九年级数学知识点归纳:分式的定义
- 格式:docx
- 大小:56.99 KB
- 文档页数:2
分式知识点总结1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。
(分式的值是在分式有意义的前提下才可以考虑的,所以使分式为0的条件是A=0,且B≠0.)(分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。
首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(),其中A、B、C是整式注意:(1)“C是一个不等于0的整式”是分式基本性质的一个制约条件;(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;(4)分式的基本性质是分式进行约分、通分和符号变化的依据。
5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
分式的相关知识点总结一、分式的定义和性质1. 分式的定义分式是指两个整数或者两个代数式的比值的表示形式.一般为 a/b 的形式,其中 a 和 b 都是整数,b 不等于 0。
2. 分式的性质(1) 分式的分子和分母互质:如果分数 a/b 已经约分为最简分数,那么 a 和 b 一定是互质的,即它们的最大公因数是 1。
(2) 分母为 1 的分数:如果分数的分母为 1,那就是一个整数,可以简单地把它看作一个整数。
(3) 分式的相等:分数 a/b 和 c/d 相等,当且仅当 ad = bc。
两个分式相等时,它们表示的比值是相等的。
二、分式的运算1. 分式的加法和减法(1) 加法和减法的分母变换:对于不同分母的分数,需要将它们的分母变为相同的数,然后再进行加法或减法运算。
(2) 加法和减法的运算规则:对于相同的分母,直接将分子相加或相减,分母保持不变。
2. 分式的乘法和除法(1) 乘法法则:两个分式相乘时,分子与分子相乘,分母与分母相乘,即 (a/b) * (c/d) = (a*c)/(b*d)。
(2) 除法法则:两个分式相除时,分子与分母相乘,分母与分子相乘,即 (a/b) / (c/d) = (a*d)/(b*c)。
三、分式的化简1. 分式的约分分式约分是指将分子与分母的公因数约掉,使其成为最简分式.一般采用求最大公因数的方法进行约分。
2. 分式的通分不同分母的分数,通分是指将它们的分母都变为相同的数,通常采用最小公倍数的方法进行通分。
3. 分式的化简原则(1) 分式中的公因式可以约掉;(2) 同等分母的分式相加或相减时,只需对各分子分别进行加减。
四、分式的应用1. 代数方程中的应用在解代数方程时,常常会遇到分式方程,需要对其进行分式的加减乘除,并化简以便求解。
2. 几何问题中的应用在几何中,常常会涉及到对分式的加减乘除和化简操作,特别是在比例、相似三角形、面积等方面的计算中。
3. 物理问题中的应用在物理中,分式广泛应用于密度、速度、功率等问题的计算中,需要进行分式的加减乘除以及化简操作。
分式知识点总结分式是数学中常见的一种数形结合的表达方式,它由分子和分母两部分组成,分子表示被分割的数或者数量的一部分,分母表示分割数或者总数量。
在日常生活和数学问题中,我们经常会遇到分式的运用,因此了解和掌握分式的相关知识点对于解决问题非常重要。
一、分式的基本概念分式的基本概念包括分子、分母和真分数、假分数两种形式。
分子表示整体中的一部分,分母表示整体的总数量。
真分数的分子小于分母,表示整体的一部分,例如1/2、3/4;假分数的分子大于等于分母,表示整体加上一部分,例如5/2、7/4。
二、分式的化简与约分化简分式是将分式表达式进行简化的过程。
当分子与分母都可以被同一个非零整数整除时,可以进行约分,将分子与分母都除以这个公因数,得到一个最简分式。
例如,将4/8化简为1/2。
三、分式的运算1. 分式的加法和减法分式的加法和减法在计算中往往需要找到公共分母,然后将分子进行加法或减法运算,再将结果化简到最简分式。
例如,计算1/2 + 3/4,先找到公共分母为4,然后化简,得到5/4。
2. 分式的乘法和除法分式的乘法运算可以直接将分子与分母分别相乘,得到结果后化简为最简分式。
例如,计算2/3 * 3/4,直接相乘得到6/12,再化简就是1/2。
分式的除法运算可以通过求倒数转化为乘法运算。
将除号变为乘号,然后将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘,得到的结果再化简为最简分式。
例如,计算2/3 ÷ 3/4,转化为2/3 * 4/3,相乘得到8/9,再化简就是8/9。
四、分式的应用分式在日常生活和数学问题中有广泛的应用。
以下是一些常见的应用场景和解题思路:1. 分数的比较当需要比较两个分数的大小时,可以将它们的分母相等化,然后比较分子的大小。
例如,比较1/4和2/8大小,将2/8化简为1/4,可知1/4=1/4,两个分数相等。
2. 分数的混合运算在涉及分数的混合运算中,可以先将分数转化为整数或带分数,再进行运算。
