自然电位附自然伽马
- 格式:doc
- 大小:281.50 KB
- 文档页数:6
主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
自然电位的概念自然电位(Resting membrane potential)是细胞膜在静息状态下的电位差,通常指神经元或肌肉细胞的电位。
它是细胞内外离子浓度和通透性的结果,是神经元和肌肉细胞的重要生理指标。
神经元和肌肉细胞的自然电位是维持其正常功能的重要基础,对于神经传导、兴奋传递和肌肉收缩等生理过程起着至关重要的作用。
在细胞膜的生物电学性质中,自然电位是一个极为重要的参数。
自然电位的产生与细胞膜上的离子通道、静息离子内外浓度差异以及细胞膜的电容性质等密切相关。
这些因素共同导致了细胞膜内外的电位差,维持了细胞在静息状态下的电位稳定性。
自然电位的维持是靠离子泵和离子通道的共同作用。
在细胞膜上,存在着多种离子泵和离子通道,它们对细胞内的离子浓度和电位稳定起着关键作用。
其中,Na+/K+泵、Ca2+泵等离子泵通过主动转运维持了细胞膜内外的Na+、K+、Ca2+等离子浓度差异,而离子通道如Na+通道、K+通道、Cl-通道等则可以让离子在膜上自由扩散,从而调节细胞内外的电位。
在静息状态下,细胞内外离子浓度差异导致了自然电位的形成。
在神经元和肌肉细胞中,自然电位的值通常为-70mV左右。
这是由于在细胞膜上Na+/K+泵的作用下,细胞内外Na+、K+离子浓度产生了梯度,在添加上细胞质中还有蛋白质负电荷和其他阴离子的存在,导致在细胞膜上形成了负电位,细胞膜内外离子浓度不同也使得不同离子的渗透性也不同,K+离子内外渗透能力高,进一步增强了细胞膜上的负电位。
细胞静息状态的自然电位是细胞正常生理功能的基础。
首先,它是神经元和肌肉细胞的兴奋传导的基础。
在神经元兴奋传导的过程中,细胞外的刺激能够改变细胞膜上的离子通道的状态,导致离子通道的开放和关闭,从而改变了细胞膜的电位。
而对于神经元来说,只有当细胞膜上的电位达到一定的阈值时,才能够引发动作电位的产生,从而实现神经信号的传导。
而这一系列的兴奋传导,正是依赖于细胞膜上的自然电位的稳定性。
其次章主要测井方法、技术指标及其作用第一节常规测井方法一、电法测井1.自然电位测井自然电位测井是在裸眼井中测量井轴上自然产生的电位变化,以争论井剖面地层性质的一种测井方法。
它是世界上最早使用的测井方法之一,是一种简便而有用意义很大的测井方法,至今照旧是砂泥岩剖面必测的工程之一,是识别岩性、争论储层性质和其它地质应用中不行缺少的根本测井方法之一。
有时一些特别岩性,如某些碳酸盐岩〔阳5 井〕也有较强的储层划分力气。
其曲线的主要作用为:①划分储层;②推断岩性;③推断油气水层;④进展地层比照和沉积相争论;⑤估算泥质含量;⑥确定地层水电阻率〔矿化度〕;⑦推断水淹层。
在自然电位曲线采集过程中,主要受储层岩性、厚度、含油性和电阻率、侵入带直径、泥浆电阻率、井温、井眼扩径、岩性剖面缺少泥岩等影响,易产生多解性,在测井资料综合解释时应予以考虑。
2.一般电阻率测井一般电阻率测井是指各种尺寸的梯度电极系和电位电极系组成的测井方法,它承受不同的电极排列方式和不同的电极距,通过测量人工电场电位梯度或电位的变化来确定地层电阻率的变化。
利用具有不同径向探测深度的横向测井技术,可以识别岩性、划分储层、确定地层有效厚度、进展地层剖面比照、确定地层真电阻率及定性推断油气水层等。
目前还保存了2.5m、4m 梯度视电阻率测井,0.5m、0.4m 电位视电阻率测井以及微电极〔微电位和微梯度组合〕等一般电阻率测井方法。
〔1〕梯度视电阻率测井目前在用的有 2.5m 梯度视电阻率测井和4m 梯度视电阻率测井。
