(x2 , y2)
(x1 , y1)
} ei = yi-^yi
(xi , yi)
理学院
yˆ aˆ bˆx
.
6
回归分析的主要内容
理学院
①从一组数据出发确定某些变量之间的定量关系式,即建立数学模型 并估计其中的未知参数。估计参数的常用方法是最小二乘法。 ②对这些关系式的可信程度进行检验。 ③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些) 自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著 的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、 向前回归和向后回归等方法。 ④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应 用是非常广泛的,统计软件包使各种回归方法计算十分方便。
.
11
1.回归模型
一元线性回归分析
理学院
若两个变量x, y之间有线性相关关系,其回归模型为:
yi abixi
y 称为因变量,x 称为自变量, 称为随机误差,a, b 称为待估计的回
归参数,下标 i 表示第 i 个观测值。
对于回归模型,我们假设: i ~N(0,2),i1,2, ,n E(ij)0,i j
.
4
回归分析的分类
理学院
涉及的自变量的多少——分为回归和多重回归分析; 因变量的多少——分为一元回归分析和多元回归分析; 自变量和因变量之间的关系类型——分为线性回归分析和非线性回归分析
一元线性回归——最简单的情形是只包括一个自 变量和一个因变量,且它们大体上有线性关系, 这叫一元线性回归,即模型为Y=a+bX+ε,这里X 是自变量,Y是因变量,ε是随机误差。 正态线性模型——若进一步假定随机误差遵从正 态分布,就叫做正态线性模型。