初中数学分式知识点归纳一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质(1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
(2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
认识分式的知识点总结一、分式的定义分式是指由一个整数分子和一个非零整数分母构成的表示式,通常用a/b来表示,其中a 为分子,b为分母,b≠0。
又分式可分为真分式、假分式和整式三种。
(1)如果分子的绝对值小于分母的绝对值,则分式为真分式;(2)如果分子的绝对值大于或等于分母的绝对值,则分式为假分式;(3)只有一个整数的分式等于这个整数,即整数也可以看做是一个分数,分母为1,所以整数也是分式的一种。
二、分式的性质1.同分母情况下,分式大小的比较:相等分式的分子相等,分式大小的比较只需比较分子的大小。
数学表示:如果a、b、c、d是任意四个数,其中a、c>0,如果分数a/b>c/d,则a/b大于c/d;如果分数a/b=c/d,则a/b等于c/d;如果a/b<c/d,则a/b小于c/d。
2.异分母情况分式的化归:分式的异分母转化为同分母的分式,然后比较大小。
3.分式的约分:将分子、分母的公因式约去。
4.乘除分式:分式乘除法规则就是,分子×分子÷分子=新分子,分母×分母÷分母=新分母。
5.分式的加减法:同分母的分式相加减,分子相加减,分母不变即可。
6.分式的化简:当分子和分母有公因数时,可化为最简形式。
三、分式的化简分式的化简是指将一个分式中的分子和分母都除以同一个数,使得分式的值不变或者方便计算。
例如:将分式2/4化简为1/2,将分式6a/12化简为a/2。
化简分式的关键是找出分子和分母的公因数,然后将两者都除以它们的最大公因数。
四、分式的运算1.分式的加法:分式的加法就是将同分母的分式相加,分子相加,分母不变。
例如:3/4 + 2/4 = 5/4,7/6 + 5/6 = 12/6。
2.分式的减法:分式的减法就是将同分母的分式相减,分子相减,分母不变。
例如:3/4 - 1/4 = 2/4,7/6 - 2/6 = 5/6。
3.分式的乘法:分式的乘法就是将分子乘分子,分母乘分母,然后化简。
分式知识点总结及复习分式是数学中一个重要的概念,也是许多人在学习数学时感到困惑的内容之一。
本文将对分式的基本概念、运算法则以及应用进行总结与复习,帮助读者更好地理解和掌握分式知识。
一、基本概念分式由分子和分母两部分组成,分子表示分数的被除数,分母表示分数的除数。
分数的值可以是整数、小数或者其他分数。
下面是分式的基本概念:1. 真分数:分子小于分母的分数称为真分数,例如1/2、3/4等。
2. 假分数:分子大于或等于分母的分数称为假分数,例如5/2、7/3等。
3. 常分数:分子为0的分数称为常分数,其值为0。
二、分式的四则运算分式的四则运算包括加法、减法、乘法和除法。
下面是各种运算的规则和注意事项:1. 加法与减法:- 分式加减法的前提是分母相同,如果分母不同,则需要找到它们的最小公倍数来进行通分。
- 计算分子时,加法取分子相加,减法取分子相减。
- 结果的分子不一定能被整除,可能需要进行约分。
2. 乘法:- 分式乘法直接将分子相乘,分母相乘。
- 结果的分子和分母都需要化简,即约分。
3. 除法:- 分式除法可以转化为乘法求逆的问题,即将被除数的分子和除数的分母互换位置,然后进行乘法运算。
- 运算结束后需化简结果。
三、分式的应用分式在实际问题中有广泛的应用,以下是几个常见的应用场景:1. 比例问题:当我们需要比较两个量的大小、计算比例或者解决比例问题时,常常会使用到分式。
2. 混合运算:在一些复杂的算术题中,可能会出现含有分式的运算,我们需要根据题目要求进行正确的计算和化简。
3. 高等数学中的应用:在微积分、线性代数等高等数学中,分式经常用于表示函数、方程组等,是一种重要的数学工具。
四、分式知识点的复习为了更好地巩固分式的知识,建议读者可以通过以下方法进行复习:1. 多做练习题:选择一些分数相关的练习题,分情况进行分类练习,逐步提高解题能力。
2. 总结归纳:将每个知识点进行总结和分类,形成自己的知识框架,并根据实际问题进行思考和应用。
【数学知识点】分式的定义与概念形如A/B(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
形如A/B(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是A/B的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
一、约分根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
步骤:1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
二、公因式的提取方法系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
