最简单的循迹小车电路图
- 格式:pdf
- 大小:144.01 KB
- 文档页数:1
小车循迹电路设计方案小车循迹电路设计方案一、设计需求设计一款小车循迹电路,使其能够自动寻路,沿着黑线行驶。
二、设计方案1. 传感器选择选择红外线传感器作为寻线传感器。
红外线传感器能够感知黑线的反射光,从而确定小车的位置。
2. 电路连接将红外线传感器与单片机连接。
传感器的输出信号经过单片机的处理,控制小车的运动。
3. 运动控制根据传感器输出的信号,确定小车需要向左还是向右转弯。
如果传感器探测到黑线,小车保持直行;如果传感器没有探测到黑线,小车向右转弯,以寻找黑线。
4. 电源供应为了保证小车的稳定运行,选择适合的电源供应方式。
可以使用电池供电,电池电压适宜,容易携带。
三、电路图见附件。
四、硬件选型1. 单片机:选择一款性能较好的单片机,如ATmega328P,具有较强的处理能力和丰富的外设接口。
2. 传感器:选择高灵敏度的红外线传感器,如TCRT5000,可感知黑线的反射光。
3. 驱动电机:选择合适的直流电机作为小车的驱动装置,可根据小车的重量和负载情况选择合适的电机转速。
4. 电源:选择适合的电池供电,如锂电池或镍氢电池,电压稳定,容量适宜。
五、测试与优化完成电路连接后,进行测试。
将小车放置在黑线上,观察小车能否自动寻路、沿着黑线行驶。
根据测试结果,对电路进行优化,如调整红外线传感器的灵敏度、增加过滤电容等,以提高小车的稳定性和准确性。
六、总结通过以上的设计方案,可以实现小车循迹电路的基本功能。
在实际应用中,还可以添加其他功能,如避障功能、自动停车等,以提升小车的性能和实用性。
附件:电路连接图[图片]。
简易循迹小车装配图文教程一.电子元件装配顺序为由低到高,元件尽量紧贴电路板表面安装。
1.电阻的装配:注意色环的认识,区分好四色环与五色环的差别。
2.安装IC,注意IC的缺口方向。
3.安装可调电阻、开关、晶体管(发光管、三极管),注意所有晶体管都是有方向的。
4.安装电解电容和,注意电解电容的引脚方向,短脚为负,对应插到电路板有阴影的方向。
二.机械部分的安装1.安装302A齿轮,将35mm长的车轴与302A齿轮用力套上,并移动到约到中心的位置。
2.找出4个蓝色三通和4枚圆头自带垫2.3*6自攻螺丝(PW A2.3*6)。
3.先将内侧的两个三通用螺丝固定到电路板上。
4.将车轴和齿轮套入三通中,并移动齿轮位置,使齿轮在电路板的卡槽中,车轴刚好超出三通多一点,不超过1mm。
5.将另外两个三通套入车轴中并用螺丝固定到电路板上。
6.将蜗杆用力套入电机轴中,并压到接近电机轴承的位置,找出6-12枚2*3mm的圆头机丝螺丝用于固定电机。
7.将电机用螺丝固定到电路板上,一般每个电机固定3枚螺丝就OK了。
8.将车轮用力套入车轴上,并移动到接近电路板的位置。
(注意用力技巧,可以将车轴的另一端先靠到桌面等固定物上,适当用力敲打车轮到合适位置。
)9.将5*20的螺丝加配套螺母固定到电路板上,然后套上不锈钢盖形螺母作为万向轮使用。
三.安装剩余电路部分。
1.安装循迹红外发射与接收管,注意有正负方向的区别,使其高度略低于万向轮约3-5mm。
2.安装电池盒,电池盒通过不干胶粘到电路板上,注意位置必须准确,确保一次性成功,不可进行二次粘接。
连接电机导线,可以将过长的导线剪到合适的长度,新剥开的线头先要捻头并烫锡处理,线头长度不超过2mm。
电池盒用不干胶固定到电路板上,需特别注意电源的正负极不要接反,电机反转可以交换两条线的位置。
套件默认提供的是2节5号电池盒,可用2节碱性电池供电的(套件中不提供,需自备)。
3.为减小红外发射管对接收管直射光的干扰,可以在接收管上套上3mm热缩管。
智能小车红外循迹巡线传感器原理与应用电路2011-09-27 11:24智能小车是指由单片机控制的,可以修改程序的,在程序的控制下,能够自由移动,自动完成特定功能的小车。
它集计算机技术,软件编程,自动控制,传感器技术,机械结构于一体,是学习信息技术,机器人的最佳载体。
小车循迹指的是小车在白色地板上循黑线行走,通常采取的方法是红外探测法。
也可用CCD,CMOS 摄像头方案,光电优点:1.电路设计相对简单2.检测信息速度快3.成本低缺点:1.道路参数检测精度低、种类少2.检测距离短3.耗电量大4、容易受外界光线干扰摄像头优点:1.检测前瞻距离远2.检测范围宽3.检测道路参数多缺点:1.电路相对设计复杂2.检测信息更新速度慢3.软件处理数据较多红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射强度的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。
单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
常用的红外探测元件有红外发光管,红外接收管,红外接收头,一体化红外发射接收管。
红外线是不可见光线。
所有高于绝对零度(-273.15℃)的物质都可以产生红外线。
人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。
其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。
比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。
红外发光二极管:外形和普通发光二极管LED相似,发出红外光。
管压降约1.4v,工作电流一般小于20mA。
为了适应不同的工作电压,回路中常常串有限流电阻。
红外线发射管有三个常用的波段,850NM、875NM、940NM。
根据波长的特性运用的产品也有很大的差异,850NM波长的主要用于红外线监控设备,875NM主要用于医疗设备,940NM波段的主要用于红外线控制设备。
循迹避障小车原理一)小车功能实现利用光电传感(红外对射管,红外发射与接收二极管组成)检测黑白线,实现小车能跟着白线(或黑线)行走,同时也可避开障碍物,即小车寻迹过程中,若遇障碍物可自行绕开,绕开后继续寻迹。
