地震第3章 反褶积
- 格式:ppt
- 大小:2.90 MB
- 文档页数:117
第三章 反褶积反褶积是通过压缩地震记录中的基本地震子波,压制交混回响和短周期多次波,从而提高时间分辨率,再现地下地层的反射系数。
反褶积通常应用于叠前资料,也可广泛用于叠后资料。
反褶积得到具有更高时间分辨率的剖面。
反褶积的作用有时不局限在压缩子波上,它也能从记录上消除大部分的多次波能量。
在地震勘探中,岩石层由密度和地震波传播速度定义。
密度和速度的乘积称为地震波阻抗。
相邻岩石层之间的波阻抗差形成反射后,由沿地表的测线所记录。
这样得到的地震记录可表示为一个褶积模型,即地层脉冲响应与地震子波的褶积。
子波有许多成分,包括震源信号、记录滤波器、地表反射和检波器响应等。
地层脉冲响应是当子波为一个尖脉冲时所记录的。
理想的反褶积应该压缩子波并消除多次波,在地震道内只留下地层反射系数。
第一节 反褶积概念及原理1 反褶积概念我们知道,在反射法地震勘探中,由震源爆炸产生一尖脉冲,在地层中传播,经反射界面反射后又回到地面;被检波器所接收,送到仪器车,记录在数字磁带上,这就是地震信号产生过程的一个简单叙述。
由此想来,理想的地震记录应该象图3-1反射系数时间序列,其中每个脉冲代表地下存在一个反射界面,整个脉冲序列就表示地下一组反射界面。
这种理想地震记录x(t)可以表示为:()()t N t x ξ0= (3-1) 式中,N 0 为震源脉冲的强度值,是一常数; ()t ξ为反射系数序列。
但是由于震源爆炸时岩石破坏圈和岩石塑性圈的作用,使得震源发出的尖脉冲到达弹性形变区时变成一个具有一定延续时间的稳定波形b(t)(通常称为地震子波(wavelet ),图3-2)。
地层对震源脉冲的这种改造作用就相当于一个滤波器,通常称为大地滤波器。
通过这个滤波器的作用,子波的高频成分损失,脉冲的频谱变窄,从而使激发时产生的尖脉冲经大地滤波后其延续时间加大(图3-3)。
这样一来,地震记录也就变成了若干子波叠加的结果,即地震记录是地震子波和反射系数序列的褶积:()()()()()τξτξτ-=*=∑∞=t b t t b t x 0(3-2)在实际过程中,往往会有一些噪音产生,因此地震记录还应该包括干扰波n(t),即: ()()()()()()t n t b t n t S t x +-=+=∑∞=τξττ0(3-3)其结果为一复杂的记录形式(图3-4)。
《地震勘探资料处理》第一章~第六章复习要点总结第一章 地震数据处理基础一维谱分析数字地震记录中,每个地震道是一个按一定时间采样间隔排列的时间序列,每一个地震道都可以用一系列具有不同频率、不同振幅、相位的简谐曲线叠加而成。
应用一维傅里叶变换可以得到地震道的各个简谐成分;应用一维傅里叶反变换可以将各个简谐成分合并为原来的地震道序列。
连续函数正反变换公式:dt et x X t i ωω-∞∞-⎰=)()(~ 正变换 ωωπωd e X t x t i ⎰∞∞-=)(~21)( 反变换 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。
它可以写成指数形式 )()()(|)(~|)(~ωφωφωωωi i e A e X X ==式中)(ωA 为复数的模,称为振幅谱;)(ωϕ为复数的幅角,称为相位谱。
)()()(22ωωωi r X X A +=,)()(tan )(1ωωωφr i X X -=(弧度也可换算为角度)离散情况下和这个差不多(看PPT 和书P2-3)一维傅里叶变换频谱特征:1、一维傅里叶变换的几个基本性质(推导)线性 翻转 共轭 时移 褶积 相关(功率谱),P3-72、Z 变换(推导)3、采样定理 假频 尼奎斯特频率,tf N ∆=21二维谱分析二维傅里叶变换),(k X ω称为二维函数),(t x X 的频——波谱。
其模量|),(|k X ω称为函数),(t x X 的振幅谱。
由),(k X ω这些频率f 与波数k 的简谐成分叠加即可恢复原来的波场函数),(t x X (二维傅里叶反变换)。
如果有效波和干扰波的在f-k 平面上有差异,就可以利用二维频率一波数域滤波将它们分开,达到压制干扰波,提高性噪比的目的。
二维频谱产生空间假频的原因数字滤波在地震勘探中,用数字仪器记录地震波时,为了保持更多的波的特征,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。