放电等离子体烧结技术27页PPT
- 格式:ppt
- 大小:2.26 MB
- 文档页数:27
放电等离子体烧结
放电等离子体烧结是一种先进的材料加工技术,通过放电等离子体的高温、高能量作用,实现材料的烧结和熔融,从而制备出具有优异性能的复杂形状零件。
这种技术在金属、陶瓷、复合材料等领域都有着广泛的应用。
放电等离子体烧结技术的原理是利用高压电场使气体放电产生等离子体,等离子体在电场的作用下加热材料并使其烧结。
这种烧结方式具有高温、高能量、高速等特点,可以实现材料的快速烧结和熔融,从而大大提高材料的致密性和机械性能。
在金属材料加工中,放电等离子体烧结可以实现对金属粉末的高效烧结,制备出高强度、高硬度的金属零件。
同时,还可以实现对金属表面的改性处理,提高金属的耐磨性和耐腐蚀性。
在陶瓷材料加工中,放电等离子体烧结可以实现对陶瓷粉末的快速烧结,制备出高强度、高韧性的陶瓷制品。
在复合材料加工中,放电等离子体烧结可以实现对复合材料的烧结和熔融,制备出具有优异性能的复合材料制品。
放电等离子体烧结技术具有许多优点,如烧结速度快、烧结温度高、烧结效果好等。
与传统的烧结方法相比,放电等离子体烧结可以大大缩短加工周期,提高生产效率,降低生产成本。
此外,放电等离子体烧结还可以实现对材料的局部加热和局部烧结,实现对复杂形状零件的加工,提高材料的利用率和加工精度。
随着科技的不断进步,放电等离子体烧结技术在材料加工领域的应用将会越来越广泛。
通过不断的研究和创新,放电等离子体烧结技术将会为材料加工领域带来更多的突破和进步,为人类社会的发展做出更大的贡献。
相信在不久的将来,放电等离子体烧结技术将会成为材料加工领域的重要技术,为人类创造出更多的奇迹。
放电等离子体烧结技术(S P S)放电等离子体烧结技术(SPS)一、S PS合成技术的发展▪最初实现放电产生“等离子体”的人是以发现电磁感应法则而知名的法拉第(M.Farady),他最早发现在低压气体中放电可以分别观测到相当大的发光区域和不发光的暗区。
▪ngmuir又进一步对低压气体放电形成的发光区,即阳光柱深入研究,发现其中电子和正离子的电荷密度差不多相等,是电中性的,电子、离子基团作与其能量状态对应的振动。
他在其发表的论文中,首次称这种阳光柱的状态为“等离子体”。
等离子体特效图▪1930年,美国科学家提出利用等离子体脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。
日本获得了SPS 技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。
▪SPS技术的推广应用是从上个世纪80年代末期开始的。
▪1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广应用。
▪1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t的烧结压力和5000~8000A脉冲电流,其优良的烧结特性,大大促进了新材料的开发。
▪1996年,日本组织了产学官联合的SPS研讨会,并每年召开一次。
▪由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,应用金属、陶瓷、复合材料及功能材料的制备,并利用SPS进行新材料的开发和研究。
▪1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷登材料进行了较多的研究工作。
▪目前全世界共有SPS装置100多台。
如日本东北大学、大阪大学、美国加利福尼亚大学、瑞典斯德哥尔摩大学、新加坡南洋理工大学等大学及科研机构相继购置了SPS系统。
▪我国近几年也开展了利用SPS技术制备新材料的研究工作,引进了数台SPS烧结系统,主要用于纳米材料和陶瓷材料的烧结合成。
▪最早在1979年,我国钢铁研究总院自主研发制造了国内第一台电火花烧结机,用以批量生产金属陶瓷模具,产生了良好的社会经济效益。
放电等离子体烧结
放电等离子体烧结是一种新兴的材料加工技术,通过高温等离子体的作用,可以将粉末材料烧结成坚固的材料。
这种技术具有高效、环保、节能等优点,被广泛应用于金属、陶瓷、复合材料等领域。