其主要作用为:①地层比照和地质制图〔标准测井曲线之一〕;②粗略推断油气水层;特别是长电极〔如4m 梯度〕,可较好地判识侵入较深地层的油气层;③划分岩性和确定地层界面;④近似估量地层电阻率。
进展该类资料分析时,应留意高电阻邻层屏蔽、电极距、围岩-层厚、井眼条件及地层或井眼倾斜的影响等。
〔2〕电位视电阻率测井目前在用的有0.5m、0.4m 电位电极系。
自然电位测井方法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。
这个电位是自然产生的,故称为自然电位。
使用图1所示电路,沿井提升M电极,地面仪器即可同时测出一条自然电位变化曲线。
自然电位曲线变化与岩性有密切关系,能以明显的异常显示出渗透性地层,这对于确定砂岩储集层具有重要意义。
自然电位测井方法简单,实用价值高,是划分岩性和研究储集层性质的基本方法之一。
图 1 自然电位测井原理一、井内自然电位产生的原因井内自然电位产生的原因是复杂的,但对于油井,主要有以下两个原因:地层水的含盐量(矿化度)与泥浆的含盐量不同,地层压力和泥浆柱压力不同,在井壁附近产生了自然电动势,形成了自然电场。
1.扩散电动势(Ed)的产生如图2所示,在一个玻璃容器中,用一个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放人一只电极,此时表头指针发生偏转。
此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的自然趋势,即高浓度溶液中的离子受渗透压的作用要穿过渗透性隔膜迁移到低浓度溶液中去,这一现象称为离子扩散。
在扩散过程中,由于Cl-的迁移率大于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,高浓度溶图2扩散电动势产生示意图液中Na+相对增多,形成正电荷聚集。
这就在两种不同浓度的溶液间产生了电动势,所以可测到电位差。
离子在继续扩散,高浓度溶液中的Cl-,由于受高浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;而高浓度溶液中的Na+,由于受高浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。
当接触面附近的电荷聚集使正、负离子的迁移速度相等时,电荷聚集就停止了,但离子还在继续扩散,溶液达到了动平衡,此时电动势将保持一定值:这个电动势是由离子扩散作用产生的,故称为扩散电位(Ed),也称扩散电动势,可用下式表示:mv g/L。
与上述实验现象一样,井内自然电位的产生也是两种不同浓度的溶液相接触的产物。
在纯砂岩井段所测量的自然电位即是扩散电动势造成的,这是由于浓度为Cw的地层水和浓度为Cmf的泥浆滤液在井壁附近接触产生扩散现象的结果。
通常,Cw>Cmf,所以一般扩散结果是地层水内富集正电荷,泥浆滤液中富集负电荷,如图3所示,有图3 井内自然电位分布示意图或2.扩散吸附电动势(Eda)如图4所示,将两种不同浓度(C1>C2)的NaCl溶液用泥岩隔膜分开。
实验结果表明:浓度大的一方富集了负电荷,浓度小的一方富集了正电荷。
其原因可以解释为:泥岩的孔隙道极小,泥质颗粒对Cl-有选择性吸附作用,Cl-都被束缚在泥质颗粒表面,不能自由移动,使得Cl-的迁移速度为零,在扩散过程中,只有Na+可向低浓度一方移动。
因此,在泥岩井壁上只发生Na+的扩散,这时形成的电动势称为扩散吸附电动势(Eda)。