三、最简分式一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
乘法同分母分式的加减法法则进行计算。
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
四、除法两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
也可表述为:除以一个分式,等于乘以这个分式的倒数。
五、乘方分子乘方做分子,分母乘方做分母,可以约分的约分。
感谢您的阅读,祝您生活愉快。
初中数学知识点大全之分式知识点讲解
初中数学知识点大全之分式知识点讲解
分式
1、分式定义:形如的式子叫分式,其中A、B是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B0时,分式有意义。
(2)分式的值为0:A=0,B0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质:
(1) ;(2) (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:
(1)加、减:同分母的分式相加减,分母不变,分子相加减;
异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
分式的概念和性质要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式, 分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如πa 是整式而不能当作分式. (4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如xy x 2是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就 必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的 值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:MB M A B A M B M A B A ÷÷=⨯⨯=,(其中M 是不等于零的整式). 要点诠释:在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:xx x x x 1122-=+-,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有ab a b a b a b -=-=--,. 根据有理数除法的符号法则有ab a b a b -=-=-. 分式a b 与a b -互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用. 要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高 次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的 最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:bdac d c b a =⋅,其中a,b,c,d 是整式,bd ≠0. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:bcad c d b a d c b a =⋅=÷,其中a,b,c,d 是整式,bcd ≠0. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式. 要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n b a b a =⎪⎭⎫ ⎝⎛写成b a b a n n =⎪⎭⎫ ⎝⎛; (2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如222222)(b b a b b a b b a -≠-=⎪⎭⎫ ⎝⎛-.要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:cb ac b c a ±=±. 要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用 括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括 号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:bdbc ad bd bc bd ad d c b a ±=±=±. 要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变 成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.