小升初奥数知识点奥数必考30个知识点大全-word文档
- 格式:docx
- 大小:29.15 KB
- 文档页数:20
小升初奥数知识点—奥数必考30个知识点大全1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数30类知识详解1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
(完整版)小升初奥数知识点汇总-CAL-FENGHAI.-(YICAI)-Company One1小升初数学(奥数)知识点汇总一、质数、倍数、倍数、约数、整除问题1、质数(素数)① 只有1和它本身两个约数的整数称为质数;② 100以内质数共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;③ 最小的偶合数是4,最小的奇合数是9;④ 0、1既不是质数也不是合数。
⑤ 每一个合数分解质因数形式是唯一的。
⑥ 公因数只有1的两个非零自然数,叫做互质数。
2、倍数、约数性质①一个数最小的倍数是这个数本身,没有最大的倍数;② “0”没有约数和倍数,一般认为“1”只有约数“1”;③假如几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。
例如:26、39是13的倍数,则2639也是13的倍数。
④一般的数字的约数的个数都是偶数个,但是平方数的约数个数是奇数个。
例如:“9”有3个约数(1、3、9),“16”有5个约数(1、二、4、8、16)。
⑤约数和倍数必须强调出是哪个数字的约数和倍数。
⑥一个数既是它本身的倍数又是它本身的约数。
⑦一个数如果有偶约数,则这个数必为偶数。
3、整除性质①能被“2”整除的数的特点:末尾数字是“0、2、4、6、8”;②能被“3(9)”整除的数的特点:各位上数字和能被“3(9)”整除;③能被“4(25)”整除的数的特点:末尾两位能被“4(25)”整除;④能被“5”整除的数的特点:末尾数字是“0或5”;⑤能被“8(125)”整除的数的特点:这个数末三位能被“8(125)”整除;⑥能被“7、11、13”整除的数的特点:这个数从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被“7、11、13”整除。
如果求余数时,则奇数节和小于偶数节和时,需要将奇数节和加上若干个“7、11、13”,再相减。
小学奥数30个知识点大全1.数字的认识:了解从0到9的数字及其数值。
2.加法和减法:学习如何进行简单的加法和减法运算。
3.乘法和除法:了解乘法和除法的概念,并学习如何进行基本的乘除运算。
4.分数:认识和理解分数的概念,并学习如何进行分数运算。
5.小数:了解小数的概念,学习小数的读法和运算。
6.百分数:学习百分数的概念和应用,掌握如何进行百分数运算。
7.数字的顺序:学习数字的大小顺序和大小比较。
8.数字的组合:了解数字的组合和排列,学习如何进行数字的组合排列。
9.除法的应用:学习如何应用除法解决实际问题。
10.质数和合数:认识质数和合数的概念,并学习如何判断一个数是质数还是合数。
11.因数和倍数:了解因数和倍数的概念,并学习如何确定一个数的因数和倍数。
12.三角形的性质:学习三角形的定义和性质。
13.矩形和正方形:认识矩形和正方形的概念,并了解它们的性质。
14.圆的性质:学习圆的定义和性质,包括半径、直径、周长和面积等概念。
15.体积和容量:了解体积和容量的概念,并学习如何进行体积和容量的计算。
16.十进制数的读法:学习如何读写包含小数点的十进制数。
17.十进制数的运算:了解十进制数的加减乘除运算。
18.十进制数的应用:学习如何应用十进制数解决实际问题。
19.几何图形的变换:了解几何图形的平移、旋转和翻转等变换。
20.分数和小数的换算:学习如何将分数和小数互相转换。
21.图表和统计:认识各种图表的种类和用途,并学习如何读取和分析图表数据。
22.概率:了解概率的概念和计算方法。
23.平均数:学习如何求取一组数的平均数。
24.进制转换:了解十进制、二进制和八进制等不同进制之间的转换方法。
25.时、分和秒:学习如何读写和计算时间。
26.角的度数:认识角的度数的概念,学习如何进行角的度数的计算。
27.单位换算:了解不同单位之间的换算关系,并学习如何进行单位换算。
28.二次方程:认识二次方程的概念,并学习如何解二次方程。
小升初奥数备考知识点汇总1. 数学基础知识
- 数字的读写
- 加法、减法、乘法和除法运算
- 分数与小数
- 数字的序数和分类
- 数量的比较和排序
2. 几何学知识
- 点、线、面的认识
- 角、直角、钝角、锐角的认识
- 线段、直线、射线的区分
- 图形的分类与命名
- 对称图形和轴对称图形
3. 时间与物体运动
- 时间的认识与读写
- 时钟和日历的使用
- 运动物体的速度与距离的关系- 运动物体的简单计算问题
- 时间和运动的综合问题
4. 逻辑推理
- 推理与判断的思维训练
- 数列的认识和推理
- 奥数中常见的逻辑问题
- 分析与解决逻辑题的具体方法5. 数据处理与统计
- 数据的收集与整理
- 图表的认识与分析
- 常见的统计概念与计算方法- 统计与概率的关系
- 数据处理问题的解答方法
6. 空间思维能力
- 空间方位与方向的认知
- 空间几何图形的建构与转换
- 空间图形的旋转与镜像
- 空间图形的解析与折纸
以上是小升初奥数备考的主要知识点汇总。
在备考过程中,建议多做练习题和模拟试题,加强对知识点的理解和应用。
通过不断练习与思考,相信你能在奥数考试中取得优异的成绩!。
小学数学】小升初必考奥数30个知识点大汇总1.和差倍问题和差问题和倍问题是常见的数学问题,而差倍问题则是二者的结合。
已知条件可以是几个数的和与差,几个数的和与倍数,或者几个数的差与倍数。
公式适用范围是已知两个数的和、差或倍数关系。
关键问题是求出同一条件下的和与差或和与倍数或差与倍数。
2.年龄问题年龄问题有三个基本特征:两个人的年龄差是不变的,两个人的年龄是同时增加或者同时减少的,两个人的年龄的倍数是发生变化的。
3.归一问题归一问题的基本特点是问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。
关键问题是根据题目中的条件确定并求出单一量。
4.植树问题植树问题有几种基本类型:在直线或者不封闭的曲线上植树,两端都植树,在直线或者不封闭的曲线上植树,两端都不植树,在封闭曲线上植树,只有一端植树。
基本公式是棵数=段数+1,棵距×段数=总长或者棵数=段数-1,棵距×段数=总长或者棵数=段数,棵距×段数=总长。
关键问题是确定所属类型,从而确定棵数与段数的关系。
5.鸡兔同笼问题鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来。
基本思路是假设某种现象存在(甲和乙一样或者乙和甲一样),假设后发生了和题目条件不同的差,找出这个差是多少,每个事物造成的差是固定的,从而找出出现这个差的原因。