放电等离子体烧结的原理是利用放电等离子体在高温下的高能量状态,使粉末颗粒表面迅速熔化并结合成致密的材料。
在这个过程中,放电等离子体不仅提供了高温和高压的条件,还能够激发粉末颗粒之间的化学反应,加速烧结速度,提高材料的密度和强度。
放电等离子体烧结技术的优势在于可以实现快速烧结、高密度、高强度和高温稳定性的材料制备。
与传统烧结方法相比,放电等离子体烧结可以大大缩短烧结时间,降低能耗,减少材料损耗,提高生产效率和材料质量。
在金属材料加工领域,放电等离子体烧结技术被广泛应用于制备高性能的工具钢、不锈钢、合金等材料。
通过这种技术,可以实现金属材料的高密度、高强度、高硬度和高耐磨性,满足各种工业领域对材料性能的要求。
在陶瓷材料加工领域,放电等离子体烧结技术也有着重要的应用。
通过这种技术,可以制备高密度、高强度、高耐磨性和高抗压性的陶瓷材料,广泛应用于电子、光学、航空航天等领域。
在复合材料领域,放电等离子体烧结技术的应用也日益广泛。
通过
这种技术,可以实现复合材料的高密度、高强度、高硬度和高耐磨性,满足汽车、航空航天、船舶等领域对复合材料性能的要求。
总的来说,放电等离子体烧结技术是一种高效、环保、节能的材料加工技术,具有广阔的应用前景。
随着材料科学技术的不断发展,相信放电等离子体烧结技术将在各个领域发挥重要作用,为人类社会的发展做出贡献。
放电等离子烧结技术一、技术概述放电等离子烧结技术是一种利用高温等离子体烧结陶瓷材料的方法。
该技术通过放电产生高温等离子体,使陶瓷粉末在高温下熔融并形成致密的块体,从而达到烧结的目的。
二、工艺流程1.原料制备:将陶瓷粉末按一定比例混合,并加入必要的助剂。
2.成型:将混合好的陶瓷粉末通过压制或注塑成型。
3.预处理:对成型后的坯体进行去除水分和有机物等预处理。
4.放电等离子体处理:将坯体置于放电等离子体发生器中,通过放电产生高温等离子体,使陶瓷粉末在高温下熔融并形成致密的块体。
5.后处理:对放电等离子体处理后得到的块体进行去除残余气孔和表面加工。
三、优点1.能够制备出具有优异性能的陶瓷材料,如高强度、高硬度、耐腐蚀性好等。
2.制备过程中无需添加任何外部热源,能够节约能源。
3.制备的陶瓷材料致密度高、气孔率低,具有较好的抗压强度和耐磨性。
四、缺点1.设备成本高,需要专门的放电等离子体发生器。
2.制备过程中需要控制放电等离子体的温度和时间等参数,技术难度较大。
3.制备出的陶瓷材料存在一定的残余应力,容易导致裂纹和断裂。
五、应用领域放电等离子烧结技术主要应用于制备高强度、高硬度、耐腐蚀性好的陶瓷材料。
目前已广泛应用于航空航天、汽车工业、机械加工等领域。
例如,利用该技术可制备出具有优异性能的氧化锆陶瓷刀具,在机械加工领域得到广泛应用。
六、发展趋势随着科学技术的不断进步和人们对高性能材料需求的增加,放电等离子烧结技术将会得到更广泛的应用。
未来该技术将会更加成熟,设备成本也将会逐渐降低,同时制备出的陶瓷材料也将会具有更优异的性能。
放电等离子体烧结
放电等离子体烧结
1.简介
放电等离子体烧结是一种利用等离子体特性进行烧结的方法。
它具有原料利用率高、烧结速度快、能耗低、烧结结构紧密等优点,它可以烧结金属、非金属和金属材料的复合材料。
放电等离子体烧结是一种强大的烧结工艺,它可以用来制造金属陶瓷、金属陶瓷复合材料,以及金属的高性能表面涂层等。
2.工艺原理
放电等离子体烧结是将低压电流以较高温度连续加热至原料表面,使原料快速熔液,利用等离子体的特性实现烧结的一种新的烧结方法。
放电等离子体烧结的原理包括电导热、电磁热、电离子热等。
在放电等离子体烧结过程中,热源可以是电流,或者是等离子体内热量产生的热源,当等离子体产生后,由于等离子体内的热量产生和原料表面电导热的作用,使得原料表面快速加热。
3.主要优点
放电等离子体烧结的主要优点有:
(1)烧结速度快,可以进行快速烧结。
(2)熔液区域较小,烧结过程中熔液的发生范围较小,烧结效果好。
(3)原料利用率高,烧结过程中不会出现损耗,原料利用率高。
(4)烧结均匀,烧结表面的晶粒细小均匀,且烧结结构紧密,
抗拉强度和耐磨性好。
(5)烧结温度低,烧结温度低,因而无需进行退火处理,烧结效率高。
(6)能耗低,由于烧结时采用的是低压电流,因此能耗低。