分式的混合运算,整数指数幂要点一、分式的混合运算与分数的加、减、乘、除混合运算一样,分式的加、减、乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是 正确进行分式运算的基础,要牢牢掌握..(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.要点二、零指数幂、同底数幂的除法任何不等于零的数的零次幂都等于1,即()010≠=a a . 同底数幂的除法法则可以推广到整数指数幂.即n m n m a a a -=÷(a≠0,m 、n 为整数)要点三、负整数指数幂任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数, 即n n aa 1=-(a≠0,n 是正整数). 引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成na 10⨯的形式,其中n 是正整数,101≤≤a .(2)利用10的负整数次幂表示一些绝对值较小的数,即n a 10⨯的形式,其中n 是正整数,101≤≤a .用以上两种形式表示数的方法,叫做科学记数法.分式方程的解法及应用要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未 知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的. 要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.。
【初中数学】中考数学分式知识点精讲
【—
高中入学考试
数学分式精讲】对于数学的学习,下面是老师对分式知识的内容讲解,希望给同学们
的学习很好的帮助哦。
小部分
1、分式定义:形如的式子叫分式,其中a、b是整式,且b中含有字母。
(1)分数无意义:当B=0时,分数无意义;当B≠ 0,分数是有意义的。
(2)分
数的值是0:当a=0,B≠ 0,分数的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是
把分子、分母因式分解,再约去公因式。
(4)最简单分数:当一个分数的分子和分母之间没有公因子时,它被称为最简单分数。
如果分数运算的最终结果是分数,则必须将其简化为最简单的分数。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫
做分式的通分。
(6)最简单公分母:每个分数的分母与所有因子的最高幂的乘积。
(7)有理公式:积分和分数统称为有理公式。
2、分式的基本性质:
(1)(2)分子分母的任何分母的符号不变,且分母的分母的符号发生变化。
3、分式的运算:
(1)加减法:加减分母相同的分数。
分母不变,分子加减;加减不同分母的分数。
首先把它们分成分母相同的分数,然后加和减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除以:除以一个分数等于乘以它的倒数。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
学生可以很好地掌握上述数学分数知识的讲解和学习。
稍后,我们将总结并学习更多
知识点。
初中数学知识点大全之分式知识点讲解
初中数学知识点大全之分式知识点讲解
分式
1、分式定义:形如的式子叫分式,其中A、B是整式,且B中
含有字母。
(1)分式无意义:B=0时,分式无意义; B0时,分式有意义。
(2)分式的值为0:A=0,B0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分
式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简
分式。
分式运算的最终结果假设是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分
母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)
有理式:整式和分式统称有理式。
2、分式的基本性质:
(1) ;(2) (3)分式的变号法那么:分式的分子,分母与分式本身
的符号,改变其中任何两个,分式的值不变。
3、分式的运算:
(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分
母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以
分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
分式概念知识点总结一、分式的概念分式是指一个整体被分成若干个相等的部分,其中每个部分被称为分子,整体被称为分母。
分式通常以 a/b 的形式表示,其中 a 和 b 都为整数,b 不为0。
分数的分母表示被分成的份数,分子表示取了多少份。
例如,2/3 表示整体被分成了3份,取了其中的2份。
二、分式的基本形式1. 真分式:分数的分子小于分母,即 |a| < b。
2. 假分式:分数的分子大于或等于分母,即|a| ≥ b。