二)电路分析1.光电传感循迹光电传感器原理,利用黑白线对红外线不同的反射能力。
然后通过光敏二极管或光敏三极管,接收反射回的不同光强信号,把不同光强转换为电流信号,最后通过电阻,转换为单片机可识别的高低电平。
光电传感器实现循迹的基本电路如下图所示、循迹传感器基本电路电路解释:TC端是传感器工作控制端,为高电平时,发光二极管不工作,传感器休眠,为低电平时,传感器启动。
Signal端为检测信号输出,当遇到黑线,黑线吸收大量的红外线,反射的红外线很弱,光敏三极管不导通,signal 输出高电平,当遇到白线,与黑线相反,反射的红外线很强,使光敏三极管导通,signal输出低电平。
寻迹部分调整左右传感器之间的距离,两探头距离约等于白线宽度最合适,一般白线宽度选择范围为3 – 5 厘米比较合适。
注意:该传感器的灵敏度是可调的,偶尔传感器遇到白线却不能送出相应的信号,通过调节传感器上的可调电阻,适当的增大或减小灵敏度。
另外,循迹传感器的安放也算是比较有讲究的,有两种方法,一种是两个都是放置在白线内侧但紧贴白线边缘,第二种是都放置在白线的外侧,同样紧贴白线边缘。
我们通常采用第二种方法。
编写程序使小车遇白线时,小车跟着白线走。
当小车先前前进时,如果向左偏离了白线。
那么右边传感器会产生一个低电平,单片机判断这个信号,然后向右拐。
回到白线后。
两传感器输出信号为高电平。
小车前进。
如果小车向右偏离白线,左边传感器产生一个低电平,单片机判断这个信号,然后向左拐。
如此如此,小车必不偏离白线。
若小车的两对光电传感器同时输出的信号为高电平(黑底)或低电平(白底),即单片机判断的都为高电平或低电平,小车向前直走,在此过程中(直走)小车若遇白线,小车又重复上面动作跟着白线走。
寻迹小车在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。
笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。
整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。
总体方案整个电路系统分为检测、控制、驱动三个模块。
首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。
系统方案方框图如图1所示。
图1 智能小车寻迹系统框图传感检测单元小车循迹原理该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。
笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。
红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。
在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。
传感器的选择市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。
ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示:图2 ST168检测电路ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。
ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。
笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。
R1限制发射二极管的电流,发射管的电流和发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻R2可限制接收电路的电流,一方面保护接收红外管;另一方面可调节检测电路的灵敏度。
智能小车红外循迹巡线传感器原理与应用电路智能小车是指由单片机控制的,可以修改程序的,在程序的控制下,能够自由移动,自动完成特定功能的小车。
它集计算机技术,软件编程,自动控制,传感器技术,机械结构于一体,是学习信息技术,机器人的最佳载体。
小车循迹指的是小车在白色地板上循黑线行走,通常采取的方法是红外探测法。
也可用CCD,CMOS 摄像头方案,光电优点:1.电路设计相对简单 2.检测信息速度快 3.成本低缺点:1.道路参数检测精度低、种类少2.检测距离短3.耗电量大4、容易受外界光线干扰摄像头优点:1.检测前瞻距离远 2.检测范围宽3.检测道路参数多缺点:1.电路相对设计复杂2.检测信息更新速度慢3.软件处理数据较多红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射强度的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。
单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
常用的红外探测元件有红外发光管,红外接收管,红外接收头,一体化红外发射接收管。
红外线是不可见光线。
所有高于绝对零度(-273.15℃)的物质都可以产生红外线。
人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。
其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。
比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。
红外发光二极管:外形和普通发光二极管LED相似,发出红外光。
管压降约1.4v,工作电流一般小于20mA。
为了适应不同的工作电压,回路中常常串有限流电阻。
红外线发射管有三个常用的波段,850NM、875NM、940NM。
根据波长的特性运用的产品也有很大的差异,850NM波长的主要用于红外线监控设备,875NM主要用于医疗设备,940NM波段的主要用于红外线控制设备。