因为泥岩选择性地让正离子通过,其作用有如化学中的半透膜,所以扩散吸附图4扩散吸附电动势示意图电位也称薄膜电位,其表达式为在砂泥岩剖面的井内,在泥岩井壁附近,由于泥浆滤液浓度与地层水的浓度不同(Cw>Cmf)而产生的扩散吸附电动势为3、过滤电动势(动电电动势)在压力差的作用下,当溶液通过毛细血管时,由于毛细血管壁吸附溶液中负离子,使溶液正离子相对增多,并且同溶液一起向压力低的一端移动,因此在毛细管两端富集了不同符号的离子,压力低的一端带正电,压力高的一端带负电,从而产生了电位差,如图5所示:在岩层中有很多很细的连通孔隙,相当于上述的毛细管。
当泥浆柱压力大于地层压力时,由于岩层中的毛细管孔道壁和泥饼中的泥质颗粒要吸附泥浆滤液中的负离子,而正离子随着泥浆滤液向地层中移动,这样在井壁附近聚集了大量负离子,在岩层内部有大量正离子,这种电位称为过滤电动势。
图 5 过滤电动势形成示意图二、自然电位测井曲线在钻穿地层的过程中,地层与泥浆相接触,产生了扩散吸附作用,在泥浆与地层接触面上产生了自然电位。
1.井内自然电场的分布设砂岩、泥岩的地层水矿化度分别为C2,C1,泥浆滤液的矿化度为Cmf,且有Cl≥C2>Cmf。
在砂岩和泥浆接触面上,由于扩散作用,产生的扩散电动势为在泥岩和泥浆接触面上,由于扩散吸附作用,产生的扩散吸附电动势为在砂岩和泥岩接触面上,由于扩散吸附作用,产生的扩散吸附电动势为在井与砂岩、泥岩接触面上,自然电流回路中的总自然电动势式中 K=Kd+Kda,称为自然电位系数。
可以写成:通常把E。
写作S5P,称为静自然电位。
实际测井时以泥岩作自然电位曲线的基线(即零线),当Cw>Cmf时,砂岩的自然电位异常为负值,因此上式右端取负号。
把井中巨厚的纯砂岩井段的自然电位幅度近似认为是SSP。
静自然电位的变化范围在含淡水岩层的+50mV到含高矿化度盐水岩层的-200mV之间。
2.自然电位曲线特点图6是一组含水纯砂岩的自然电位理论曲线,横坐标是自然电位与静自然电位之比ΔUsp/SSP,纵坐标为地层厚度h,曲线号码为层厚与井径之比h/d。
当上、下围岩很厚且岩性相同时,从曲线上可以看到下列特点:曲线关于地层中点对称,地层中点处异常值最大;地层越厚,ΔUsp越接近SSP,地层厚度变小,△Usp下降,且曲线顶部变尖,底部变宽,△Usp≤SSP;当h>4d时,△Usp的半幅点对应地层的界面,因此较厚地层可用半幅点法确定地层界面,地层变薄时,不能用半幅点法分层。
实测曲线与理论曲线特点基本相同,由于测井时受多方面因素的影响,实测曲线不如理论曲线规则(图7)。
使用自然电位曲线时应注意:自然电位曲线没有绝对零点,是以泥岩井段的自然电位曲线幅度作基线;自然电位曲线幅度△Usp的读数是基线到曲线极大值之间的宽度所代表的毫伏数。
在砂泥岩剖面中,以泥岩作为基线,Cw>Cmf时,砂岩层段出现自然电位负异常;Cw<Cmf 时,砂岩层段出现自然电位正异常;Cw=Cmf时,没有造成自然电场的电动势产生,则没有自然电位异常出现。
Cw和Cmf差别越大,造成的自然电场的电动势越大。
自然伽马测井方法原理一、自然伽马测井把仪器放到井下,测量地层放射性强度的方法叫自然伽马测井(GR)。
这种方法已有很长的历史,GR与SP相配合能很好地划分岩性和确定渗透性地层,GR的另一优点是可在套管井中测量。
1、岩石的放射性岩石的放射性,主要是由于含有铀(U)、钍(Th)、钾(K)等放射性元素,所以岩石的放射性强度决定放射性元素的含量。
一般条件下,岩石的放射性物质含量很少,按放射性的强弱沉积岩可分为以下几类:(1)自然伽马放射性高:放射性软泥、红色粘土、海绿石砂岩、独居石等岩石。
(2)自然伽马放射性中:浅海相和陆上沉积的泥质岩石,如泥质砂岩,泥质石灰岩,泥灰岩等。
(3)自然伽马放射性低:砂岩、石灰岩、石膏、岩盐、煤和沥青等2、自然伽马测井测量原理测量原理如图,测量装置由井下仪器和地面仪器组成。