3. 显分式:分式中的分子和分母都是已知的数。
4. 隐分式:未知数出现在分子或分母中。
三、分式的性质1. 两个分式相乘:a/b * c/d = ac/bd2. 两个分式相除:a/b ÷ c/d = ad/bc3. 两个分式相加:a/b + c/d = (ad + bc)/bd4. 两个分式相减:a/b - c/d = (ad - bc)/bd四、分式的化简1. 将分子和分母约分到最简形式。
2. 若分数中含有开平方,可将分子或分母的平方根提出来。
3. 若分数中含有负号,可将负号移到分子或分母。
五、分式的运算1. 分式的四则运算:包括加、减、乘、除。
2. 分式的化简:将分数化成最简形式。
3. 分式的混合运算:结合整数和分数进行运算。
六、分式方程1. 单分式方程:方程中只有一个分式。
2. 复分式方程:方程中含有多个分式。
七、分式的应用1. 比例问题:利用分式来描述两个量的比值,解决比例问题。
2. 百分比问题:将百分数化成分式,进行计算和比较。
3. 复利问题:利用复利的计算公式,将利率和时间表示成分式,求解复利问题。
八、分式的图形表示1. 分式在直角坐标系中的图形表示:分数可以表示成长度或面积的比值,可以在直角坐标系中用直线或曲线表示。
2. 分式在统计图中的表示:在统计图中,分数可以表示成比例的形式,用图形表示出来。
九、分式的应用领域1. 数学:在代数、几何、概率等方面,分式的概念和运算都有广泛的应用,是数学中重要的基础知识。
分式知识点归纳一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分式的分母不能为 0,因为除数不能为 0。
如果分母 B 的值为 0,那么分式 A/B 就没有意义。
例如:1/x ,(x + 1)/(x 2)都是分式。
二、分式有意义、无意义和值为 0 的条件(一)分式有意义的条件分式有意义时,分母不为 0。
即对于分式 A/B,当B ≠ 0 时,分式有意义。
例如:对于分式 1/(x 1),要使其有意义,则x 1 ≠ 0,即x ≠ 1。
(二)分式无意义的条件分式无意义时,分母为 0。
即对于分式 A/B,当 B = 0 时,分式无意义。
例如:对于分式 2/(x + 2),当 x + 2 = 0,即 x =-2 时,分式无意义。
(三)分式值为 0 的条件分式的值为 0 时,分子为 0 且分母不为 0。
即对于分式 A/B,当 A = 0 且B ≠ 0 时,分式的值为 0。
例如:对于分式(x 1)/(x + 1),当 x 1 = 0 且 x +1 ≠ 0 时,分式的值为 0,解得 x = 1。
三、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:A/B = A×C/B×C,A/B = A÷C/B÷C(C ≠ 0)例如:化简分式 2x/(3y),分子分母同时除以 x,得到 2/(3y/x) 。
四、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公约数。
2、字母:取相同字母的最低次幂。
例如:对分式(6x²y)/(9xy²)进行约分,分子分母的公因式为 3xy,约分后得到 2x/3y 。
五、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做通分。
分式知识点总结归纳一、分式的定义和表示1. 分式的定义分式是指两个整数的比值,通常表示为a/b,其中a称为分子,b称为分母,b不等于0。
例如:2/3、7/5等都是分式。
2. 分式的表示分式在数学中通常以a/b的形式表示,其中a和b都是整数。
分式也可以表示为小数形式或百分数形式。
例如2/3可以表示为0.666...或者66.6%。
二、分式的性质1. 分式的大小比较分式a/b和c/d的大小比较可以通过交叉相乘的方法来确定。
如果ad=bc,则a/b=c/d;如果ad<bc,则a/b<c/d;如果ad>bc,则a/b>c/d。
2. 分式的约分和通分分式的约分是指将分子和分母的公约数约去,使得分子和分母互质。
分式的通分是指将两个分式的分母变为相同的数,以便进行加减运算。
3. 分式的乘法和除法分式的乘法是指将两个分式的分子相乘得到新的分子,分母相乘得到新的分母;分式的除法是指将一个分式乘以另一个分式的倒数。
例如:(a/b)×(c/d)=(ac)/(bd);(a/b)÷(c/d)=(ad)/(bc)。
4. 分式的加法和减法分式的加法是指将两个分式的分母通分后,将分子相加得到新的分子;分式的减法是指将两个分式的分母通分后,将分子相减得到新的分子。
例如:a/b+c/d=(ad+bc)/(bd);a/b-c/d=(ad-bc)/(bd)。
5. 分式的乘方分式的乘方是指将分式的分子和分母分别进行幂运算。
例如:(a/b)²=a²/b²。
三、分式的应用1. 分式的应用范围分式在数学中有着广泛的应用,涉及到比例关系、面积和体积的计算等等。
在现实生活中,分式也经常出现在日常计算中,例如物品打折、时间的分配等都涉及到分式的运算。
2. 分式的比较分式的大小比较常常用于比例关系的计算中。