基准数法:为了求一组数的平均数,我们可以选择一个基准数,并计算每个数与基准数的差。
将这些差加起来,求出它们的平均数,再将这个平均数加上基准数,就是所求的平均数。
一般来说,我们会选择与所有数比较接近的数或者中间数作为基准数。
具体关系可以参考基本公式②。
抽屉原理:抽屉原理指出,如果将(n+1)个物体放在n个抽屉里,那么至少会有一个抽屉中放有2个或多于2个物体。
例如,将4个物体放在3个抽屉里,就会有至少一个抽屉中放有2个或多于2个物体。
我们可以通过将4分解成三个整数的和来验证这一点。
小升初奥数知识点汇总精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】小升初奥数知识点讲解汇总1、年龄问题的三大特征年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。
例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍?⑴ 父子年龄的差是多少?54 – 18 = 36(岁)⑵ 几年前父亲年龄比儿子年龄大几倍?7 - 1 = 6⑶ 几年前儿子多少岁?36÷6 = 6(岁)⑷ 几年前父亲年龄是儿子年龄的7倍?18 – 6 = 12 (年)答:12年前父亲的年龄是儿子年龄的7倍。
2、归一问题特点归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。
这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。
有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。
由上所述,解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
3、植树问题总结植树问题基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式:棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系4、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小升初奥数知识点—奥数必考30个知识点大全1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,大凡是那个“单一量”,题目大凡用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件例外的差,找出这个差是多少;③每个事物造成的差是不变的,从而找出出现这个差的原因;④再根据这两个差作合适的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准例外,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不够;基本公式:总份数=(余数+不够数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不够;基本公式:总份数=(较大不够数一较小不够数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次例外的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把持续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平衡数基本公式:①平衡数=总数量÷总份数总数量=平衡数×总份数总份数=总数量÷平衡数②平衡数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;大凡选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平衡数;最后求这个差的平衡数和基准数的和,就是所求的平衡数,详尽关系见基本公式②。
10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
11.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
12.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,大凡用a1表示;项数:等差数列的所有数的个数,大凡用n表示;公差:数列中任意相邻两个数的差,大凡用d表示;通项:表示数列中每一个数的公式,大凡用an表示;数列的和:这一数列全部数字的和,大凡用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1) ×公差;数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13.二进制及其应用十进制:用0~9十个数字表示,逢10进1;例外数位上的数字表示例外的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;例外数位上的数字表示例外的含义。
(2)=An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+……+A3×22+A2×21+A1×20注意:An不是0就是1。
十进制化成二进制:①根据二进制满2进1的特点,用2持续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。
14.加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种例外方法,在第二类方法中有m2种例外方法……,在第n类方法中有mn种例外方法,那么完成这件任务共有:m1+ m2....... +mn种例外的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种例外的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。
这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度。
①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数15.质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1……求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
16.约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。