下井仪器有探测器(闪烁计数管)、放大器和高压电源等几部分。
自然伽马射线由岩层穿过泥浆、仪器外壳进入探测器,经放大器把电脉冲放大后由电缆送到地面仪器。
早期的自然伽马曲线采用计数率(脉冲/的自然伽马测井都采用标准刻度单位API,曲线用GR与低放射性地层读数之差为200API单位,作为标准刻度单位。
3、自然伽马测井曲线把自然伽马测井仪下到井中,测量地层放射性强度随深度变化的曲线,称为自然伽马曲线(GR)。
(1)曲线特点。
根据理论计算自然伽马测井理论曲线如图。
其特点为:a、曲线对称于地层中点,在地层中点处有极大值或极小值,反映该层放射性大小。
b、当地层厚度h小于三倍的钻头直径d0 (h< 3d0)时,极大值随h↗而↗(极小值随h↗而↘)。
当h≥3d0时,极大值(或极小值)为一常数,与地层厚度无关,与岩石的自然放射性强度成正比。
c、h≥3d0时,由曲线的半幅点确定的底厚度等于地层的真实厚度,当h< 3d0时,由半幅点确定的地层厚度大于地层的真实厚度,而且越薄,大得越多。
理论曲线是在测速为零、点状计数管的条件下计算得到的,但实际测井中,计数管不是点状的,测速也不为零,所以实测曲线和理论曲线是有些差异的,但基本形状仍然相似。
(2)自然伽马测井曲线的影响因素a、层厚的影响。
地层变薄会使泥岩层的自然伽马测井曲线值下降,砂岩层的自然伽马测井曲线值上升,并且地层越薄,这种下降和上升就越多。
因此对h< 3d0的地层,应用曲线时,应考虑层厚的影响。
b、井参数的影响。
井径的扩大意味着下套管井水泥环增厚和裸眼井泥浆层增厚。
若水泥环和泥浆不含放射性元素,则水泥环和泥浆层增厚会使GR值降低,但由于泥浆有一些放射性,所以泥浆的影响很小。
力很强,所以下了套管的井,GR值会有所下降。
c、放射性涨落的影响。
在放射性源强度和测量条件不变的条件下,在相等的时间间隔内,对放射性的强度进行重复多次测量,每次记录的数值是不相同的,而总是在某一数值附近上下变化,这种现象叫放射性涨落。
它和测量条件无关,是微观世界的一种客观现象,且有一定的规律性。
这种现象是由于放射性元素的各个原子核的衰变彼此是独立的,衰变的次序是偶然的等原因造成的。
由于放射性涨落的存在,使得GR曲线不像电测井光滑。
放射性测井曲线上读数的变化,一是由地层性质变化引起的,另一方面是由放射性涨落引起的,要对放射性测井曲线进行正确地质解释,必须正确区分这两种原因造成的曲线变化。
d、测速的影响。
测井时的仪器上提速度是对GR曲线产生影响。
测速越大,GR关于地层越不对称。
(3)自然伽马测井曲线的应用①划分岩性。
主要根据地层中泥质含量的变化引起GR曲线幅度变化来区分不同的岩性。
I、砂、泥岩剖面砂岩(GR GR值)II、碳酸盐剖面白云岩、石灰岩(GR GR值)III、膏岩剖面岩盐、石膏(GR GR值)②进行地层对比GR曲线与地层中所含流体性质无关,其幅度主要决定于地层中的放射性物质,通常对于不同岩性其幅度较为稳定,另外,对比的标准层也易选取,通常选用厚度泥岩作标准层,进行油田范围或区域范围内的地层对比③估算地层中泥质含量:首先用自然伽马相对幅度的变化计算出泥质含量指数IGR通常I GR sh :希尔奇指数,可根据实验室取芯分析资料确定。
自然伽马测井只能测量地层中放射性元素的总含量,无法分辨地层中含有什么样的放射性元素,为此研制了自然伽马能谱测井,即测量不同放射性元素放射GR 基本所不同的是其增加了多道脉冲,能分别测量不同幅度的脉冲数,从而得出用以测定不同的放射性元素。
自然伽马能谱测井根据测经刻度可输出铀、钍、钾三条曲线及一条总的自然伽马曲自然伽马能谱测井除了GR 曲线的应用外,还可研究沉积环境,区分粘土矿物。