例如,当我们需要比较两个物品的价格或者比较两种方案的优劣时,可以利用分式的大小关系进行判断。
分式基础知识讲解分式,也称为有理数,是指一个整数除以另一个非零整数所得的数。
在数学中,分式是一个重要的概念,它在各种数学问题中都有广泛的应用。
本文将对分式的基础知识进行讲解。
一、分式的定义和表示方式分式可以看作是两个整数的比值,其中一个整数作为分子,另一个整数作为分母。
分式的一般表示方式为“a/b”,其中a为分子,b为分母。
例如,2/3、5/8都是分式。
分式可以用于表示一个数量相对于另一个数量的比值,比如“5个苹果中有3个是红色的”,可以表示为分式5/3。
二、分式的性质和运算法则1. 分式的相等性质对于任意两个分式a/b和c/d,如果ad=bc,则a/b=c/d,即分式相等性质。
2. 分式的相反数和倒数对于任意一个分式a/b,它的相反数是- a/b,它的倒数是b/a。
3. 分式的加减法当两个分式的分母相同时,可以直接对分子进行加减运算,并保持分母不变。
例如,对于分式a/b和c/b,它们的和为(a+c)/b,差为(a-c)/b。
当两个分式的分母不同时,可以通过求公共分母的方法将它们进行相加或相减。
具体方法可以参考通分的原理。
4. 分式的乘除法两个分式相乘时,只需将它们分子相乘得到新的分子,分母相乘得到新的分母。
例如,分式a/b和c/d的乘积为ac/bd。
两个分式相除时,可以将第二个分式的倒数乘以第一个分式。
即,分式a/b和c/d的商为(a/b) * (d/c) = (ad)/(bc)。
三、分式的简化和约分当一个分式的分子和分母有公约数时,可以进行约分,即将分子和分母同时除以它们的最大公约数。
约分后的分式与原分式表示相同的数。
四、分式的应用1. 倒数的表示当需要表示一个数的倒数时,可以使用分式。
例如,数x的倒数可以表示为1/x。
倒数在分数的求解和比较中起到重要作用。
2. 比例问题在比例问题中,分式被广泛使用。
比如“苹果的单价是2元/个,芒果的单价是3元/个,求苹果和芒果价格的比值”,可以表示为2/3这个分式。
初中教材中分式知识点的相关概念及对应的公式1. 引言初中数学教材中,分式是一个重要的知识点,也是学生在数学学习过程中的难点之一。
分式是指两个整数的比,常见的形式为a/b,其中a 和b为整数且b不等于0。
在初中阶段,学生需要掌握分式的相关概念和对应的计算方法,为以后学习更加复杂的代数表达式和方程式打下基础。
本文将从分式的基本概念、运算规则、实际应用和个人理解等方面对初中教材中分式知识点进行深入探讨。
2. 分式的基本概念分式的基本概念包括分子、分母、真分数和假分数等内容。
分子表示分数的被除数,分母表示分数的除数。
真分数指分子小于分母的分数,而假分数指分子大于或等于分母的分数。
还涉及到分式的约分和扩分等操作,2/4可以约分为1/2,3/5可以扩分为6/10。
3. 分式的运算规则在分式的运算中,涉及到加、减、乘、除等操作。
加法和减法的运算规则是找到公共分母,然后按照公共分母进行计算;乘法的规则是分子相乘、分母相乘;除法的规则是将除法转化为乘法,即变为分子乘以倒数的形式。
举例来说,(1/3) + (1/4) = (4/12) + (3/12) = (7/12),(2/3) × (3/4) = (2×3)/(3×4) = 6/12 = 1/2。
4. 分式的实际应用分式在现实生活中有着丰富的应用场景,例如比例、百分数、长宽比、物体的比例模型等。
班上男女生的比例为3:5,而男生的人数为24人,那么女生的人数为多少?这个问题就可以通过利用分式的运算规则来解决。
5. 个人观点及理解在我看来,分式是数学中非常重要的一部分,它不仅仅是一种运算形式,更是一种抽象思维的训练。
通过学习分式,可以帮助学生培养逻辑思维能力、运算能力和解决实际问题的能力。
我认为在初中阶段,学生需要重视分式的学习,建立扎实的基础,以便为今后的数学学习奠定坚实的基础。
6. 总结通过本文的阐述,我们对初中教材中分式知识点的相关概念及对应的公式有了全面的了解。
九年级数学知识点归纳:分式的定义分式
、分式定义:形如的式子叫分式,其中A、B是整式,且B中含有字母。
分式无意义:B=0时,分式无意义;B≠0时,分式有意义。
分式的值为0:A=0,B≠0时,分式的值等于0。
分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
最简公分母:各分式的分母所有因式的最高次幂的积。
有理式:整式和分式统称有理式。
2、分式的基本性质:
;分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:
加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加
减。
乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
除:除以一个分式等于乘上它的倒数式。
乘方:分式的乘方就是把分子、分母分别乘方。
一、选择题
下列式子是分式的是
2下列各式计算正确的是
3下列各分式中,最简分式是
4化简
的结果是
若把分式
中的x和都扩大2倍,那么分式的值
A扩大2倍B不变缩小2倍D缩小4倍。