持良好的发展势头。
由热塑性聚合物和无机压电材料组成的压电材料称为压电复合材料或复合聚合物压电材料。
它具有无机压电材料优良的压电性能和聚合物压电材料优良的加工性能,无需拉伸即可获得压电性能。
这种压电特性在薄膜中没有各向异性,因此在任何方向上都表现出相同的压电特性。
准备好的
压电复合材料的制备方法是将无机压电材料粉末均匀分解,混合成热塑性聚合物,再混合成型。
常见的无机压电材料是压电陶瓷,如锆钛酸铅和pbto3;常见的聚合物基体是PVDF和其他含氟树脂。
[1]
优势
(1)横向振动很弱,串扰很弱;
(2)机械品质因数Q值低
(3)宽带(80%-100%);
(4)机电耦合系数大;
(5)与普通PZT探针相比,具有更高的灵敏度和更好的信噪比;
(6)在较宽的温度范围内稳定;
(7)可加工形状复杂的探头,只需简单的切割和填充工艺;
(8)声速、声阻抗、相对绝缘常数和机电系数容易改变(因为这些参数与陶瓷材料的体积比有关);
(9)很容易匹配不同声阻抗的材料(从水到钢);
(10)通过改变陶瓷体积比可以调节超声灵敏度。
[1]
压电材料分类
压电材料是一种具有压电效应的材料。
它是一种功能材料,在外力作用下产生电流,反之亦然,在电流作用下产生力或变形。
它广泛应用于传感器中,实现机械能和电能的转换。
自1880年居里兄弟发现压电效应以来,他们开发了多种压电材料,可分为以下五类:①单晶材料,如石英、磷酸等;②陶瓷材料,如锆钛酸铅(PZT))、钛酸铅,③高分子聚合物,如聚氯乙烯;④复合材料,如PZT/聚合物;⑤微晶玻璃,如tisro3等。
从以上可以看出,压电材料已经从自然界中存在的简单的单晶材料发展到构造复杂的复合材料过程。
压电复合材料是由压电陶瓷和聚合物以一定的方式、一定的体积质量比和一定的空间分布组成,可以改善材料的压电性能。
[2]
0-3压电复合材料
0-3型是最简单的压电复合材料,它是由分散在三维聚合物基体中的不连续陶瓷颗粒(0-D)形成的。
它的适应性很强。
它可以制成薄片、条状或金属丝,甚至可以模制成各种复杂的形状。
然而,极化是困难的,它的性质很容易受到各种过程的影响。
(1)由于压电填充相的极化电场强度远小于外极化电场强度,0-3压电复合材料的极化困难。
为了改善聚合物的极化性能,可以在复合材料中加入少量的导电相,如碳、锗,以提高聚合物基体的导电性。
此外,还可以采取措施提高压电陶瓷的相电阻率。
(2)压电相的选择要考虑的重要参数是长径比C/A,大的C/A压电相可以获得较大的自发应变。
使用PZT、pbtio2、(Pb、BI)(Ti、Fe)O3等。
(3)复合材料的性能也与制备方法密切相关。
用化学方法制备高纯度、均匀的复合材料对提高材料的性能起着重要的作用。